Global Patent Index - EP 4375373 A2

EP 4375373 A2 20240529 - CAS VARIANTS FOR GENE EDITING

Title (en)

CAS VARIANTS FOR GENE EDITING

Title (de)

CAS-VARIANTEN ZUR GENEDITIERUNG

Title (fr)

VARIANTS DE CAS POUR ÉDITION DE GÈNES

Publication

EP 4375373 A2 20240529 (EN)

Application

EP 24155880 A 20141212

Priority

  • US 201361915386 P 20131212
  • US 201461980333 P 20140416
  • US 201414326318 A 20140708
  • US 201414326140 A 20140708
  • US 201414326303 A 20140708
  • US 201414326290 A 20140708
  • US 201414326269 A 20140708
  • US 201414326109 A 20140708
  • US 201414325815 A 20140708
  • EP 19181479 A 20141212
  • EP 14825518 A 20141212
  • US 2014070038 W 20141212

Abstract (en)

Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzyme domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing enzymes or domains, are provided.

IPC 8 full level

C12N 15/10 (2006.01)

CPC (source: EP US)

A61K 38/465 (2013.01 - EP US); A61K 38/50 (2013.01 - EP US); A61K 47/61 (2017.08 - US); A61P 3/00 (2018.01 - EP); A61P 11/00 (2018.01 - EP); A61P 13/02 (2018.01 - EP); A61P 13/12 (2018.01 - EP); A61P 17/00 (2018.01 - EP); A61P 19/00 (2018.01 - EP); A61P 21/00 (2018.01 - EP); A61P 25/00 (2018.01 - EP); A61P 25/28 (2018.01 - EP); A61P 35/00 (2018.01 - EP); C12N 9/22 (2013.01 - EP US); C12N 9/6472 (2013.01 - EP US); C12N 9/78 (2013.01 - EP US); C12N 15/01 (2013.01 - EP US); C12N 15/102 (2013.01 - EP US); C12P 19/34 (2013.01 - US); C12Q 1/6883 (2013.01 - US); C12Y 301/00 (2013.01 - EP US); C12Y 304/22062 (2013.01 - EP US); C12Y 305/04 (2013.01 - EP US); C12Y 305/04001 (2013.01 - EP US); C12Y 305/04004 (2013.01 - EP US); C12Y 305/04005 (2013.01 - EP US); C07K 2319/00 (2013.01 - US); C07K 2319/80 (2013.01 - EP US); C12Q 2600/156 (2013.01 - US); C12Y 301/22 (2013.01 - EP US); Y02A 50/30 (2018.01 - EP)

Citation (applicant)

  • US 201361874682 P 20130906
  • US 201361874746 P 20130906
  • WO 2010132092 A2 20101118 - SCRIPPS RESEARCH INST [US], et al
  • GUILINGER JPTHOMPSON DBLIU DR: "Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification", NAT. BIOTECHNOL., vol. 32, no. 6, 2014, pages 577 - 82, XP055157221, DOI: 10.1038/nbt.2909
  • JINEK M.CHYLINSKI K.FONFARA I.HAUER M.DOUDNA J.A.CHARPENTIER E: "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.", SCIENCE, vol. 337, 2012, pages 816 - 821, XP055229606, DOI: 10.1126/science.1225829
  • FERRETTIMCSHAN W.M.AJDIC D.J.SAVIC D.J.SAVIC G.LYON K.PRIMEAUX C.SEZATE S.SUVOROV A.N.KENTON S.: "Complete genome sequence of an M1 strain of Streptococcus pyogenes", PROC. NATL. ACAD. SCI. U.S.A., vol. 98, 2001, pages 4658 - 4663
  • DELTCHEVA E.CHYLINSKI K.SHARMA C.M.GONZALES K.CHAO Y.PIRZADA Z.A.ECKERT M.R.VOGEL J.CHARPENTIER E.: "CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.", NATURE, vol. 471, 2011, pages 602 - 607, XP055308803, DOI: 10.1038/nature09886
  • CHYLINSKIRHUNCHARPENTIER: "The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems", RNA BIOLOGY, vol. 10, no. 5, 2013, pages 726 - 737, XP055116068, DOI: 10.4161/rna.24321
  • JINEK ET AL., SCIENCE, vol. 337, 2012, pages 816 - 821
  • QI ET AL.: "Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression", CELL, vol. 28, no. 5, 2013, pages 1173 - 83, XP055346792, DOI: 10.1016/j.cell.2013.02.022
  • GILBERT ET AL.: "CRISPR-mediated modular RNA- guided regulation of transcription in eukaryotes", CELL, vol. 154, no. 2, 2013, pages 1173 - 51, XP055321615, DOI: 10.1016/j.cell.2013.06.044
  • WEINBERGER ET AL., THE J. OF PHYSIOLOGY, vol. 590, 2012, pages 3449 - 3464
  • FERRETTI J.J.MCSHAN W.M.AJDIC D.J.SAVIC D.J.SAVIC G.LYON K.PRIMEAUX C.SEZATE S.SUVOROV A.N.KENTON S.: "Complete genome sequence of an M1 strain of Streptococcus pyogenes.", PROC. NATL. ACAD. SCI. U.S.A., vol. 98, 2001, pages 4658 - 4663, XP002344854, DOI: 10.1073/pnas.071559398
  • CONG, L. ET AL.: "Multiplex genome engineering using CRISPR/Cas systems", SCIENCE, vol. 339, 2013, pages 819 - 823, XP055400719, DOI: 10.1126/science.1231143
  • MALI PYANG LESVELT KMAACH JGUELL MDICARLO JENORVILLE JECHURCH GM: "RNA-guided human genome engineering via Cas9", SCIENCE, vol. 339, no. 6121, 2013, pages 823 - 826, XP055469277, DOI: 10.1126/science.1232033
  • HWANG, W.Y ET AL.: "Efficient genome editing in zebrafish using a CRISPR-Cas system", NATURE BIOTECHNOLOGY, vol. 31, 2013, pages 227 - 229, XP055086625, DOI: 10.1038/nbt.2501
  • JINEK, M ET AL.: "RNA-programmed genome editing in human cells", ELIFE, vol. 2, 2013, pages e00471, XP002699851, DOI: 10.7554/eLife.00471
  • DICARLO, J.E. ET AL.: "Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems", NUCLEIC ACIDS RESEARCH, 2013
  • JIANG, W. ET AL.: "RNA-guided editing of bacterial genomes using CRISPR-Cas systems", NATURE BIOTECHNOLOGY, vol. 31, 2013, pages 233 - 239, XP055249123, DOI: 10.1038/nbt.2508
  • PRASHANT ET AL.: "CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering", NATURE BIOTECHNOLOGY, vol. 31, no. 9, 2013, pages 833 - 838, XP055693153, DOI: 10.1038/nbt.2675
  • CHEN ET AL.: "Fusion protein linkers: property, design and functionality", ADV DRUG DELIV REV, vol. 65, no. 10, 2013, pages 1357 - 69, XP028737352, DOI: 10.1016/j.addr.2012.09.039
  • JINEK MJIANG FTAYLOR DWSTERNBERG SHKAYA EMA EANDERS CHAUER MZHOU KLIN S: "Structures of Cas9 endonucleases reveal RNA-mediated conformational activation", SCIENCE, vol. 343, no. 6176, 2014, pages 1247997, XP055149157, DOI: 10.1126/science.1247997
  • NISHIMASU HRAN FAHSU PDKONERMANN SSHEHATA SIDOHMAE NISHITANI RZHANG FNUREKI O: "Crystal structure of Cas9 in c omplex with guide RNA and target DNA", CELL, vol. 156, no. 5, 2014, pages 935 - 49
  • QI LSLARSON MHGILBERT LADOUDNA JAWEISSMAN JSARKIN APLIM WA: "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression", CELL., vol. 152, no. 5, 2013, pages 1173 - 83
  • TSAI SQWYVEKENS NKHAYTER CFODEN JATHAPAR VREYON DGOODWIN MJARYEE MJJOUNG JK: "Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing", NAT BIOTECHNOL., vol. 32, no. 6, 2014, pages 569 - 76, XP055178523, DOI: 10.1038/nbt.2908
  • MALI PAACH JSTRANGES PBESVELT KMMOOSBURNER MKOSURI SYANG LCHURCH GM: "CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering", NAT BIOTECHNOL., vol. 31, no. 9, 2013, pages 833 - 8, XP055693153, DOI: 10.1038/nbt.2675
  • MAEDER ET AL.: "CRISPR RNA-guided activation of endogenous human genes", NAT METHODS, vol. 10, 2013, pages 977 - 979, XP055291599, DOI: 10.1038/nmeth.2598
  • TSAI SQWYVEKENS NKHAYTER CFODEN JATHAPAR VREYON DGOODWIN MJARYEE MJJOUNG JK: "Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing", NATBIOTECHNOL, vol. 32, no. 6, 2014, pages 569 - 76, XP055178523, DOI: 10.1038/nbt.2908
  • SCHWANK ET AL.: "Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients", CELL STEM CELL, vol. 13, 2013, pages 653 - 658, XP055102691, DOI: 10.1016/j.stem.2013.11.002
  • WU: "Correction of a genetic disease in mouse via use of CRISPR-Cas9", CELL STEM CELL, vol. 13, 2013, pages 659 - 662, XP055196555, DOI: 10.1016/j.stem.2013.10.016
  • MCDONALD ET AL., GENOMICS, vol. 39, 1997, pages 402 - 405
  • NORIS ET AL., BRITISH JOURNAL OF HAEMATOLOGY, vol. 97, 1997, pages 312 - 320
  • ALI ET AL., HEMATOL., vol. 93, 2014, pages 381 - 384
  • CHIPEV ET AL., CELL, vol. 70, 1992, pages 821 - 828
  • POLLER ET AL., GENOMICS, vol. 17, 1993, pages 740 - 743
  • "UNIPROT", Database accession no. P04275
  • LENK ET AL., PLOS GENETICS, vol. 7, 2011, pages e 1002104
  • KUNDU ET AL., 3 BIOTECH, vol. 3, 2013, pages 225 - 234
  • LAVERGNE ET AL., BR. J. HAEMATOL., vol. 82, 1992, pages 66 - 7
  • YAZAKI ET AL., KIDNEY INT., vol. 64, 2003, pages 11 - 16
  • MINORETTI, INT. J. OF MOL. MED., vol. 19, 2007, pages 369 - 372
  • IRRTHUM ET AL., AM. J. HUM. GENET., vol. 67, 2000, pages 295 - 301
  • GALLO, J. ALZHEIMER'S DISEASE, vol. 25, 2011, pages 425 - 431
  • LEWIS, J. OF GENERAL VIROLOGY, vol. 87, 2006, pages 2443 - 2449
  • FUJISAWA, BLOOD, vol. 109, 2007, pages 2903 - 2911
  • KUMAR ET AL., J. BIOL. CHEM., vol. 274, 1999, pages 24137 - 24141
  • NUC. ACIDS RES, vol. 42, 2014, pages 1095
  • J. BIOL. CHEM., vol. 279, 2004, pages 53379
  • J. VIROLOGY, vol. 88, 2014, pages 3850
  • J. VIROLOGY, vol. 80, 2006, pages 5992
  • HUMBERT ODAVIS LMAIZELS N: "Targeted gene therapies: tools, applications, optimization", CRIT REV BIOCHEM MOL., vol. 47, no. 3, 2012, pages 264 - 81, XP009177879, DOI: 10.3109/10409238.2012.658112
  • OPIN CHEM BIOL., vol. 16, no. 3-4, 2012, pages 268 - 77
  • UMOV FDREBAR EJHOLMES MCZHANG HSGREGORY PD: "Genome editing with engineered zinc finger nucleases", NAT REV GENET., vol. 11, no. 9, 2010, pages 636 - 46, XP055598474
  • JOUNG JKSANDER JD: "TALENs: a widely applicable technology for targeted genome editing", NAT REV MOL CELL BIOL., vol. 14, no. 1, 2013, pages 49 - 55, XP055282847, DOI: 10.1038/nrm3486
  • CHARPENTIER EDOUDNA JA: "Biotechnology: Rewriting a genome", NATURE, vol. 495, no. 7439, 2013, pages 50 - 1, XP055338357, DOI: 10.1038/495050a
  • PAN YXIA LLI ASZHANG XSIROIS PZHANG JLI K: "Biological and biomedical applications of engineered nucleases", MOL BIOTECHNOL, vol. 55, no. 1, 2013, pages 54 - 62, XP037137863, DOI: 10.1007/s12033-012-9613-9
  • DE SOUZAN. PRIMER: "genome editing with engineered nucleases", NAT METHODS, vol. 9, no. 1, 2012, pages 27
  • SANTIAGO YCHAN ELIU PQORLANDO SZHANG LURNOV FDHOLMES MCGUSCHIN DWAITE AMILLER JC: "Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases", PROC NATL ACAD, vol. 105, no. 15, 2008, pages 5809 - 14, XP009143037, DOI: 10.1073/pnas.0800940105
  • CARGILL MALTSHULER DIRELAND JSKLAR PARDLIE KPATIL NLANE CRLIM EPKALYANARAMAN NNEMESH J: "Characterization of single-nucleotide polymorphisms in coding regions of human genes", NAT GENET., vol. 22, no. 3, 1999, pages 231 - 8, XP002272024, DOI: 10.1038/10290
  • JANSEN RVAN EMBDEN JDGAASTRA WSCHOULS LM: "Identification of genes that are associated with DNA repeats in prokaryotes", MOL MICROBIOL, vol. 43, no. 6, 2002, pages 1565 - 75, XP002424877, DOI: 10.1046/j.1365-2958.2002.02839.x
  • MALI PESVELT KMCHURCH GM: "Cas9 as a versatile tool for engineering biology", NAT METHODS, vol. 10, no. 10, 2013, pages 957 - 63, XP002718606, DOI: 10.1038/nmeth.2649
  • JORE MMLUNDGREN MVAN DUIJIN EBULTEMA JBWESTRA ERWAGHMARE SPWIEDENHEFT BPUL UWURM RWAGNER R: "Structural basis for CRISPR RNA-guided DNA recognition by Cascade", NAT STRUCT MOL BIOL., vol. 18, no. 5, 2011, pages 529 - 36, XP055053986, DOI: 10.1038/nsmb.2019
  • HORVATH P, BARRANGOU R: "CRISPR/Cas, the immune system of bacteria and archaea.", SCIENCE, vol. 327, no. 5962, 2010, pages 167 - 70, XP055016971, DOI: 10.1126/science.1179555
  • WIEDENHEFT BSTERNBERG SHDOUDNA JA: "RNA-guided genetic silencing systems in bacteria and archaea", NATURE, vol. 482, no. 7385, 2012, pages 331 - 8, XP002723433, DOI: 10.1038/nature10886
  • GASIUNAS GSIKSNYS V: "RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?", TRENDS MICROBIOL, vol. 21, no. 11, 2013, pages 562 - 7, XP055102697, DOI: 10.1016/j.tim.2013.09.001
  • QI LSLARSON MHGILBERT LADOUDNA JAWEISSMAN JSARKIN APLIM WA: "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression", CELL, vol. 152, no. 5, 2013, pages 1173 - 83
  • PEREZ-PINERA PKOCAK DDVOCKLEY CMADLER AFKABADI AMPOLSTEIN LRTHAKORE PIGLASS KAOUSTEROUT DGLEONG KW: "RNA-guided gene activation by CRISPR-Cas9-based transcription factors", NAT METHODS., vol. 10, no. 10, 2013, pages 973 - 6, XP055181249, DOI: 10.1038/nmeth.2600
  • GILBERT LALARSON MHMORSUT LLIU ZBRAR GATORRES SESTERN-GINOSSAR NBRANDMAN OWHITEHEAD EHDOUDNA JA: "CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes", CELL, vol. 154, no. 2, 2013, pages 442 - 51, XP055115843, DOI: 10.1016/j.cell.2013.06.044
  • LARSON MHGILBERT LAWANG XLIM WAWEISSMAN JSQI LS: "CRISPR interference (CRISPRi) for sequence-specific control of gene expression", NATPROTOC, vol. 8, no. 11, 2013, pages 2180 - 96
  • COLE-STRAUSS AYOON KXIANG YBYRNE BCRICE MCGRYN JHOLLOMAN WKKMIEC EB: "Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide", SCIENCE, vol. 273, no. 5280, 1996, pages 1386 - 9, XP000999440, DOI: 10.1126/science.273.5280.1386
  • TAGALAKIS ADOWEN JSSIMONS JP: "Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos", MOLREPROD DEV, vol. 71, no. 2, 2005, pages 140 - 4
  • RAY ALANGER M: "Homologous recombination: ends as the means", TRENDS PLANT SCI., vol. 7, no. 10, 2002, pages 435 - 40
  • BRITT ABMAY GD: "Re-engineering plant gene targeting", TRENDS PLANT SCI., vol. 8, no. 2, 2003, pages 90 - 5, XP055052427, DOI: 10.1016/S1360-1385(03)00002-5
  • VAGNER V, EHRLICH SD.: "Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome.", JBACTERIOL, vol. 170, no. 9, 1988, pages 3978 - 82
  • SALEH-GOHARI NHELLEDAY T: "Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells", NUCLEIC ACIDS RES., vol. 32, no. 12, 2004, pages 3683 - 8
  • LOMBARDO AGENOVESE PBEAUSEJOUR CMCOLLEONI SLEE YLKIM KAANDO DURNOV FDGALLI CGREGORY PD: "Gene editing in human stem cells using zince finger nucleases and integrase-defective lentiviral vector delivery", NAT BIOTECHNOL., vol. 25, no. 11, 2007, pages 1298 - 306
  • CONTICELLO SG: "The AID/APOBEC family of nucleic acid mutators", GENOME BIOL., vol. 9, no. 6, 2008, pages 229, XP002667006, DOI: 10.1186/GB-2008-9-6-229
  • REYNAUD CAAOUFOUCHI SFAILI AWEILL JC: "What role for AID: mutator, or assembler of the immunoglobulin mutasome?", NAT IMMUNOL., vol. 4, no. 7, 2003, pages 631 - 8, XP002339746, DOI: 10.1038/ni0703-631
  • BHAGWAT AS.: "DNA-cytosine deaminases: from antibody maturation to antiviral defense.", DNA REPAIR (AMST), vol. 3, no. 1, 2004, pages 85 - 9
  • NAVARATNAM NSARWAR R: "An overview of cytidine deaminases", INT JHEMATOL, vol. 83, no. 3, 2006, pages 195 - 200, XP036524137, DOI: 10.1532/IJH97.06032
  • HOLDEN LGPROCHNOW CCHANG YPBRANSTEITTER RCHELICO LSEN USTEVENS RCGOODMAN MFCHEN XS: "Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications", NATURE, vol. 456, no. 7218, 2008, pages 121 - 4, XP055605400, DOI: 10.1038/nature07357
  • CHELICO LPHAM PPETRUSKA JGOODMAN MF: "Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G", JBIOL CHEM., vol. 284, no. 41, 2009, pages 27761 - 5
  • PHAM PBRANSTEITTER RGOODMAN MF: "Reward versus risk: DNA cytidine deaminases triggering immunity and disease", BIOCHEMISTRY, vol. 44, no. 8, 2005, pages 2703 - 15
  • BARBAS CFKIM DH: "Cytidine deaminase fusions and related methods", PCTINTAPPL, 2010
  • ADV DRUG DELIV REV, vol. 65, no. 10, 2013, pages 1357 - 69
  • GERBER APKELLER W: "RNA editing by base deamination: more enzymes, more targets, new mysteries", TRENDS BIOCHEM SCI., vol. 26, no. 6, 2001, pages 376 - 84, XP004245065, DOI: 10.1016/S0968-0004(01)01827-8
  • YUAN L, KUREK I, ENGLISH J, KEENAN R., MOL BIOL REV., vol. 69, no. 3, 2005, pages 373 - 92
  • COBB RE, SUN N, ZHAO H.: "Directed evolution as a powerful synthetic biology tool.", METHODS, vol. 60, no. 1, 2013, pages 81 - 90
  • BERSHTEIN STAWFIK DS: "Advances in laboratory evolution of enzymes", CURR OPIN CHEM BIOL., vol. 12, no. 2, 2008, pages 151 - 8, XP022656020, DOI: 10.1016/j.cbpa.2008.01.027
  • HIDA K, HANES J, OSTERMEIER M.: "Directed evolution for drug and nucleic acid delivery.", ADVDRUG DELIV REV, vol. 59, no. 15, 2007, pages 1562 - 78, XP022355290, DOI: 10.1016/j.addr.2007.08.022
  • ESVELT KMCARLSON JCLIU DR: "A system for the continuous directed evolution of biomolecules", NATURE, vol. 472, no. 7344, 2011, pages 499 - 503, XP037291841, DOI: 10.1038/nature09929
  • HUSIMI Y: "Selection and evolution of bacteriophages in cellstat", ADV BIOPHYS, vol. 25, 1989, pages 1 - 43, XP025450237, DOI: 10.1016/0065-227X(89)90003-8
  • RIECHMANN LHOLLIGER P: "The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli", CELL, vol. 90, no. 2, 1997, pages 351 - 60, XP001154544, DOI: 10.1016/S0092-8674(00)80342-6
  • NELSON FKFRIEDMAN SMSMITH GP: "Filamentous phage DNA cloning vectors: a noninfective mutant with a nonpolar deletion in gene III", VIROLOGY, vol. 108, no. 2, 1981, pages 338 - 50, XP023058032, DOI: 10.1016/0042-6822(81)90442-6
  • RAKONJAC JMODEL P: "Roles of pΠI in filamentous phage assembly", J MOLBIOL., vol. 282, no. 1, 1998, pages 25 - 41
  • SMITH GP: "Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface", SCIENCE, vol. 228, no. 4705, 1985, pages 1315 - 7, XP002464311, DOI: 10.1126/science.4001944
  • SHERIDAN C: "Gene therapy finds its niche", NAT BIOTECHNOL., vol. 29, no. 2, 2011, pages 121 - 8, XP055050811, DOI: 10.1038/nbt.1769
  • LEE JW, SOUNG YH, KIM SY, LEE HW, PARK WS, NAM SW, KIM SH, LEE JY, YOO NJ,LEE SH.: " PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas", ONCOGENE, vol. 24, no. 8, 2005, pages 1477 - 80, XP037743293, DOI: 10.1038/sj.onc.1208304
  • IKEDIOBI ONDAVIES HBIGNELL GEDKINS SSTEVENS CO'MEARA SSANTARIUS TAVIS TBARTHORPE SBRACKENBURY L: "Mutation analysis of 24 known cancer genes in the NCI-60 cell line set", MOL CANCER THER, vol. 5, no. 11, 2006, pages 2606 - 12, XP055267813, DOI: 10.1158/1535-7163.MCT-06-0433

Designated contracting state (EPC)

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DOCDB simple family (publication)

US 2015165054 A1 20150618; AU 2014362208 A1 20160630; AU 2014362208 B2 20210211; AU 2021200375 A1 20210318; AU 2021200375 B2 20230817; AU 2023254972 A1 20231116; CA 2933625 A1 20150618; CA 2933625 C 20220830; CN 105934516 A 20160907; CN 105934516 B 20220208; CN 114516920 A 20220520; DK 3080265 T3 20191118; DK 3604511 T3 20240603; EP 3080265 A1 20161019; EP 3080265 B1 20190807; EP 3604511 A1 20200205; EP 3604511 B1 20240228; EP 4375373 A2 20240529; ES 2754433 T3 20200417; HU E046398 T2 20200228; JP 2017500035 A 20170105; JP 2020164529 A 20201008; JP 2022043042 A 20220315; JP 2024061716 A 20240508; PL 3080265 T3 20200131; PT 3080265 T 20191118; US 10465176 B2 20191105; US 11053481 B2 20210706; US 11124782 B2 20210921; US 2015166980 A1 20150618; US 2015166981 A1 20150618; US 2015166982 A1 20150618; US 2015166983 A1 20150618; US 2015166984 A1 20150618; US 2015166985 A1 20150618; US 2016304846 A1 20161020; US 2019322992 A1 20191024; US 2022119785 A1 20220421; US 9068179 B1 20150630; US 9840699 B2 20171212; WO 2015089406 A1 20150618

DOCDB simple family (application)

US 201414326303 A 20140708; AU 2014362208 A 20141212; AU 2021200375 A 20210120; AU 2023254972 A 20231026; CA 2933625 A 20141212; CN 201480072550 A 20141212; CN 202210053406 A 20141212; DK 14825518 T 20141212; DK 19181479 T 20141212; EP 14825518 A 20141212; EP 19181479 A 20141212; EP 24155880 A 20141212; ES 14825518 T 20141212; HU E14825518 A 20141212; JP 2016539218 A 20141212; JP 2020082201 A 20200507; JP 2021188589 A 20211119; JP 2024000252 A 20240104; PL 14825518 T 20141212; PT 14825518 T 20141212; US 2014070038 W 20141212; US 201414325815 A 20140708; US 201414326109 A 20140708; US 201414326140 A 20140708; US 201414326269 A 20140708; US 201414326290 A 20140708; US 201414326318 A 20140708; US 201415103608 A 20141212; US 201916374634 A 20190403; US 202117408306 A 20210820