CORRECTED EUROPEAN PATENT SPECIFICATION

Rotor position detection of a switched reluctance drive

Détection de position du rotor d’un moteur à reluctance commutée

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This invention relates to sensorless rotor position monitoring in reluctance machines, particularly in switched reluctance machines.

The control and operation of switched reluctance machines generally are described in the paper "The Characteristics, Design and Applications of Switched Reluctance Motors and Drives" by J. M. Stephenson and R. J. Blake delivered at the PCIM'93 Conference and Exhibition held in Nurnberg, Germany, 21-24 June 1993, which is incorporated herein by reference. In that paper the "chopping" and "single-pulse" modes of energisation of switched reluctance machines are described for operation of the machine at low and high speeds, respectively.

A typical prior art drive is shown schematically in Figure 1. This includes a DC power supply 11 that can be either a battery or rectified and filtered AC mains. The DC voltage provided by the power supply 11 is switched across the phase windings 16 of the motor 12 by a power converter 13 under the control of the electronic control unit 14. One of the many known converter topologies is shown in Figure 2, in which the phase winding 16 of the machine is connected in series with two switching devices 21 and 22 across the busbars 26 and 27. Busbars 26 and 27 are collectively described as the "DC link" of the converter. Energy recovery diodes 23 and 24 are connected to the winding to allow the winding current to flow back to the DC link when the switches 21 and 22 are opened. A capacitor 25, known as the "DC link capacitor", is connected across the DC link to source or sink any alternating component of the DC link current (i.e. the so-called "ripple current") which cannot be drawn from or returned to the supply. In practical terms, the capacitor 25 may comprise several capacitors connected in series and/or parallel and, where parallel connection is used, some of the elements may be distributed throughout the converter. A resistor 28 is connected in series with the lower switch 22 to provide a current feedback signal. A multiphase system typically uses several "phase legs" of Figure 2 connected in parallel to energise the phases of the electrical machine.

The performance of a switched reluctance machine depends, in part, on the accurate timing of phase energisation with respect to rotor position. Detection of rotor position is conventionally achieved by using a transducer 15, shown schematically in Figure 1, such as a rotating toothed disk mounted on the machine rotor, which co-operates with an optical, magnetic or other sensor mounted on the stator. A signal, e.g. a pulse train, indicative of rotor position relative to the stator is generated by the sensor and supplied to control circuitry, allowing accurate phase energisation. This system is simple and works well in many applications. However, the rotor position transducer increases the overall cost of assembly, adds extra electrical connections to the machine and is, therefore, a potential source of unreliability.

Various methods for dispensing with the rotor position transducer have been proposed. Several of these are reviewed in "Sensorless Methods for Determining the Rotor Position of Switched Reluctance Motors" by W F Ray and I H Al-Bahadly, published in the Proceedings of The European Power Electronics Conference, Brighton, UK, 13-16 Sep 1993, Vol. 6, pp 7-13, incorporated herein by reference.

Many of these methods proposed for rotor position estimation use the measurement of phase flux-linkage (i.e. the integral of applied voltage with respect to time) and current in one or more phases. Position is calculated using knowledge of the variation in inductance of the machine as a function of angle and current. This characteristic can be stored as a flux-linkage/angle/current table and is depicted graphically in Figure 3. The storage of this data is a disadvantage as it involves the use of a large memory array and/or additional system overheads for interpolation of data between stored points.

Some methods make use of this data at low speeds where "chopping" current control is the dominant control strategy for varying the developed torque. Chopping control is illustrated graphically in Figure 4(a) in which the current and inductance waveforms are shown over a phase inductance period. (Note that the variation of inductance is depicted in idealised form.) These methods usually employ diagnostic pulses in non-torque-productive phases. A method suited to low-speed operation is that proposed by N. M. Mvungi and J. M. Stephenson in "Accurate Sensorless Rotor Position Detection in an S R Motor", published in Proceedings of the European Power Electronics Conference, Firenze, Italy, 1991, Vol. 1, pp 390-393, incorporated herein by reference.

Other methods operate in the "single-pulse" mode of energisation at higher speeds. This mode is illustrated in Figure 4(b) in which the current and inductance waveforms are shown over a phase inductance period. These methods monitor the operating voltages and currents of an active phase without interfering with normal operation. A typical higher speed method is described in International Patent Application WO 91/02401, incorporated herein by reference.

Having to store a two-dimensional array of machine data in order to operate without a position sensor is an obvious disadvantage. Alternative methods have been proposed, which avoid the need for the majority of angularly referenced information and instead store data at one angle only. One such method is described in European Patent Application EP-A-0573198 (Ray), incorporated herein by reference. This method aims to sense the phase flux-linkage and current at a predefined angle by adjusting the diagnostic point in accordance with the calculated deviation away from the desired point. Flux-linkage is estimated by integrating (with respect to time) the measurement of the voltage applied to the phase. Two one-dimensional tables are stored in the preferred embodiment, one of flux-linkage versus current at a referenced rotor angle and another of the differential of flux-linkage with respect to rotor angle versus current.
By monitoring phase voltage and current, the deviation away from a predicted reference angle can be assessed, with the aid of the look-up tables, and system operation can be adjusted accordingly. This method has been shown to be reliable, provided that the flux-linkage can be determined with sufficient accuracy whenever required by the position-detecting algorithm. To avoid the flux-linkage integrator drifting (due to unwanted noise in the system and imperfections in the integrator) it is set to zero at the end of each conduction cycle, when the current has fallen to zero and the phase winding is no longer linking any flux. This method is a "predictor/corrector" method, in that it initially predicts when the rotor will be at a reference position, measures parameters of the machine when it believes the reference position has been reached, and uses the results of these measurements to detect error in the prediction and hence take corrective action by adopting a new prediction for the next reference position.

A special mode of operation of switched reluctance machines is the continuous current mode, as disclosed in US 5469039 (Ray) and incorporated herein by reference. In this mode, the winding is re-connected to the supply before the flux, and hence the current, have returned to zero at the end of the energy return period. The phase windings therefore operate with current continuously flowing through them and are always linked by flux. This is an important mode for systems which have to produce high levels of overload output at some points of their operating cycle. Although the efficiency of the drive falls in this mode, it allows specifications to be achieved which would otherwise require a larger machine. However, in this mode there is no opportunity in the phase cycle to reset the integrators at some known point of zero flux and current, since such a point does not exist. It is therefore impossible to apply the method disclosed in EP-A-0573198.

Attempts to find a solution to this problem have included schemes which allow the drive to operate in continuous current mode except when the control system judges it essential to re-estimate the position, at which time the continuous current mode is exited, the position estimated, and the drive put back into continuous current. Specifically, this can be done by running the machine in a mode which is predominantly continuous current but drops back into discontinuous current at predetermined intervals to allow positional information to be gained. The technique depends on the speed being virtually constant, which may be approximately true at higher speeds (at which continuous current is usually employed). Nevertheless, a loss of torque is associated with dropping out of continuous current. An alternative method is to operate each phase in continuous current for a given number of cycles, say 10, and then excite the phase for a shorter time on the next cycle such that the current will definitely fall to zero, allowing the integrator to be reset and an accurate estimate of flux-linkage to be made. By interleaving this "short" cycle with the other phases operating in continuous current, the deleterious effect of the loss of torque is mitigated. However, none of these methods is satisfactory, since the loss of torque can render the machine performance unstable and several cycles are required before stability is reached again because the current must be built up over a period in the continuous current mode.

EP 1 324484 (Slater) describes a method of estimating rotor position in a switched reluctance machine by estimating flux linkage. The estimate is begun at the point in time when the voltage is applied to the winding and is completed at a subsequent point. The accuracy of the estimate of the rotor position is therefore dependent on the positions chosen for excitation of the winding. "Accurate rotor position detection and sensorless control of SRM for super-high speed operation", Xu et al, APEC 2000, New Orleans, 6-10 Feb 2000, pp 369 - 375, ISBN: 0-7803-5864-3, discloses a method of rotor position detection using speed integration based on system motion equations. It uses a fixed reference point midway between the minimum and maximum inductance positions of the phase winding.

There is a need for a sensorless method of rotor position detection that can work in the continuous current mode. Some preferred features are recited in the dependent claims.

Embodiments provide robust rotor position detection by deriving a value for the flux linkage at a point in the inductance cycle which is relatively insensitive to angular error and then tracking a parameter indicative of flux linkage (such as phase voltage), applying a positive voltage, deriving a value for flux linkage at a subsequent point and using a corresponding value for phase current and the flux linkage to derive rotor position information.

According to one embodiment there is provided herein a method of detecting rotor position in a reluctance machine, comprising starting an integration of a parameter representing the phase voltage when the rotor is at a first predetermined point. At this point the integrator may be set to zero or set to a value representing the value of the flux linkage at the point. A value is derived for the flux linkage associated with the or at least one phase of the machine at the first point. A value of the phase flux linkage at a subsequent third point of the rotor is then derived and the derived flux linkage values are combined to give a value of flux linkage at the third point. The rotor position is then derived from the phase current and the value of the total flux linkage.

At the moment when positive voltage is applied to the phase, the current at the said moment may be substantially zero or non-zero. Preferably, the value of the flux linkage at the moment when positive voltage is applied to the phase is derived from the current at the said moment. For example, the flux linkage at the said moment is derived from the current and stored values of inductance for ordinates of current.

The method is useful in both discontinuous and continuous current modes of operation of a switched reluctance machine. The value of phase current at the first point can be used to derive the value of flux-linkage. When the current
is discontinuous the zero current value gives rise to a zero value of flux-linkage. When the current is continuous the value of current can be used to derive the non-zero flux-linkage.

[0019] Preferably, the flux-linkage at the said third point is derived by integrating the phase voltage from the first point. The rotor position may be derived from stored parameters having coordinates of phase current and flux-linkage.

[0020] According to one particular embodiment, prior to turn-on a flux-measuring integrator is set to zero and is put into phase voltage integration mode. Then the current is measured at turn-on of a phase winding and this current value is used to index a table of inductance. The value of inductance provided by the table is then multiplied by the current to give an estimate of the flux-linkage in the phase and hence an offset value relating to the output of the integrator. At a predetermined subsequent point, the value of flux-linkage provided by the integrator is added to the calculated offset value and the resulting total is used to determine rotor position.

[0021] The flux-measuring integrator is preferably initialised prior to turn on of a phase, so that the calculation of flux linkage is initiated when the system is in a position where the inductance is not changing as rapidly with angle as elsewhere. A small error in position when initialising the integrator should therefore not lead to a significant error in the derived flux linkage. The technique is also robust in the presence of noise on the waveforms from which it deduces position.

[0022] In some embodiments rotor position is derived from values associated with each phase of a polyphase machine.

[0023] The present invention provides a robust and cost-effective method of monitoring rotor position without using a rotor position transducer while being able to operate in the single-pulse mode, with or without continuous current.

[0024] The invention can be put into practice in a number of ways, some of which will now be described by way of example and with reference to the accompanying drawings in which:

- Figure 1 shows a typical prior art switched reluctance drive;
- Figure 2 shows a known topology of one phase of the converter of Figure 1;
- Figure 3 shows typical flux-linkage and phase current curves, with rotor position as a parameter;
- Figure 4(a) shows a typical motoring current waveform in chopping control;
- Figure 4(b) shows a typical motoring current waveform in single-pulse control;
- Figure 5 shows in schematic form a switched reluctance drive in which a form of the invention is embodied;
- Figure 6 shows a continuous current waveform for the drive of Figure 5;
- Figure 7 shows flux-linkage waveforms in the drive of Figure 5 in continuous current mode;
- Figure 8 shows flux-linkage waveforms in the drive of Figure 5 in discontinuous current mode; and
- Figure 9 is a flow chart of the embodiment of Figure 5.

[0025] The phase inductance cycle of a switched reluctance machine is the period of the variation of inductance for the, or each, phase, for example between maxima when the stator poles and the relevant respective rotor poles are fully aligned. The illustrative embodiment to be described uses a 2-phase switched reluctance drive in the motoring mode, but any phase number from one upwards could be used, with the drive in either motoring or generating mode.

[0026] Figure 5 shows a system for implementing the method in which the invention is embodied. Figure 6 illustrates graphically a continuous current waveform for the system of Figure 5. In this system, a power converter 13 is typically the same as that shown in Figure 1, and like reference numerals have been used where appropriate. The converter 13 controls the switched reluctance machine, as before. The converter 13 is itself controlled by a controller 42 which, in this embodiment, is based on a digital signal processor, e.g. one from the Analog Devices 219x family. Alternative embodiments could use a microprocessor or other form of programmable device, as are well-known in the art. The illustrated 2-phase machine has a stator 30 and a rotor 32. The stator has four poles 50, on which are wound phase windings 34/36. The rotor has rotor poles 52 and, to assist with starting the machine, has a pole face 54 that defines a stepped airgap with the face of a stator pole. One skilled in the art will realise that a machine with a different phase number or pole combinations could be used, since the invention is not specific to any particular machine topology. Similarly, the invention is not restricted to a particular type of control technique and any controller and converter can be used as long as it is suitably programmable.

[0027] The phase current is sensed by current transducers 38 each arranged in relation to one of the phase windings. The output signals indicative of current in each phase are fed to the controller 42. One or more look-up tables 46 storing phase inductance for rotor angles is also connected with the controller 42. While a current transducer for each phase is shown, one or a selection of phases could be monitored for phase current according to the invention. Alternative embodiments use a current transducer in the DC link and a knowledge of the switch states in the power converter to deduce the individual phase currents.

[0028] An integrator 40 depicted in the controller 42 is used to derive measurements of flux by integrating the phase voltage V across the winding provided by a voltage transducer 43 associated with each phase. While the integrator is shown as a discrete device 40, it is preferably implemented in the software running the processor 44. For greater accuracy the voltage drop (IR) across the winding can be factored out of the integrated value, as will be described below.

[0029] Other embodiments use a single voltage transducer sensing the DC link voltage to approximate to the phase...
The method according to this embodiment operates as follows. It is assumed that the machine is operating in continuous current and that the rotor position is known sufficiently well to allow the winding to be energised. Figure 4 shows the typical form of the current waveform and also has superimposed on it the idealised inductance profile of Figure 5. Figure 7 shows the flux associated with the phase winding, where \(\psi_a \) shows the actual value and \(\psi_t \) the value recorded by the integrator. The standing flux, \(\psi_c \), which corresponds to the standing current in Figure 6, is also marked on Figure 7. For the sake of clarity, the flux waveforms are shown as being linear, whereas in practice they will likely have some non-linearity introduced by the IR drop in the winding and the impedance of the supply.

At or near minimum inductance (L_{min}), for instance at the point \(\theta_i \), the current is measured and recorded and the flux-measuring integrator 40 is initiated and set to integrate. Since the inductance of the phase at that angle is already known and is stored in the look-up table(s) 46, a knowledge of current allows the actual flux-linkage at that angle to be estimated. This value, \(\psi_c \), is stored as a correction factor. This value \(\psi_c \) represents an offset factor between the true flux linkage value and the flux linkage value output by the integrator. Note that this calculation can be done immediately or as a background task in the processor. The flux-measuring integrator 40 is started prior to turn on of a phase, so that the calculation of flux linkage can be advantageously initiated when the rotor is at a position where the inductance is not changing rapidly. A small error in position when calculating flux linkage (i.e. \(\theta_i \pm \Delta \theta \) a small percentage) will therefore not lead to a significant error in the estimated flux linkage.

As the rotor moves from the \(L_{min} \) point, the flux is falling (since the switches supplying the phase are open and the action of the diodes is such as to apply reverse voltage across the phase) so the integrator output goes negative. The rotor continues to move until the switch-on point \(\theta_{on} \) is reached, where the flux-linkage changes direction because positive voltage is now applied.

As the rotor moves towards the switch-off point \(\theta_{off} \), the integrator continues to integrate, now with positive-going slope, corresponding to the positive flux across the phase winding. At \(\theta_{off} \), the applied voltage goes negative and the flux-linkage, both actual and estimated, begins to fall. This continues until a predetermined reference position \(\theta_{ref} \), has been estimated to have been reached, at which point the current and integrator output are recorded. The actual flux can now be estimated by adding \(\psi_c \) as an offset to the integrator output. This value, and that of the measured current, can be compared with the stored values for the reference position and the true position then assessed, as will be explained in more detail below.

It will be appreciated that there are different methods of implementing the above process, to equal effect. For example, the flux-linkage at \(\theta_i \) could be calculated immediately the value of current is available and that value preloaded into the integrator. In this case, the output of the integrator will follow the actual curve \(\psi_a \) and there will be no need to add an offset value at the reference point \(\theta_{ref} \). This embodiment only requires the integrator to operate in one quadrant, as opposed to the two-quadrant operation described above. While the integration of the phase voltage (or a signal representative of the phase voltage) is used to derive flux linkage values, it is possible to use other techniques, including direct flux linkage sensing that tracks the flux in an inductance period. Typical devices that can be used to track the flux linkage directly are flux nulling sensors and Hall-effect sensors. Other variants will be apparent to those skilled in the art.

The angular difference \(\Delta \theta \) between the predicted rotor position \(\theta_m \) and the reference rotor position \(\theta_{ref} \) can be calculated by the processor 44 as

\[
\Delta \theta = \left(\frac{\partial \theta}{\partial \psi_m} \right) \Delta \psi
\]

In order to determine the angular difference between the predicted position (at which the measurement of flux and current are made) and the reference position, it is therefore also a feature of this embodiment to store in the processor for the reference position values of partial derivative \(\partial \theta/\partial \psi \) (or its inverse \(\partial \psi/\partial \theta \)) for a set of values of phase current \(i \).

Since the reference rotor position \(\theta_{ref} \) is known, the true rotor position at the predicted instant in time may be calculated from \(\Delta \theta \) as

\[
\theta_m = \theta_{ref} + \Delta \theta
\]

The expected time to the next rotor position can then be estimated using the known value of motor speed. Under accelerating or decelerating conditions a correction may need to be made to the estimate.

If only one phase is used for measurement, the next rotor reference position will be after a rotation of \((360/p) \) \(\Delta \theta \) and, by dividing this angle by the speed, the time required to reach this position can be estimated.
If all phases are used for measurement, the next rotor reference position will be that for phase 2 (or whatever is the next phase in the sequence). For an n-phase motor with p rotor poles, the angle of rotation to this position will be
\((360/np)^\circ - \Delta \theta\) and, by dividing this angle by the speed, the time required to reach this next position can be estimated.

The predicted time to the next reference position is then counted out using a high frequency clock (not shown) by known means and at the instant such time has elapsed a further measurement of flux \(\psi_m\) and current \(i_m\) is made for the corresponding phase. Due to changes in speed, and tolerances in stored data and calculations, the predicted position \(\theta_m\) will not be identical to the reference position \(\theta_{ref}\). The angular difference \(\theta_{ref} - \theta_m\) can again be calculated using equations (1) and (2) and the procedure outlined above.

A flowchart describing this embodiment of the invention, as implemented by the controller 44, is shown in Figure 9. At step 91 the estimate of rotor position is monitored and at step 92 a test is performed to determine if the rotor has reached \(L_{min}\), for example by monitoring an incremental counter representing angular position. If it has not reached \(L_{min}\), control returns to step 90. When \(L_{min}\) is reached, control passes to step 93 where the integrator 40 is started, the phase current at the start of integration of the signal representing phase voltage is recorded, and the value of the flux-linkage offset \(\psi_c\) is calculated from the current and the value of inductance from the look-up table and stored. At step 94, the rotor position is monitored until the rotor reaches the estimate of reference angle. When this angle is assessed to have been reached, step 95 records the output of the integrator 40 and the current from the transducer 38 for the phase. The total flux-linkage is calculated at step 96 using the integrator output and the stored value of offset, as described above. At step 97, the position is now estimated by use of the measured current and the newly calculated value of total flux linkage. This position is now used as the best current estimate and control now returns to the start of the routine ready for another phase inductance cycle.

It will be appreciated by those skilled in the art that the process described above can be implemented by monitoring the quantities associated with one phase only and switching angles for this and other phases can then be interpolated. Alternatively, a similar process can be run in parallel for each phase, or the quantities from several phases can be interleaved in a single process to increase the rate at which information is made available.

The process of predicting rotor positions on a phase by phase basis and measuring the true rotor position at each measurement instant is repeated to provide an incremental indication of rotor position as a direct replacement for existing optical or electromagnetic rotor position sensors. The procedure for the case of single-pulse operation under regenerating conditions is the same as described above except that the values of \(\partial \theta / \partial \psi\) will be negative (rather than positive) for the corresponding typical reference rotor position.

Various arrangements may be used for obtaining the value of flux. It can be measured by any known form of flux transducer, e.g. a Hall-effect device. However, it is preferable to estimate the value by means of analogue or digital electronic resettable integrators (which integrate the phase voltage with respect to time \(t\)), together with means for compensating for the resistive voltage drop in the phase winding.

The integrator executes the equation:

\[
\psi = \int_{t_o}^{t_m} (v - iR) \, dt \quad (3)
\]

where:
- \(v\) is the phase voltage
- \(i\) is the phase current
- \(R\) is the phase resistance
- \(t_m\) is the instant of measurement

The integrator start time \(t_o\) is arranged to be a point \(t_i\) at or about \(L_{min}\), or some other suitable point, as discussed below. The digital processor is informed of this point by the electronic controller using a control interface (not shown). The integrator is reset by the digital processor immediately before integration begins.

In applications for which the direct source voltage \(V\) is relatively large compared with the voltage drop across the semiconductor switches in the power converter, the direct source voltage may be measured and integrated in place of the individual phase voltages. This has the advantage that only one voltage need be measured and is the preferred method for high-voltage systems where the cost of isolation of the voltage transducer is significant.
As an alternative to using separate electronic integrators, the digital processor may be used by multiplying the direct supply (or phase) voltage by time on a step by step basis. While this has the disadvantage that the digital processor is substantially busy and may need to be a separate unit, it removes the need for one or more hardware integrators.

However, provided the supply voltage is substantially constant and large compared with the resistive voltage iR, various approximations may be made. For example:

\[\psi_m = (V - ki_m R) (t_m - t_0) \]

where \(k \) is a constant, typically \(k = 0.5 \), such that:

\[ki_m (t_m - t_0) \approx \int_i^t i dt \]

As a further embodiment, in the case where the supply voltage \(V \) is relatively large compared with the resistive voltage \(iR \), the need to compensate for the resistive voltage drop may be avoided by using a modified value for the flux in the stored data or ignoring \(iR \) altogether.

In this case, the values of phase flux linkage \(\psi \) for a particular current \(i \) and particular rotor position \(\theta \) stored in the digital processor are replaced by values of the volt-second integral \(\psi' \) required to create the phase current \(i \) for the rotor position \(\theta \) given by:

\[\psi' = \int v dt \]

In testing the machine to establish the table of values of \(\psi' \) and \(\partial \theta / \partial \psi' \), \(v \) may, for convenience, be held constant (provided \(v \) is relatively large) and is preferably equal to supply voltage. The rotor position measurement procedure is the same as already described in this application except that the measured flux \(\psi_m \) and expected flux \(\psi_e \) and partial derivative \((\partial \theta / \partial \psi') \) are replaced by \(\psi'_m \), \(\psi'_e \) and \((\partial \theta / \partial \psi') \) respectively, where \(\psi'_e \) and \((\partial \theta / \partial \psi') \) are obtained as described from the stored data represented in Figure 5 and where the flux \(\psi'_m \) is measured as:

\[\psi'_m = V (t_m - t_0) \]

Equations (3), (4), (5) and (6) represent different methods of evaluating the phase flux linkage for the purpose of identifying rotor position and these represent different implementations of the technique.

The various embodiments described above are all based on the measurement of flux \(\psi_m \) and current \(i_m \) at a predicted rotor position, the look-up of the expected flux \(\psi_e \) for the measured current \(i_m \) corresponding to the reference rotor position, and the calculation of the difference \(\Delta \theta \) between the reference rotor position and the predicted rotor position according to the equation:

\[\Delta \theta = \left\{ \frac{\partial \theta}{\partial \psi_m} \right\} \cdot (\psi'_m - \psi'_e) \]

This embodiment of the invention is particularly advantageous in that it works equally well when the phase current is discontinuous, i.e. in the conventional single-pulse mode. This is illustrated graphically in Figure 8. The integrator simply follows the shape of the discontinuous flux waveform, enabling the same program code can be used in the
controller 42 for both discontinuous and continuous current. The method described above provides a simple, yet effective, way of combining continuous current operation with sensorless position detection, without any unwanted degradation in the performance of the machine.

[0058] The choice of reference position is left to the designer of any particular system, but for 3-phase systems is conveniently taken as one sixth of an electrical cycle away from L_{max}, on the falling inductance curve for motoring and on the rising inductance for generating. These positions coincide with L_{min} for the previous phase.

[0059] Since in a microprocessor-based implementation the time is known very accurately, it may be convenient to average the applied voltage and use this value in the equations given above. This may produce useful savings in the control system by allowing a constant to be used rather than a quantity varying within an integration cycle. Hence the integration process can be reduced to a simple multiplication of the constant by the elapsed time. In this embodiment, cognisance must be taken of the switch states to determine whether the flux-linkage is increasing or decreasing and the appropriate sign can then be assigned to the integrand.

[0060] The descriptions above have taken the initial measurement point to be at a position near the minimum inductance value of the phase winding, since many machines have a relatively wide region of slowly varying inductance there. However, if the geometry of the machine is such as to produce an inductance profile with a narrow L_{min}, it may be more convenient to begin the integration from L_{max}. In both cases, advantage is taken of relative insensitivity of the inductance with rotor position, enabling a more accurate assessment of flux-linkage.

[0062] A further embodiment of the invention can be used to correct the value of resistance of a phase winding used in the integration described by Equation 3. If the integrator is allowed to continue to integrate past the reference point θ_{on} to the next rotor position θ_i, then two values for the flux linkage are now available: one given by the measured current and the look-up table 46; and one given by the output of the integrator 40 (corrected where required for any offset). If these values do not coincide within a predetermined tolerance, the error may be ascribed to a variation in the actual value of R, the phase winding resistance. A suitable correction can then be made by any of the many correcting algorithms known in the art and the corrected value of R used in subsequent integrations.

[0063] Thus a switched reluctance drive is controlled without using a physical transducer for detecting rotor position. The method works robustly regardless of whether the current is continuous or discontinuous.

[0064] The skilled person will appreciate that variations of the disclosed arrangements are possible without departing from the invention, particularly in the details of the implementation of the algorithm in the controller. Also, the diagnosis on which rotor position detection is based could be carried out in only one phase of a polyphase machine. Accordingly, the above description of several embodiments is made by way of example and not for the purposes of limitation. It will be clear to the skilled person that minor modifications can be made to the drive circuit without significant changes to the operation described above. For instance, the method may be applied to linear as well as rotating machines. The present invention is intended to be limited only by the scope of the following claims.

Claims

1. A method of detecting rotor position in a reluctance machine (12), the machine having at least one phase winding (16) with an inductance which is periodic with rotor position, comprising:

 - deriving a value (ψ_c) for the flux linkage associated with the or at least one phase winding of the machine at a first point (θ_i);
 - tracking a value of a parameter indicative of the flux linkage;
 - advancing the rotor to a second point (θ_{on}) where application of positive voltage to the phase winding is initiated;
 - advancing the rotor from the second point to a third point (θ_{ref});
 - deriving a value of the phase current and the parameter at the third point (θ_{ref});
 - evaluating the flux linkage at the third point (ψ_{ref}) based on the value of the parameter; and
 - deriving the rotor position from the value of the phase current and the value (ψ_{a}) of the flux linkage at the third point (θ_{ref}).

2. A method as claimed in claim 1 in which the tracking includes an integration process which is started at the first point (θ_i) to integrate a voltage representing the phase voltage and in which the value (ψ_{a}) of the flux linkage is at least in part based on the value (ψ_i) of the parameter at the third point (θ_{ref}).

3. A method as claimed in claim 2 in which the integration process is set to zero at the first point (θ_i) and the value (ψ_{a}) of the flux linkage at the third point (θ_{ref}) is based on a combination of a value (ψ_i) of flux linkage derived from the parameter at the third point (θ_{ref}) and the derived value (ψ_c) of the flux linkage at the first point (θ_i).
4. A method as claimed in claim 2 in which the value of the parameter is set to a value representing the derived value \(\psi_c \) of the flux linkage at the first point \(\theta_i \) and the value \(\psi_a \) of the flux linkage at the third point is derived from the value of the parameter at the third point \(\theta_{ref} \).

5. A method according to any of claims 1 to 4, wherein the first predetermined point \(\theta_i \) coincides with the inductance of the phase winding (16) being at or near a minimum or a maximum.

6. A method as claimed in any preceding claim in which the rotor position is derived from stored parameters having co-ordinates of phase current and flux linkage.

7. A method as claimed in any preceding claim in which rotor position is derived from values associated with each phase (16) of a polyphase machine.

8. A method as claimed in any of claims 1 to 6 in which rotor position is derived from values associated with one phase (16) of a polyphase machine.

9. A method as claimed in any of claims 1 to 5 further comprising comparing the value of the parameter when the rotor next reaches the first point \(\theta_i \) with the value of the parameter when the rotor was previously at the first point \(\theta_i \) and forming an error factor in dependence on the comparison.

10. A method as claimed in claim 9 wherein the error factor is used to adjust a value for the resistance of the phase winding used to determine flux linkage.

11. A method as claimed in any of claims 2 to 5, 9 or 10 in which the integration process is arranged to integrate the supply voltage as the phase voltage.

12. A rotor position detector for a reluctance machine (12) having at least one phase winding (16), comprising a device (42) programmed to:

- derive a value \(\psi_c \) for the flux linkage associated with the or at least one phase of the machine at a first point \(\theta_i \);
- track a value of a parameter indicative of the flux linkage;
- advance the rotor to a second point \(\theta_{on} \) where application of positive voltage to the phase is initiated;
- advance the rotor from the second point to a third point \(\theta_{ref} \);
- derive a value of the phase current and the parameter at the third point \(\theta_{ref} \);
- evaluate flux linkage at the third point \(\theta_{ref} \) based on the value of the parameter at the third point; and
- derive the rotor position from the value of the phase current and the value \(\psi_a \) of the flux linkage at the third point \(\theta_{ref} \).

13. A detector as claimed in claim 12 in which the device is programmed to track by starting an integration of a voltage representing the phase voltage at the first point \(\theta_i \), the value \(\psi_a \) of the flux linkage being at least in part based on the value \(\psi_i \) of the parameter at the third point \(\theta_{ref} \).

14. A detector as claimed in claim 13 in which the integrator is set to zero at the first point \(\theta_i \), and the device is programmed to base the value \(\psi_a \) for the flux linkage on a combination of the value \(\psi_i \) of flux linkage derived from the parameter at the third point \(\theta_{ref} \) and the derived value \(\psi_c \) of the flux linkage at the first point \(\theta_i \).

15. A detector as claimed in claim 13 in which the value of the parameter is set to a value representing the derived value \(\psi_c \) of the flux linkage at the first point \(\theta_i \) and the value \(\psi_a \) of the flux linkage is derived from the value of the integration at the third point \(\theta_{ref} \).

16. A detector as claimed in any of claims 13 to 15 in which the device is programmed to establish the first predetermined point \(\theta_i \) to coincide with minimum or maximum inductance of the phase winding (16) in the inductance cycle.

17. A detector as claimed in any of claims 13 to 16 including a store (46) of parameters having co-ordinates of phase current and flux linkage, the device being programmed to derive rotor position from the stored parameters.

18. A detector as claimed in claim 17 in which the stored parameters are associated with one or more phases of a polyphase machine.
19. A detector as claimed in any of claims 12 to 18 in which the device is programmed to compare the output of the integrator when the rotor next reaches the first point (θ₁) with the output of the integrator when the rotor was previously at the first position and is further programmed to form an error factor in dependence on the comparison.

20. A detector as claimed in claim 19 in which the device is programmed to adjust a value for the resistance of the phase winding used to determine flux linkage.

21. A detector as claimed in any of claims 13 to 20 in which the integrator is arranged to integrate the supply voltage as the phase voltage.

Patentansprüche

1. Verfahren zum Ermitteln der Rotorposition in einer Reluktanzmaschine (12), wobei die Maschine wenigstens eine Phasenwicklung (16) mit einer Induktivität hat, die mit der Rotorposition periodisch ist, wobei das Verfahren beinhaltet:

 Ableiten eines Werts (Ψ₁) für die Flussverkettung, die zu der oder wenigstens einer Phasenwicklung der Maschine gehört, an einem ersten Punkt (θ₁);
 Verfolgen eines Werts eines Parameters, der die Flussverkettung angibt;
 Vorwärtsbewegen des Rotors an einen zweiten Punkt (θ₂), an dem das Anlegen einer positiven Spannung an die Phasenwicklung gestartet wird;
 Vorwärtsbewegen des Rotors von dem zweiten Punkt an einen dritten Punkt (θ₃);
 Ableiten eines Werts des Phasenstroms und des Parameters an dem dritten Punkt (θ₃); Auswerten der Flussverkettung an dem dritten Punkt (θ₃) basierend auf dem Wert des Parameters; und
 Ableiten der Rotorposition aus dem Wert des Phasenstroms und dem Wert (Ψ₃) der Flussverkettung an dem dritten Punkt (θ₃).

2. Verfahren nach Anspruch 1, wobei das Verfolgen einen Integrationsvorgang beinhaltet, der an dem ersten Punkt (θ₁) gestartet wird, um eine Spannung, die die Phasenspannung repräsentiert, zu integrieren, und wobei der Wert (Ψ₃) der Flussverkettung wenigstens teilweise auf dem Wert (Ψ₁) des Parameters an dem dritten Punkt (θ₃) basiert.

3. Verfahren nach Anspruch 2, wobei der Integrationsvorgang an dem ersten Punkt (θ₁) auf null gesetzt wird und der Wert (Ψ₃) der Flussverkettung an dem dritten Punkt (θ₃) auf einer Kombination eines Werts (Ψ₁) der Flussverkettung, der von dem Parameter an dem dritten Punkt (θ₃) abgeleitet wird, und dem abgeleiteten Wert (Ψ₃) der Flussverkettung an dem ersten Punkt (θ₁) basiert.

4. Verfahren nach Anspruch 2, wobei der Wert des Parameters auf einen Wert gesetzt wird, der den abgeleiteten Wert (Ψ₃) der Flussverkettung an dem ersten Punkt (θ₁) repräsentiert, und der Wert (Ψ₃) der Flussverkettung an dem dritten Punkt (θ₃) von dem Wert des Parameters an dem dritten Punkt (θ₃) abgeleitet wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der erste vorgegebene Punkt (θ₁) mit der Induktivität der Phasenwicklung (16) auf oder nahe einem Minimum oder einem Maximum zusammenfällt.

7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Rotorposition aus Werten abgeleitet wird, die zu jeder Phase (16) einer Mehrphasenmaschine gehören.

8. Verfahren nach einem der Ansprüche 1 bis 6, wobei die Rotorposition aus Werten abgeleitet wird, die zu einer Phase (16) einer Mehrphasenmaschine gehören.

10. Verfahren nach Anspruch 9, wobei der Fehlerfaktor verwendet wird, um einen Wert für den Widerstand der Phasenwicklung einzustellen, der verwendet wird, um die Flussverkettung zu bestimmen.

11. Verfahren nach einem der Ansprüche 2 bis 5, 9 oder 10, wobei der Integrationsvorgang dazu ausgelegt ist, die Versorgungsspannung als Phasenspannung zu integrieren.

12. Rotorpositionsdetektor für eine Reluktanzmaschine (12), die wenigstens eine Phasenwicklung (16) hat, mit einer Vorrichtung (42), die programmiert ist zum:

Ableiten eines Werts (Ψ_c) für die Flussverkettung, die zu der oder wenigstens einer Phase der Maschine gehört, an einem ersten Punkt (θ_i),

Verfolgen eines Werts eines Parameters, der die Flussverkettung angibt;

Vorwärtsbewegen des Rotors an einen zweiten Punkt (θ_{ref}), an dem das Anlegen einer positiven Spannung an die Phase gestartet wird;

Vorwärtsbewegen des Rotors von dem zweiten Punkt an einen dritten Punkt (θ_{ref});

Ableiten eines Werts des Phasenstroms und des Parameters an dem dritten Punkt (θ_{ref});

Auswerten der Flussverkettung an dem dritten Punkt (θ_{ref}) basierend auf dem Wert des Parameters an dem dritten Punkt; und

Ableiten der Rotorposition aus dem Wert des Phasenstroms und dem Wert (Ψ_a) der Flussverkettung an dem dritten Punkt (θ_{ref}).

13. Detektor nach Anspruch 12, wobei die Vorrichtung programmiert ist zum Verfolgen durch Starten einer Integration einer Spannung, die die Phasenspannung an dem ersten Punkt (θ_i) repräsentiert, wobei der Wert (Ψ_a) der Flussverkettung wenigstens teilweise auf dem Wert (Ψ_i) des Parameters an dem dritten Punkt (θ_{ref}) basiert.

14. Detektor nach Anspruch 13, wobei der Integrator an dem ersten Punkt (θ_i) auf null gesetzt wird und die Vorrichtung dazu programmiert ist, den Wert (Ψ_a) für die Flussverkettung auf eine Kombination des Werts (Ψ_i) der Flussverkettung, der von dem Parameter an dem dritten Punkt (θ_{ref}) abgeleitet wird, und des abgeleiteten Werts (Ψ_c) der Flussverkettung an dem ersten Punkt (θ_i) zu stützen.

15. Detektor nach Anspruch 13, wobei der Wert des Parameters auf einen Wert gesetzt wird, der den abgeleiteten Wert (Ψ_c) der Flussverkettung an dem ersten Punkt (θ_i) repräsentiert, und der Wert (Ψ_a) der Flussverkettung von dem Wert der Integration an dem dritten Punkt (θ_{ref}) abgeleitet wird.

16. Detektor nach einem der Ansprüche 13 bis 15, wobei die Vorrichtung dazu programmiert ist einzurichten, dass der erste vorgegebene Punkt (θ_i) mit minimaler oder maximaler Induktivität der Phasenwicklung (16) im Induktivitätszyklus zusammenfällt.

17. Detektor nach einem der Ansprüche 13 bis 16, der einen Speicher (46) von Parametern aufweist, die Koordinaten von Phasenstrom und Flussverkettung haben, wobei die Vorrichtung dazu programmiert ist, die Rotorposition von den gespeicherten Parametern abzuleiten.

18. Detektor nach Anspruch 17, wobei die gespeicherten Parameter zu einer oder mehreren Phasen einer Mehrphasenmaschine gehören.

19. Detektor nach einem der Ansprüche 12 bis 18, wobei die Vorrichtung dazu programmiert ist, den Ausgang des Integrators zum Zeitpunkt, zu dem der Rotor zum nächsten mal den ersten Punkt (θ_i) erreicht, mit dem Ausgang des Integrators zum Zeitpunkt, zu dem der Rotor vorher an dem ersten Punkt (θ_i) war, zu vergleichen, und des Weiteren dazu programmiert ist, in Abhängigkeit von dem Vergleich einen Fehlerfaktor zu bilden.

20. Detektor nach Anspruch 19, wobei die Vorrichtung dazu programmiert ist, einen Wert für den Widerstand der Phasenwicklung einzustellen, der verwendet wird, um die Flussverkettung zu bestimmen.

21. Detektor nach einem der Ansprüche 13 bis 20, wobei der Integrator dazu ausgelegt ist, die Versorgungsspannung als Phasenspannung zu integrieren.
Revendications

1. Procédé de détection de la position du rotor dans un moteur à reluctance (12), le moteur présentant au moins un enroulement de phase (16) avec une inductance qui est périodique avec la position du rotor, consistant à :
 dériver une valeur \(\psi_c \) pour la liaison de flux associée au ou au moins à un enroulement de phase du moteur en un premier point \(\theta_i \) ;
 tracer une valeur d’un paramètre indiquant la liaison de flux ;
 faire avancer le rotor vers un deuxième point \(\theta_{on} \) où une application de tension positive sur l’enroulement de phase est initiée ;
 faire avancer le rotor du deuxième point vers un troisième point \(\theta_{ref} \) ;
 dériver une valeur du courant de phase et du paramètre au niveau du troisième point \(\theta_{ref} \) ;
 évaluer la liaison de flux au niveau du troisième point \(\theta_{ref} \) en fonction de la valeur du paramètre ; et
 dériver la position du rotor à partir de la valeur du courant de phase et de la valeur \(\psi_a \) de la liaison de flux au niveau du troisième point \(\theta_{ref} \).

2. Procédé selon la revendication 1, dans lequel le traçage comporte un processus d’intégration qui démarre au niveau du premier point \(\theta_i \) pour intégrer une tension représentant la tension de phase et dans lequel la valeur \(\psi_a \) de la liaison de flux est au moins en partie en fonction de la valeur \(\psi_i \) du paramètre au niveau du troisième point \(\theta_{ref} \).

3. Procédé selon la revendication 2, dans lequel le processus d’intégration est défini sur zéro au niveau du premier point \(\theta_i \) et la valeur \(\psi_a \) de la liaison de flux au niveau du troisième point \(\theta_{ref} \) est en fonction d’une combinaison d’une valeur \(\psi_i \) de liaison de flux dérivée du paramètre au niveau du troisième point \(\theta_{ref} \) et de la valeur dérivée \(\psi_c \) de la liaison de flux au niveau du premier point \(\theta_i \).

4. Procédé selon la revendication 2, dans lequel la valeur du paramètre est définie sur une valeur représentant la valeur dérivée \(\psi_c \) de la liaison de flux au niveau du premier point \(\theta_i \) et la valeur \(\psi_a \) de la liaison de flux au niveau du troisième point est dérivée de la valeur du paramètre au niveau du troisième point \(\theta_{ref} \).

5. Procédé selon une quelconque des revendications 1 à 4, dans lequel le premier point prédéterminé \(\theta_i \) coïncide avec l’inductance de l’enroulement de phase (16) qui se trouve au niveau ou proche d’un minimum ou d’un maximum.

6. Procédé selon une quelconque des revendications précédentes, dans lequel la position du rotor est dérivée de paramètres stockés qui présentent des coordonnées de courant de phase et de liaison de flux.

7. Procédé selon une quelconque des revendications précédentes, dans lequel la position du rotor est dérivée de valeurs associées à chaque phase (16) d’un moteur polyphasé.

8. Procédé selon une quelconque des revendications 1 à 6, dans lequel la position du rotor est dérivée de valeurs associées à une phase (16) d’un moteur polyphasé.

9. Procédé selon une quelconque des revendications 1 à 5, consistant en outre à comparer la valeur du paramètre lorsque le rotor atteint ensuite le premier point \(\theta_i \) à la valeur du paramètre lorsque le rotor se trouvait précédemment au niveau du premier point \(\theta_i \) et former un facteur d’erreur qui dépend de la comparaison.

10. Procédé selon la revendication 9, dans lequel le facteur d’erreur est utilisé pour ajuster une valeur pour la résistance de l’enroulement de phase utilisée pour déterminer la liaison de flux.

11. Procédé selon une quelconque des revendications 2 à 5, 9 ou 10, dans lequel le processus d’intégration est conçu pour intégrer la tension d’alimentation comme la tension de phase.

12. Détecteur de position de rotor pour un moteur à reluctance (12) présentant au moins un enroulement de phase (16), comprenant un dispositif (42) programmed pour :
 dériver une valeur \(\psi_c \) pour la liaison de flux associée à la ou au moins à une phase du moteur en un premier point \(\theta_i \) ;
 tracer une valeur d’un paramètre indiquant la liaison de flux ;
 faire avancer le rotor vers un deuxième point \(\theta_{on} \) où une application de tension positive sur la phase est initiée ;
faire avancer le rotor du deuxième point vers un troisième point \((θ_{ref}) \); dériver une valeur du courant de phase et du paramètre au niveau du troisième point \((θ_{ref}) \); évaluer la liaison de flux au niveau du troisième point \((θ_{ref}) \) en fonction de la valeur du paramètre au niveau du troisième point; and dériver la position du rotor à partir de la valeur du courant de phase et de la valeur \((ψ_{a}) \) de la liaison de flux au niveau du troisième point \((θ_{ref}) \).

13. Détecteur selon la revendication 12, dans lequel le dispositif est programmé pour le traçage en démarrant une intégration d'une tension représentant la tension de phase au niveau du premier point \((θ_{i}) \), la valeur \((ψ_{a}) \) de la liaison de flux étant au moins en partie en fonction de la valeur \((ψ_{i}) \) du paramètre au niveau du troisième point \((θ_{ref}) \).

14. Détecteur selon la revendication 13, dans lequel l’intégrateur est défini sur zéro au niveau du premier point \((θ_{i}) \), et le dispositif est programmé pour baser la valeur \((ψ_{a}) \) pour la liaison de flux sur une combinaison de la valeur \((ψ_{i}) \) de la liaison de flux dérivée du paramètre au niveau du troisième point \((θ_{ref}) \) et de la valeur dérivée \((ψ_{c}) \) de la liaison de flux au niveau du premier point \((θ_{i}) \).

15. Détecteur selon la revendication 13, dans lequel la valeur du paramètre est définie sur une valeur représentant la valeur dérivée \((ψ_{c}) \) de la liaison de flux au niveau du premier point \((θ_{i}) \) et la valeur \((ψ_{a}) \) de la liaison de flux est dérivée de la valeur de l’intégration au niveau du troisième point \((θ_{ref}) \).

16. Détecteur selon une quelconque des revendications 13 à 15, dans lequel le dispositif est programmé pour établir que le premier point prédéterminé \((θ_{i}) \) coïncide avec l’inductance minimum ou maximum de l’enroulement de phase (16) dans le cycle d’inductance.

17. Détecteur selon une quelconque des revendications 13 à 16, comportant un stockage \((46) \) de paramètres présentant des coordonnées de courant de phase et de liaison de flux, le dispositif étant pour dériver la position du rotor à partir des paramètres stockés.

18. Détecteur selon la revendication 17, dans lequel les paramètres stockés sont associés à une ou plusieurs phases d’un moteur polyphasé.

19. Détecteur selon une quelconque des revendications 12 à 18, dans lequel le dispositif est programmé pour comparer la sortie de l’intégrateur lorsque le rotor atteint ensuite le premier point \((θ_{i}) \) à la sortie de l’intégrateur lorsque le rotor se trouvait précédemment au niveau de la première position et est en outre programmé pour former un facteur d’erreur qui dépend de la comparaison.

20. Détecteur selon la revendication 19, dans lequel le dispositif est programmé pour ajuster une valeur pour la résistance de l’enroulement de phase utilisée pour déterminer la liaison de flux.

21. Détecteur selon une quelconque des revendications 13 à 20, dans lequel l’intégrateur est conçu pour intégrer la tension d’alimentation comme la tension de phase.
Fig 1
Prior Art

Fig 2
Prior Art
Fig 4(a)
Prior Art

Fig 4(b)
Prior Art
Fig 8
Fig 9

Monitor rotor position

Is rotor at Lmin?

No

Start integrator
Record current
Calculate offset

Has reference angle been reached?

No

Yes

Record current and integrator output

Calculate total flux-linkage

Derive new estimate of rotor position
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 9102401 A [0008]
- EP 0573198 A, Ray [0009] [0010]
- US 5469039 A, Ray [0010]
- EP 1324484 A, Slater [0012]

Non-patent literature cited in the description

- J. M. STEPHENSON ; R. J. BLAKE. The Characteristics, Design and Applications of Switched Reluctance Motors and Drives. PCIM’93 Conference and Exhibition held in Nurnberg, 21 June 1993 [0002]