EUROPEAN PATENT SPECIFICATION

METHOD OF EVALUATING A HAZARD ANALYSIS TEST POINT

VERFAHREN ZUR BEURTEILUNG VON GEFAHRENANALYSEPRÜFPUNKTE

PROCÉDÉ D’ÉVALUATION D’UN POINT D’ESSAI D’ANALYSE DE RISQUE

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

30.01.2003 US 356715

Date of publication of application: 19.01.2005 Bulletin 2015/03

Proprietor: BioControl Systems, Inc.
Bellevue, WA 98005 (US)

Inventors:
• FELDSINE, Philip, T.
Mercer Island, WA 98040 (US)
• KELLY, Tim, A.
Bellevue, WA 98007 (US)
• CHRISTENSEN, Jim
Portland, OR 97229 (US)

Representative: Hoarton, Lloyd Douglas Charles et al
Forresters
Skygarden
Erika-Mann-Strasse 11
80636 München (DE)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

[0001] Safety in the food, pharmaceutical and cosmetic industries, in terms of contamination control and hygiene, utilizing HACCP (Hazard Analysis and Critical Control Point) principles, is of growing concern, not only to control the occurrence of pathogenic microorganisms, but also in preventing hazards before they become widespread and expensive problems. HACCP is the science-based system accepted internationally for ensuring food safety. HACCP has been adopted by the FDA and USDA as well as by other countries. It has been endorsed by the National Academy of Sciences, the Codex Alimentarius Commission (an international food standard-setting organization), and the National Advisory Committee on Microbiological Criteria for Foods. Developed nearly 30 years ago for the space program, HACCP has proven to be effective to ensure that food safety hazards are controlled to prevent unsafe food from reaching the consumer.

[0002] In the United States alone, since 1995, HACCP based systems have been mandated for the following industries by the Federal Government:

- Seafood - (21 C.F.R. Parts 123 and 1240 Procedures for the Safe and Sanitary Processing and Importing of Fish and Fishery Products; Final Rule) in December, 1995
- Fruit and Vegetable Juice - (21CFR Part 120: Hazard Analysis and Critical Control Point (HACCP); Procedures for the Safe and Sanitary Processing and Importing of Juice; Final Rule) in January, 2001

[0003] Adoption of HACCP will continue to increase for the foreseeable future. The FDA has published an Advance Notice of Proposed Rule Making (ANPRM) for HACCP to be applied for the rest of the food industry including both domestic and imported food products. Also, in January 2000, the National Conference on Interstate Milk Shipments (NCIMS) recommended the use of a voluntary HACCP Pilot Program as an alternative to the traditional inspection system for Grade A Dairy products.

[0004] In order for a food manufacturer to effectively comply with HACCP based requirements or standards, it is vital that it have an effective system in place to control, monitor, and analyze relevant HACCP data. The necessity for this can be seen by examining the seven (7) HACCP principles that a food manufacturer has to follow:

1. Conduct a hazard analysis.
2. Determine the critical control points (CCP). A CCP is a point, step or procedure in a food process where a number of possible measurement controls can be applied and, as a result, a food safety hazard can be prevented, eliminated, or reduced to acceptable levels.
3. Establish measurement parameters and critical limits for each CCP and identify methods for measuring the CCP. For example, compliance with a cooking CCP may be assessed by the combination of two indicators: time and temperature.
4. Monitor the CCP to ensure on-going compliance with established critical limits. A monitoring system should not only detect individual deviations, but also analyze data to identify patterns of deviation that could indicate a need to reassess the HACCP plan.
5. Establish corrective actions to be taken when monitoring of important parameters shows that a critical limit has not been met.
6. Maintain accurate records. Effective record keeping is a requirement. HACCP records must be created at the time events occur and include the parameter measurement, date, time and the plant employee making the entry.
7. Verify that the system is working properly initially as well as ongoing. These activities include calibration of the monitoring equipment, direct observations of the monitoring activities and a review of the records.

[0005] One essential characteristic of the HACCP system that differentiates it from previous inspection system(s) is that it places responsibility directly on the food manufacturer to ensure food safety. Each processor must be able to identify CCPs, measure a variety of parametric indicators for each CCP (e.g., time and temperature measurements to verify a cooking process), identify deviations, perform trend analysis of deviations, and document the data to show compliance with the HACCP requirements. Currently, there is no one single instrument or analysis procedure available that can perform these critical and essential functions. For example, a food processor is likely to use many single-function monitors to take isolated measurements (e.g., a temperature probe and photometer, both instruments being capable of measuring parameters related to food safety, as discussed further below) and then to enter the readings manually on different data collection sheets. Such collection procedures are tedious and highly subject to human error. In addition, examination of the relationship of multiple parameters to the quality of the production environment is difficult if not near impossible. There is a need for a simple and efficient way to collect, store, integrate, and analyze selected CCP in a format that can be directly used to comply with HACCP based requirements and standards.

[0006] It is not surprising that the growing reach of HACCP based monitoring programs is progressing concurrently with a trend toward methods of testing that are improved by being more rapid, more sensitive and easier
to perform. More stringent standards, such as those associated with HACCP based monitoring programs, are expected to motivate such improvements in methods of testing. The reverse is also true in that as test methods improve, standards are likely to become more stringent since compliance can be more accurately, precisely, and efficiently maintained and verified.

This trend toward improved testing of the manufacturing environment is occurring in a wide variety of industries, including, but not limited to, those industries related to food, pharmaceuticals, cosmetics, and medical areas. In such industries, many techniques are used to monitor levels of environmental quality including techniques that use microbiological cultures. Microbiological cultures are a most widely conducted test method, due to their low-test throughput capacity and long incubation time periods, are of limited use. They cannot measure the quality of the environment immediately prior to commencement of an operation. A variety of tests have been developed which detect and in some cases quantify specific pathogens. They can range from high-throughput automated systems to single-sample test devices. These methods require the growth of microorganisms for detection, which consumes considerable time. Some techniques such as adenosine triphosphate (ATP) and alkaline phosphatase (AP) measure parameters that indirectly correlate to the level of environmental contamination. Still others monitor factors related to risk of the presence and propagation of microorganisms, i.e., temperature, pH, conductivity, oxidation reduction potential, dissolved gases, total dissolved solids and protein residues. The latter types of methods are usually real-time in their determinations, offering a distinct advantage for the user in obtaining critical environmental quality information on an immediate basis.

Typically, ATP and AP and similar targets of detection use bioluminescent techniques. The protocol involves using a device to collect a sample from a surface of interest, and activation of the device to mix reagents together with the sample to produce light proportional to the amount of ATP/AP sampled. The reaction is then read by inserting the device into a photon-measuring instrument.

One bioluminescent ATP monitoring system is the LIGHTNING system developed by IDEXX LABORATORIES. The device contains a pre-moistened swab, buffer in a bulb at one end and lyophilized reagent in a foil sealed compartment at the reading end. The swab is removed from the device, used to collect a sample from a test surface, and returned to the tube of the device. The bulb is then bent to break open a snap valve, which releases the buffer into the reading chamber when the bulb is squeezed. The sample containing swab is then pushed through a foil barrier, the device is shaken and the reaction proceeds between ATP on the swab and the dissolved (in the buffer) reagent. The device is inserted into the reading chamber of the photon measuring instrument and a reading is taken over a ten-second integration period. The intensity of the bioluminescent signal is proportional to ATP on the swab.

Another system presently in use is called the CHARM SCIENCES POCKETSWAB PLUS. It is an integrated device used with a LUMINATOR T portable luminometer. The device contains a pre-moistened swab. It is removed from the device base, used to swab a surface, returned to the base, then activated by screwing the top portion relative to the base. This action causes the swab tip to puncture separation barriers allowing separate reagents to migrate to the bottom chamber of the base, mixing and reacting with the sample collected on the swab. Shaking is required to facilitate reagent transfer to the bottom and mixing in the bottom chamber.

The activated device is then inserted into a hole in the top of the luminometer and pushed down until it meets a stop. This process displaces a door. The upper portion of the device remains exterior to the instrument, but forms a seal with the reading chamber orifice. A read button in the instrument is then pressed to initiate a signal integration period before a reading is displayed in relative light units (RLU).

Another such system is the BIOTRACE CLEAN-TRACE RAPID CLEANLINESS TEST self-contained device for use with the UNI-LITE XCEL portable luminometer. It also has a pre-moistened swab, which is removed, a sample is collected, and the swab returned. Activation involves forcing the top portion of the device, which contains the sample, down into the base, through membrane-barriers. The swab engages a piercing tip, which breaks the membranes and allows the reagents to mix in a manner similar to that of the CHARM device. Shaking is required to transfer all of the solution to the bottom.

The BIOTRACE luminometer has a cap, which lifts and swivels out of the way to expose the reading chamber. The sample-containing device is lowered into the chamber and the cap is closed. Full closure of the cap opens a light blocking member to allow signal measurement. Like the CHARM unit, a button begins the read cycle, which ends with the light reading display in RLUs.

MERCK also offers a hygiene monitoring system for ATP that utilizes the HY-LITE Monitor along with HY-LITE test swabs, rinse tubes and sampling pens. The swab is moistened in the rinse tube. A surface is swabbed. The swab is returned to the tube and rotated for several seconds to release any collected ATP. The swab is squeezed out and removed. Then the pen is inserted for one second to pick up the sample. The tip of the pen is struck on a hard pad to engage the cuvette. A button is pushed to release the reagents and initiate the reaction in the cuvette. The cuvette is then removed and shaken, it is inserted into the monitor’s reading chamber, and a button is pressed to initiate a ten second light integration period. RLUs are then displayed on the monitor screen.

A similar system has been developed by CEL-SIS called the SYSTEMSURE portable hygiene monitor-
The test sequence is similar to that of the MERCK system where the swab is moistened and the surface is swabbed. The reagent is then pipetted into the cuvette. The swab is inserted into the cuvette and rotated for several seconds then removed. The cuvette is capped and inserted into the luminometer, where the reading is initiated.

[0016] On the simpler side, Kikkoman has developed the CheckLite reagents to be used with their LuciPac swabs and read in the Lumitester C-100. A standard lyophilized luciferin-luciferase reagent in conjunction with reconstitution buffer and an ATP release buffer are manually loaded into the various compartments of the swab assembly. The swab is moistened with release buffer then used to collect the sample. It is then reinserted into the assembly housing and pushed down so the swab head can pierce a barrier which combines the other reagents in the test tube at the bottom of the assembly. Mixing is accomplished by shaking or vortexing. The test tube portion of the assembly is then removed and put into the reading chamber of the Lumitester. A reading is taken by pressing a button.

[0017] US 5,827,675 (Skiffington et al.) discloses a test apparatus for testing a test sample on or in a material, such as body fluids or food, particularly adapted to a bioluminescent test, such as for the detection of ATP or phosphatase or other materials.

[0018] There is a need for an improved method and apparatus that is designed to enhance ease of use, and improve measurement accuracy and precision. The current systems incorporate unnecessary actions by the operators that are burdensome with respect to certain steps such as pre-moistening, pipetting, rotating, two handed screwing, two-handed pushing, striking, shaking, and precise timing, which do not adequately control device activation and contribute to increased reading variances.

[0019] The present invention provides multiple embodiments of methods and apparatus to overcome several of the aforementioned limitations of existing systems.

BRIEF SUMMARY OF THE INVENTION

[0020] This invention is directed to a method according to claim 1.

[0021] An associated monitoring assembly comprises an instrument and probe assembly, or sample testing device, that can be used together to efficiently, accurately, and precisely monitor a number of different parameters of a process or environment, including luminescence parameters. In one embodiment, the instrument comprises a photon detection assembly and the probe assembly is an integrated, self-contained, test device, for sample collection and luminescence reading with the photon detection assembly.

[0022] The instrument can operate as a luminometer for taking light readings of samples contained in sample testing devices, or probes, including the probe assembly of the present invention. In one embodiment, the instrument has a dark reading chamber with a hinged cover, or hinged cap, connected to an elevator mechanism. The configuration of the connection prevents the photon detector of the instrument from being exposed to external light, even when the hinged cover is open and a test device is being loaded into the chamber. This is very important for signal stability and to reduce increased background photon counts, which is a primary source of decreased systems sensitivity. The hinged cover, a shutter member in the instrument, and the various components of the elevator mechanism, cooperate to block the photon detector from exposure to external light as the elevator mechanism is depressed to lower the sample-containing device, or probe, into a reading position. Also, the elevator mechanism and shutter prevent the photon detector from being exposed to light even when the hinged cover is open and a test device is being loaded into the instrument. When the hinged cover is closed and the test device is lowered, a shaft rotates to open the shutter so a reading can be obtained in a previously photometrically stabilized dark environment.

[0023] In further embodiments, the instrument includes a communication port that allows the instrument to receive a signal from a measurement device in addition to the photon detector. The measurement device can be an external device or external sensing probe, capable of measuring or sensing a parameter other than that provided by the photon detector, such as, but not limited to, temperature, pH, dissolved gases, conductivity, and specific ions. The external probe can also be a multi-parameter probe capable of measuring or sensing more than one type of parameter. In some embodiments, the measurement device is internal to a housing of the instrument, at least in part, wherein the communication port for communicating with the measurement device can also be internal to the housing of the instrument.

[0024] As to the probe assembly, in one embodiment, it comprises a plunger that can be pressed downward to activate the probe assembly with only one hand. This forces sealed containment chambers in the probe onto a piercing tip, thereby puncturing the seals. One of the chambers contains a dry reagent and another contains a buffer solution. When the chambers’ seals are punctured, the contents of the chambers mix to form a reagent solution. The reagent solution flows through a channel and through a sample containing swab tip, causing sample to be released into the reagent. The reagent then reacts with the sample and emits light proportional to the level of environmental contamination, by, but not limited to, such materials as ATP, ADP or alkaline phosphatase in the sample, and the reagent chosen for the particular application. The probe assembly can be directly inserted into the instrument to measure light emitted from the sample.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Figure 1A is an exploded perspective view of a probe assembly, also showing the connection tube in the interior of the probe housing, in dotted line.

Figure 1B is a perspective view of the probe assembly of Figure 1.

Figure 1C is a perspective view of the probe assembly of Figure 1 with the test tube removed.

Figure 2 is a diametric cross-sectional view of a portion of the probe assembly of Figure 1 with the plunger in an "up" position.

Figure 3 is a diametric cross-sectional view of a portion of the probe assembly of Figure 1 with the plunger in a "down" position.

Figure 4 is a perspective view of a detection with the slidable shaft in an "up" position and the hinged cover open.

Figure 5 is a cross-sectional view of the detection assembly of Figure 4 as viewed from the side opposite the detector housing.

Figure 6A is a cross-sectional view of the detection assembly of Figure 7 with the slidable shaft in an "up" position with the hinged cover closed, and with the probe assembly activated and inserted in the detection assembly.

Figure 6B is a diametric cross-sectional view of a portion of one embodiment of the detection assembly showing a positioning pin formed on a hinged cover of the detection assembly.

Figure 7 is a perspective view of the detection assembly of Figure 4 with the slidable shaft in an "up" position and the hinged cover closed.

Figure 8 is a perspective view of the detection assembly of Figure 4 with the slidable shaft in the "down" position and the hinged cover closed.

Figure 9 is a cross-sectional view of the detection assembly of Figure 8 with the slidable shaft in the "down" position and the hinged cover closed, and with the probe assembly activated and inserted in the detection assembly.

Figure 10 is a rear perspective view of the detection assembly of Figure 4, with the slidable shaft in the "down" position and the hinged cover closed.

Figure 11 is a perspective view of a measurement instrument, with the slidable shaft of the detection assembly in the "down" position.

Figure 12 is a simplified block diagram schematically illustrating one embodiment of the measurement instrument, without the sample testing device or photon detection assembly being shown.

Figure 13 is a simplified block diagram of a general purpose computer for use with various embodiments of the present invention.

Figure 14 is a simplified block diagram of a general purpose data logger or data transfer device for use with some embodiments of the present invention.

Figure 15 is a schematic diagram of a database schema for storing ATP data.

Figure 16 is a schematic diagram of a database schema for storing temperature data.

Figure 17 is a schematic diagram of a database schema for storing pH data.

Figure 18 is a schematic diagram of a database schema for storing a combination of ATP, temperature and pH data.

Figure 19 is a plan view of graphical representation of data collected and presented according to an illustrative embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to methods for measuring a sample of a product, an ingredient, the environment and a process for quality that can be used to provide critical information in a wide variety of settings. These settings include, but are not limited to, testing in the food, pharmaceutical, cosmetic, and medical industries. These settings may further include environmental conditioning and control equipment for general usage such as, but not limited to, commercial air conditioning equipment and cooling towers. Additional settings include sensitive environments potentially susceptible to malicious or inadvertent contamination with biological materials, such as military installations, hospitals or enclosed high occupancy buildings.

Drawings depicting certain embodiments of the invention are provided for purposes of illustration. Also, the invention is described in a context including the monitoring of pathogenic contamination by measuring light emission from a reaction. However, as one skilled in the art will appreciate, various aspects of the invention may also be applicable in a variety of other settings. Also, as will be appreciated, equivalent modifications can be made to the invention without deviating from the scope of the invention. Not all such possible modifications have been illustrated or described in order to avoid unnecessary detail that would obscure the description of the invention.

Figures 1A, 1B, and 2 show an embodiment of a probe assembly 10 (sample testing device). Figure 1A is an exploded view and Figure 2 is a partial cross-sectional view of the probe assembly 10. The probe assembly 10 is used to collect sample and also serves as a reaction chamber in which the sample is released into a reagent solution. The probe assembly 10 can also serve as a device to retain sample while a parameter thereof is being measured by an instrument, such as the instrument 100 of the present invention. Figures 5-11 show an embodiment of the instrument 100 and a photon detection assembly 70 contained therein, that can be used to measure a parameter (i.e. photon count) of a sample contained in the probe assembly 10.
The probe assembly 10 includes a sample collection tube 22, as shown in Figure 2. The probe assembly 10 has a probe housing 20 and a connection tube 22. The orifice 32 is centered on the top of the upward end portion 30 of the connection tube 22 with an opening facing upward. As can be seen in Figure 2, a piercing tip 28 is also connected to the upward end portion 30 of the connection tube 22. In some embodiments, the piercing tip 28 is disposed directly above the orifice 32 by being formed on projection members that are joined at one end to the connection tube 22, with the other ends thereof extending over the orifice whereupon the piercing tip 28 is formed.

The probe assembly 10 has a plunger 44, or displacement member, that is slidably connected to the probe housing 20 and can be actuated, or pushed, to activate the probe assembly 10. See Figures 1A and 2. The plunger 44 has a liquid chamber 46. In one embodiment, the liquid chamber 46 contains a liquid buffer and detergent, and the liquid is sealed in the liquid chamber 46 by a foil seal 48 at the downward end of the plunger 44. In other embodiments, the liquid chamber may contain different reagents. The plunger 44 also has a hollow retaining cavity 47 that opens upward and can be used to retain the probe assembly in position by an instrument with a pin that is inserted in the cavity.

As best seen in Figures 2 and 3, the plunger 44 can be in an "up" position, prior to activation of the probe assembly, wherein no reaction has yet occurred in the probe assembly 10, or pushed downward to a "down" position. When the plunger is pushed downward, or actuated, to the "down" position, the piercing tip 28 pierces the foil seal 48 of the liquid chamber 46 as well as foil seals 42 of a dry chamber 38, containing reagent, disposed below the plunger 44. It is also noted that the plunger 44 has seal rings 45 that mate with the interior surface of the probe housing 20 to prevent liquid, released from the liquid chamber, from leaking past the plunger 44 to the exterior of the probe assembly 10.

The dry reagent chamber 38, which may contain one or more reagents and a desiccant, is disposed within the probe housing 20, under the plunger 44. The dry chamber 38 has foil seals 42 to seal the top and bottom of the chamber 38, with reagent sealed therewithin. There are raised lateral position stabilizers 40 formed on the exterior surface of the dry chamber 38 which serve to align about the chamber 28. See Figures 1A and 2. The positioners 40 are configured to engage the interior surface of the probe housing 20 and retain the dry chamber 38 in position above the piercing tip 28 while the plunger 44 is in the "up" position, but to permit the dry chamber 38 to slide downward past the piercing tip 28 when the plunger 44 is being displaced to the "down" position, thus breaking the foil seals 42.

In some embodiments, the dry chamber 38 and the liquid chamber 46 may be reversed in position. That is, chamber 46 may hold dry reagent, or a component of a reagent, and chamber 38 may hold a liquid reagent, or liquid component of a reagent. In other embodiments, both chambers may contain liquids. Furthermore, the components of a reagent solution that is selected for a particular application may be distributed throughout the
chambers 38, 46 in various ways. For example, one chamber can contain a medium or buffering solution while the other contains a reacting reagent to facilitate energy emission from the sample. Also, some embodiments of the invention can comprise one chamber or more than two chambers. In a further embodiment, one chamber may contain a growth promotion medium and another may contain a stabilization or transport medium. These may be used together or separately.

[0038] An annular cap 50 is fitted over the probe housing 20 and plunger 44. As best shown in Figure 2, a lower portion 52 of the cap is configured to mate with the exterior surface of the probe housing 20 at the upper end of the housing and an upper portion 54 of the cap 50 mates with the exterior surface of the plunger 44. The plunger 44 is slidable in relation to the cap 50 while the probe housing 20 is securely mated to the cap 50. Also, there are small restriction protrusions 56 associated with the surface of the plunger 44 that engage the upper end of the cap 50 to hold the plunger 44 in the “up” position until a user activates the probe by depressing the plunger 44.

[0039] A translucent test tube 58 is provided for the probe assembly 10. The test tube 58 serves to protect the unused sampling device, to contain a sample containing device, to accumulate activated sample and reagent, and to serve as a measurement chamber. See Figures 1A, 1B and 2. When the probe assembly 10 is fully assembled and ready to activate, the test tube is fit over the swab stick 16 so that the swab tip 14 is contained within the test tube 58. See Figure 1B. The diameter of an upper portion of the test tube 58 is sized to fit snugly over the test tube grip rings 39 on the tubular stub 36, such that when the test tube 58 is pushed over the tubular stub, a sufficiently tight fit is accomplished to securely couple the test tube 58 to the tubular stub 36.

[0040] As shown in Figure 1A, there is also an atmospheric vent 60 comprised of a gap in the grip protrusions 39 of the tubular stub 36 and upper edge of the test tube 58. This provides a vent to the atmosphere from the interior of the probe assembly 10, to release pressure buildup from the probe assembly when the plunger 44 is depressed. When the plunger 44 is depressed during activation of the probe, a pressure gradient is thus created between a high pressure point near the plunger 44, and a low pressure point at the atmospheric vent 60. This ensures that fluid flows from a point near the plunger 44 into the test tube 58.

[0041] In operation, the test tube 58 is removed from the probe, to expose the swab tip 14 for sample collection without removal from the connection tube, as shown in Figure 1C. A user then uses the swab tip 14 to contact a sample surface. The test tube 58 is then replaced over the swab stick 12 and the upper end portion of the tube 58 is pushed over the tubular stub 36 to secure the test tube in place. To activate the probe, a downward force, sufficiently supplied by a user’s hand or finger, is applied to the plunger 44 to drive it toward the piercing tip 28 thus breaking the foil seals 42, 48 of the dry chamber 38 and liquid chamber 46. The plunger 44 is displaced from the "up" position to the "down" position, as shown in Figures 2 and 3. The liquid buffer solution from the liquid chamber 46 and the reagent from the dry chamber 38 are released and mix. The reagent solution is forced through the orifice 32 at the upward end portion 30 of the connection tube, into the hollow shaft 16 of the swab stick 12 by the downward thrust of the plunger 44. The arrows labeled (“A”) in Figure 3 indicate one portion of the fluid flow path through the channel defined by the hollow shaft 16. The pressure buildup created by the downward thrust of the plunger is released through the atmospheric vent 60, maintaining a pressure gradient that drives or propels the reagent solution downward through the flow path indicated by arrow (“B,”) in the shaft 16 of the swab stick 12. The fluid exits the swab shaft 16 through the swab tip 14 thus contacting the collected sample and releasing some, or all, of the sample into the reagent solution. The reagent solution containing released sample then accumulates in the distal end of the test tube 58.

[0042] The distal end of the test tube serves as a measurement portion of the probe assembly 10 that, in some embodiments of the invention, is exposed to a photon detection device. The reagent and the sample react to produce light proportional to the amount of ATP, ADP, alkaline phosphatase or other suitable analyte in the sample. The instrument 100, which includes a photon detection device, such as the detection assembly 70 described below and illustrated in Figures 4-10, is used to measure light emitted from the reagent solution to provide an indication of level of contamination in the environment sampled. The configuration of the probe assembly 10, with the plunger 44, orifice 32, and fluid channels formed in part by the swab shaft 16, ensure that displacement of the plunger drives substantially all, or a sufficient amount of the reagent solution and sample into the measurement portion of the probe (distal end of the test tube 58) without the need for further action, such as shaking.

[0043] The following provides a summary of some of the features of the probe assembly 10 that contribute to precision, accuracy, reliability, and ease-of-use. For example, the seals 42, 48 on the dry chamber 38 and liquid chamber 46, are not contacted by the swab tip 14 during activation of the probe assembly 10. This is in contrast to certain devices currently available that require the swab to be used to pierce membranes of reagent chambers. This device thus prevents sample from being removed from the swab tip 14 due to contact with the seals of the reagent chambers. Also, the probe assembly 10 is easy to activate with only one hand, by depressing the plunger 44. It also does not require shaking to mix the reagent with the liquid buffer solution as it is sufficiently mixed by the geometry of the probe assembly 10. For example, the reagent solution is adequately mixed by the release of the liquid and reagent, combined with the turbulent flow of the mixture through the orifice 32, and into and through the swab shaft 16, or channel, and through
the swab tip 14. The amount of reagent is automatically, precisely, and accurately provided and dispensed by using only one hand to activate the probe. Also, in one embodiment, the probe assembly 10 is configured so that the swab tip 14 is above the bottom portion of the test tube 58 that is placed in the reading area of a photon detection device, or the photon sensing path. This can be seen in Figure 9, wherein the circular opening 96 (a shutter 82 opening) approximates the photon sensing path of the photon detection device. Note that the swab tip 14 is just above this reading area. At the same time, the probe assembly 10 is configured to dispense a sufficient amount of liquid so that the liquid level 98 in the test tube 58 is nonetheless high enough to maintain liquid contact, or communication, with the swab tip 14. This can also be seen in Figure 9. This configuration permits a photon detection device to measure light emitted from the solution with minimal interference from the swab tip 14, while the liquid is still able to liberate sample from the swab tip 14. The probe assembly 10 is also designed to eliminate reagent leakage, which decreases measurement precision and can contaminate the sampled surface, due to the various seals described above.

[0044] The method by which the probe assembly 10 is operated, fully integrates the operations of piercing barriers between separate reagent compartments, mixing said reagents, and dispensing with precision, known amounts of said mixed reagents, and finally, releasing the sample containing material for detection. The integrated piercing, transferring and channeling mechanism which sequentially performs the steps of activation, mixing and dispensing of all reagents through the sampling device avoids piercing reagent separation barriers with the sample containing surface, and resultant loss of sample on barrier debris, loss of reagent materials in voids or open cavities of the device, and requiring the operator to shake, screw or repetitively manipulate the device to ensure proper operation. It is also noted that the test tube 58, or measurement chamber, forms a continuous collection and reading chamber that is optically uniform and conducive to efficient photometric measurement. This enhances photon transmission for more accurate, precise, and sensitive readings.

[0045] Certain embodiments of the instrument 100 comprise an instrument housing 101, within which the photon detection assembly 70 is contained. See Figures 11 and 12. Figure 11 is an isometric view of the exterior of an embodiment of the instrument 100 with the instrument housing 101 shown and Figure 12 is a block diagram of an embodiment of the instrument 100, showing an external measurement device 107 (a multi-parametric external probe is represented by the embodiment illustrated in Figure 12), but without the photon detection assembly 70 or probe assembly 10 (sample testing device) being shown. Said external measurement device may be fixed or detachable from instrument 100 without impacting it’s functionality. In Figure 11 a top portion of the photon detection assembly 70 can be seen, with the rest of the detection assembly contained in the instrument housing 101.

[0046] The instrument 100 can include a key pad 102, or control panel, a display screen 104, a processor 106, and one or more communication ports 108. The communication ports 108 can comprise any variety of input and/or output devices, either internal to the instrument or external, for use either with measurement devices 107, or other external devices. In other embodiments, the instrument also comprises an internal system memory 110. In yet another embodiment, the instrument comprises a receiving device 113 for receiving and reading external memory devices 112, such as, but not limited to, memory cards and CD-ROM disks. In addition, other forms of external memory can be used with the instrument 100 by transferring data to or from the external memory through the communication ports 108. These other forms of external memory can comprise hard disks on general purpose computer systems 120 (described below), data loggers 140, or other types of remote databases 136.

[0047] The instrument 100 can be configured to receive signals from both a photon detection device of the photon detection assembly 70, which includes a photomultiplier tube, photodiode or other photon sensing detector, and other measurement devices 107 that can communicate with the instrument 100 through the communication port 108 thereof. See Figure 12. As described, the measurement devices 107 may be external to the instrument 100 or be an integral part thereof. Such measurement devices 107, include, but are not limited to, external single or multi-parametric probes for monitoring other parameters essential to environmental safety or HACCP (Hazard Analysis and Critical Control Point) principles, such as, but not limited to, pH, temperature, dissolved gases, conductivity, oxidation reduction potential, and specific ions. One example multi-parametric probe is a combined temperature and pH probe, capable of providing measurements for both parameters simultaneously, or separately. A variety of multi-parametric (as well as single parametric) probes are currently available and widely used and can include the ability to measure a number of the parameters listed. For example, combined temperature/pH probes are widely used, as well as probes able to measure more than two parameters. One example is multi-parametric probes currently widely available and capable of measuring pH, conductivity, temperature, pressure, and dissolved gases. Although the measurement device 107 represented in Figure 12 is a probe, a myriad of other measurement devices can be substituted therefore.

[0048] The embodiments of the instrument 100 described above combine the ability to accurately, precisely, and efficiently measure luminescence parameters (which are often selected as CCP indicators in HACCP plans) with the photon detection assembly 70, with the ability to measure, compile, and analyze other parameters in conjunction with the measured luminescence parameters, using the same instrument 100. These other
parameters, not necessarily related to light emission, are often selected as indicators for the same or different CCPs for which the luminescence parameters serve as indicators, with all the parameters being critical to an HACCP plan. This combined functionality of the instrument 100 is unique and provides many significant advantages. The advantages are highly apparent for food and environmental control applications where HACCP based standards are prevalent and luminescence is very relevant, but the same or equivalent modifications of the instrument 100 can also be used in a variety of other settings to provide significant benefits.

[0049] As to the food industry, the significant need for the capabilities of the present invention arise, in part, from the need to comply with HACCP based standards or regulations. In order to do so, the food processor, or food manufacturer, must be able to identify (critical control points) CCPs. CCPs are points, steps, or procedures where some form of control can be applied and a food safety hazard can be prevented, eliminated, or reduced. The processor may need to measure a variety of parameters to identify deviations, perform trend analysis of deviations, and document the data to show compliance with the HACCP requirements. In carrying out an HACCP plan, a food processor is currently likely to use many single-function instruments to take isolated measurements (e.g., a temperature probe, a pH meter, and a separate photon counter to measure bioluminescence of an activated sample) and then to enter the readings manually on different data collection sheets. Such collection procedures are tedious, inefficient, and highly subject to human error. A serious risk of loss of data integrity by willful or negligent action by those involved in the data collection exists with the current state-of-the-art. In addition, examination of the relationship of multiple parameters to the quality of the production environment is difficult. The present invention solves these problems, as is further illustrated by an example embodiment described below.

[0050] In one example embodiment, the instrument 100 comprises a photon detection assembly 70 with a photo multiplier tube (PMT) or photodiode and is capable of communicating with a multi-parametric probe (i.e., an external measurement device 107) for measuring temperature and pH of an environment from which the sample is taken. Each of the different parameters to be measured, photon count, pH, and temperature, are critical indicators for the same CCP (or different CCPs) in an HACCP plan.

[0051] In this example embodiment, a user can use the instrument to measure photon count of a sample, store the photon count measurement temporarily or permanently on the instrument 100, and then use the instrument 100 and the multi-parametric probe 107 to read and store either temperature or pH, or both, of the relevant environment. The measurements of the various parameters can be taken simultaneously or sequentially. The data representing all the different parameters measured can be simultaneously viewed and compared on the display screen 104 of the instrument 100, without having to switch between different data collection sheets, or any otherwise separate data format.

[0052] In a preferred embodiment, the data collected is randomly allocated to the data storage facility in a manner that optimizes the amount of data retained but with full flexibility by the operator to assign any amount of data storage independent to any parameter of interest. In a most preferred embodiment, all such data is retained in its designated location in such a manner that willful or negligent adulteration of the primary data is precluded.

[0053] Previously, a user would have had to separately take and record the photon count of a sample, and then the pH or temperature of the environment. These data were manually recorded or logged in independent unrelated instruments. In order to view or analyze the photon count data together with the temperature and pH data, the user would have had to import it all into a single format, possibly by manually copying or entering it into a common database if it were recorded on data collection sheets. By contrast, with the instrument 100, all of the data representing the different parameters, including photon count, is integrated by being collected, recorded, and displayed by one device.

[0054] In the example embodiment, software is provided on the instrument 100 to analyze the integrated data (photon count, temperature, and pH) to determine whether critical limits for a CCP have been reached that require corrective action to comply with the HACCP plan. The software is stored on the memory 110 and drives the processor 106 of the instrument 100. If the critical limit(s) is trend sensitive to a combined interaction of the three separate parameters, the measured data can be analyzed in connection with a previous trend stored on the memory 110 of the instrument 100. The software can also generate a display format on the display screen 104 conducive to quick assessment of the relevant CCP or other factor (e.g., trending the data and displaying it in a graph(s)). None of these capabilities is currently available with an instrument that also has the capacity to measure bioluminescent parameters.

[0055] As can be seen from the above example, certain embodiments of the instrument 100 efficiently combine information from several distinct but related parameters, which can include photon measurement, to provide a more comprehensive, integrated, and efficient evaluation of a CCP or groups of related CCPs, or any other environmental or process condition. A further benefit of the instrument is that measurement of multiple parameters utilizing one instrument eliminates the high cost of procuring several measuring instruments. An additional benefit is the elimination of the potential for disruption of data integrity during sampling, transport, transcription or analysis of CCP compliance to the HACCP Plan.

[0056] As will be appreciated by one skilled in the relevant art, various equivalent modifications can be made...
to the above example embodiment of the instrument 100 without deviating from the scope of the invention. Portions of the software or hardware, or the associated method steps for using the same, can be left out or combined differently, or various equivalent modifications of the same can be added. For example, a myriad of different external measurement devices 107 can be used in place of the temperature/pH probe, such devices comprising those being capable of measuring such parameters as dissolved gases, conductivity, oxidation reduction potential, and specific ions. The external measurement device 107 will be selecting depending on the application. Also, the integrated data could be exported to a general-purpose computer (described below), via the communication port(s) 108, for analysis with software, in place of, or in addition to, analysis within the instrument 100.

The communication port 108 of the instrument 100 can provide for direct connection to a computer, a data transfer device, or other data analysis device for comprehensive data compilation and output. Figure 13 is a block diagram of a general-purpose computer for use with some embodiments of the present invention. The computer system 120 includes a central processing unit (CPU) 122, a display screen 124, an internal system memory 126, and input/output devices 128. In addition, the computer 120 includes a receiving device 130 for receiving and reading computer-readable media 132, such as a diskette. Although the computer-readable media 132 is represented in Figure 13 as a CD-ROM disk, the computer system 120 can employ other computer-readable media, including but not limited to, floppy disks, tape, flash memory, system memory 126, DVD-ROM, and hard drives. The input/output 128 can be connected to a variety of devices, including a keyboard 134, or remote or external database 136, or mouse (not shown). In addition, remote devices that send and receive signals can also communicate with the computer system 120 through these input/output devices 128, such as, but not limited to, other devices within a network, modems, data loggers 140, personal data devices, or palm pilots. Software used with the computer 120 to analyze data collected by the instrument 100 can include the capabilities of the software described above for the instrument 100. In addition, such software, like the software for the instrument 100, can also provide a myriad of other functions, such as, for example, being capable of assessing and monitoring compliance with the overall HACCP plan, or another quality control or safety program, such as a statistical process control program. Such software may be internal to instrument 100, external to instrument 100 or a combination of internal and external.

Figure 14 is a simplified block diagram of a general purpose data logger 140 referenced above, that can be used to supply data or record data from a variety of sources, such as the instrument 100, measurement device 107, or the general purpose computer system 120. The embodiment illustrated in Figure 14 comprises input and/or output devices 142, an analog to digital converter 144, a processing unit 146, a display 148, a keypad 150, and an internal memory 152.

Figures 4 and 5 illustrate an embodiment of the instrument 100 comprising the photon detection assembly 70. The photon detection assembly 70 includes a slidable shaft 72, a rotatable member, or rotatable shaft 80, a holding member, or holding chamber 76, with a hinged cover 74, a shutter 82, and a detector housing 86 containing, in one embodiment, a photo-multiplier tube (PMT) or photodiode for photon detection (PMT is not shown).

The slidable shaft 72 has an interior chamber 84 configured to receive the probe assembly 10, or a similar device. When it is desired to measure light emitted from the activated probe assembly 10, it is inserted into the detection assembly 70 through the holding chamber 76, with a portion of the probe extending into the interior chamber 84 of the slidable shaft 72.

The holding chamber 76 is joined to the top portion of the slidable shaft 72. The hinged cover 74 is connected to the holding chamber 76 and is pivotable between an "open" and "closed" position. The hinged cover 74 is configured to prevent light from entering the interior chamber 84 of the slidable shaft 72 when it is adjusted to a "closed" position over the interior chamber 84. Figure 4 shows the hinged cover open and Figure 7 shows the hinged cover closed.

Figure 6A shows the probe assembly 10 inserted in the slidable shaft 72 with the hinged cover 74 closed. As can be seen, the holding chamber 76 of the assembly 70 is configured to hold the plunger 44, probe housing 20, and cap 50 of the probe assembly 10. Near the bottom of the holding chamber 76, a substantially horizontal holding surface 78 extends inward from the interior wall of the chamber to mate against the bottom surface of the probe housing 20 surrounding the tubular stub 36. This holds the probe assembly 10 so that the test tube 58, and any sample contained therein, remains above the bottom of the detection assembly 70. In some embodiments the holding member, (or holding chamber 76) illustrated in Figure 6A is substituted with a holding chamber that can directly contain the sample rather than a portion of a testing device containing the sample. For example, the sample containing chamber can be within the holding chamber, or integral therewith.

As best seen in Figures 7 and 8, the slidable shaft 72 is vertically slidable in relation to a shaft housing 90. The shaft housing 90 and a coil spring 88 comprise an elevator mechanism for the shaft 72. The slidable shaft 72 and the shaft housing 90 are vertically and co-axially aligned. The bottom end of the coil spring 88 is set against the top end of the shaft housing 90 so that the coil spring 88 extends upward from the top of the shaft housing 90. The slidable shaft 72 is contained concentrically within the coil spring 88, with the upper end of the coil spring mated against the bottom of the exterior surface of the holding chamber 76. The slidable shaft 72, and the holding chamber 70 attached thereto, can be depressed from...
an "up" position to a "down" position, as shown in Figures 7 and 8. When in the "down" position shown in Figure 8, the slidable shaft 72 can be locked in position using a releasable locking mechanism (not shown). When the locking mechanism is released, the coil spring 88 returns, or propels, the slidable shaft to the "up" position.

As shown in Figures 6 and 7, the rotatable shaft 80 is concentrically disposed within a cylindrical positioner 94 formed at the bottom portion of the slidable shaft 72. The exterior surface of the rotatable shaft 80 is lined with grooves 92 that form a downward cork screw or helical pattern on the rotatable shaft. The interior surface of the positioner 94 has guide members configured to fit within the grooves. The rotatable shaft 80 is free to rotate and is connected to the shutter 82, which rotates with the rotatable shaft. When slidable shaft 72 is vertically displaced, the positioner 94 is also vertically displaced, causing the guide members of the positioner to travel along the grooves. However, the positioner 94 is configured to travel vertically only, and does not rotate, and as such, causes the rotatable shaft 80 to rotate. In turn, the shutter 82 also rotates as it is coupled to the rotatable shaft and free to rotate with the shaft.

In the embodiment illustrated in Figures 4 and 9, the shutter 82 is a cylindrically shaped member, adjacent the detector housing 86 containing the photon detecting device. When the slidable shaft 72 is in the "up" position and the hinged cover 74 is open, as shown in Figure 4, the shutter 82 is in a "closed" position, with an opening 96 of the shutter facing away from the detector housing 86. As such, the photon detecting device is not exposed to external light entering from the open holding chamber 76, which could interfere with the precision and accuracy of the readings taken. The "up" position is a sample containing device loading position. When the slidable shaft 72 is displaced downward, the shutter rotates so that the opening 96 faces toward the detector housing 86 to permit a photon source in the detection assembly 70, such as a reacting sample in the probe assembly 10, to be detected by the photon detecting device. See Figure 9. The "down" position is a sample measurement position. The detection assembly 70 thus provides a dark detection assembly 70 within a dark chamber 91 containing the reacting sample exposed to the photon detecting device, as previously described. Figure 9 shows the detection assembly in the "down" position with light from the reacting sample exposed to the photon detecting device. As can be seen, only the distal end of the test tube 58 containing the reacting sample is exposed through the opening 96 of the shutter 82. The swab tip 14 is maintained above the opening 96, but is still in contact with the liquid, having a liquid level 98. Again, as described earlier, this minimizes reading interferences from the swab tip 14, while maintaining the swab tip 14 in contact with the liquid to leech sample from the swab tip 14.

In another embodiment of the detection assembly 70, a positioning pin 73, or positioning member, in the hinged cover 74 mates with the retaining cavity 47 in the plunger 44 to align the probe assembly 10 in the dark chamber 91. See Figure 6B. This helps to reproducibly position the probe in very close and exact proximity to the detector, but without the swab tip 14 being in the direct light measurement path and allows for the more accurate, sensitive readings compared with other available systems. Various embodiments of the hinged cover 74 can be constructed to permit the pin to engage the plunger 44 in this manner. For example, the hinged cover 74 could be independently slidable in relation to the holding chamber 76, in a vertical direction to raise the pin above the retaining cavity 47 before sliding the cap downward to engage the pin in the cavity 47.

As discussed previously, in some embodiments, the photon detection assembly 70 is contained within an instrument housing 101 containing the photon detection assembly 70, with the slidable shaft 72 in the "down" position for taking a reading of the sample. In this position, only the top of the photon detection assembly 70, comprising the hinged cover 74, is visible, with the rest of the detection assembly contained within the instrument housing.

Various reagents can be used with the embodiments. Some embodiments employ a reagent in dry form having a composition that enhances dissolution of the pellet upon device activation. Also, various liquids/solutions can be selected for use with the embodiments depending on the particular application and reagent used. The composition of the reagents and liquids are beyond the scope of this invention.

Figure 15 shows an example of an ATP database schema 200 for storing collected ATP data as an ATP data set, for example ATP data measured using the
The ATP database schema 200 includes a number of fields for storing ATP related data, the fields being identified as rows in a "field name" column 202. A "structure item" column 204 identifies a corresponding structure item identifier for each of the fields. A "data type" column 206 identifies a particular type for the data stored in the corresponding field. For example, data types may include integer, date/time, character string, single (i.e., single decimal place real number) and long (i.e., long integer). A "valid range" column 208 identifies valid value ranges for the corresponding fields. A "size" column 210 identifies a maximum size, where applicable, for the corresponding field. For example, a maximum size for some character string fields may be 15 characters. A "required" column 212 identifies whether an entry in the corresponding field is required to create a data record. One skilled in the art will recognize that what is stored as part of a data set is a value in one or more of the fields identified in the illustrated database schema, and that the columns 202-212 are only illustrated for providing a clear understanding of the database schema for storing the respective data sets.

ATP database schema 200 includes a "test point" field 214 for storing an identification of a test point, such as a surface from which the stored data is measured. A "date" field 216 and a "time" field 218, respectively store the date and time for the corresponding the test point. A "code" field 220 stores a code for the corresponding test point. A "zone" field 222 stores a cleanliness zone value, for example a value between 0.0 and 9.9. The cleanliness zone corresponds to a logarithmic based scale conversion of a raw count of light intensity ("RLU"), for example, measured by the instrument 100. An "RLU" field 224 stores a value corresponding to the actual raw count of light intensity measured, for example, by the instrument 100 (Figures 5-11). A "P/W/F index" field 226 stores a pass/warning/failure indicator, indicating whether or not the ATP reading is within acceptable parameters. The acceptable parameters for ATP are based on an upper and a lower limit, which the user may or may not supply, the ATP reading passing if below the lower limit, failing if above the upper limit, and producing a warning if between the upper and lower limits.

A "product" field 228 stores a product identifier that may identify a product to which the ATP reading pertains, for example, a particular food product. A "plant" field 230 stores a plant identifier, for example, for identifying a manufacturing plant to which the ATP reading pertains. An "other" field 232 stores miscellaneous or additional information, for example, for identifying the sample from which the ATP reading was taken. A "warning" field 234 stores a warning value, while a "failure" field 236 stores a failure value, setting the upper and lower limits for evaluating the ATP reading. The warning and failure values may, for example, be a value between 0.0 and 9.9.

A "name" field 238 stores a name for the test point, for example a human-recognizable identifier which may be easier for a human to reference than the identifier stored in the "test point" field 214. A "memo" field 240 stores a memorandum, for example, a free-form text entry regarding the test point and/or ATP reading. An "MVP" field 242 stores an multiple-variable platform identifier for identifying a corresponding multiple-variable platform, such as the instrument 100. One skilled in the art will recognize that what is stored as part of a data set is a value in one or more of the fields identified in the illustrated database schema, and that the columns 202-212 are only illustrated for providing a clear understanding of the database schema for storing the respective data sets.

The ATP database schema 200 includes a "test point" field 214 for storing an identification of a test point, such as a surface from which the stored data is measured. A "date" field 216 and a "time" field 218, respectively store the date and time for the corresponding test point. A "code" field 220 stores a code for the corresponding test point. A "zone" field 222 stores a cleanliness zone value, for example a value between 0.0 and 9.9. The cleanliness zone corresponds to a logarithmic based scale conversion of a raw count of light intensity ("RLU"), for example, measured by the instrument 100. An "RLU" field 224 stores a value corresponding to the actual raw count of light intensity measured, for example, by the instrument 100 (Figures 5-11). A "P/W/F index" field 226 stores a pass/warning/failure indicator, indicating whether or not the ATP reading is within acceptable parameters. The acceptable parameters for ATP are based on an upper and a lower limit, which the user may or may not supply, the ATP reading passing if below the lower limit, failing if above the upper limit, and producing a warning if between the upper and lower limits.

A "product" field 228 stores a product identifier that may identify a product to which the ATP reading pertains, for example, a particular food product. A "plant" field 230 stores a plant identifier, for example, for identifying a manufacturing plant to which the ATP reading pertains. An "other" field 232 stores miscellaneous or additional information, for example, for identifying the sample from which the ATP reading was taken. A "warning" field 234 stores a warning value, while a "failure" field 236 stores a failure value, setting the upper and lower limits for evaluating the ATP reading. The warning and failure values may, for example, be a value between 0.0 and 9.9.

A "name" field 238 stores a name for the test point, for example a human-recognizable identifier which may be easier for a human to reference than the identifier stored in the "test point" field 214. A "memo" field 240 stores a memorandum, for example, a free-form text entry regarding the test point and/or ATP reading. An "MVP" field 242 stores an multiple-variable platform identifier for identifying a corresponding multiple-variable platform, such as the instrument 100.
fields being identified in a "field name" column 302. A "structure item" column 304, a "data type" column 306, a "valid range" column 308, a "size" column 310 and a "required" column 312 each identify characteristics for the corresponding fields similar to, and in many cases identical to, the like-named columns of the ATP database schema 200 of Figure 15 and/or temperature database schema 250 of Figure 16, so will not be discussed further in the interest of brevity.

[0081] The pH database schema 300 includes a "test point" field 314, a "date" field 316, a "time" field 318 and a "code" field 320 for storing data similar or identical to the data stored in the like-named fields of the ATP database schema 200 of Figure 15 and/or temperature database schema 250 of Figure 16. A "pH" field 322 stores a measured pH value, for example, a pH measured using the measurement device 107 such as a probe (Figure 12).

[0082] A "P/F pH" field 324 stores a pass or fail indicator, indicating whether the measured pH is within acceptable parameters. For example, acceptable parameters for the pH may include an upper limit and a lower limit, which the user may or may not supply, the measured pH failing if equal to or below the lower limit or greater than or equal to the upper limit, and the measured pH passing if between the lower and upper limits.

[0083] The pH database schema 300 includes a "product" field 326, a "plant" field 328 and an "other" field 330 for storing data similar or identical to the data stored in the like-named fields of the ATP database schema 200 of Figure 15 and/or temperature database schema 250 of Figure 16. A "min limit" field 332 and a "max limit" field 334, respectively store minimum and maximum pH limits used in determining the pass/fail condition of the measured pH. A "calibration" field 336, a "name" field 338, a "memo" field 340 and an "MVP" field 342 store data similar or identical to the data stored in the like-named fields of the ATP database schema 200 of Figure 15 and/or temperature database schema 250 of Figure 16.

[0084] Figure 18 shows a multiple-variable platform database schema 350 for storing data from each of the ATP data set, temperature data set and PH data set as an MVP data set. The MVP data set creates a single set of data for manipulation and analysis, and for facilitating the recognition of patterns and relationships between the data of the ATP data set, temperature data set and PH data set. The MVP database schema 350 includes a number of fields for storing multiple-variable data, the fields being identified as rows in a "field name" column 352. A "source" column 354, identifies a source for the value stored in the corresponding field. A "data type" column 356, a "valid range" column 358, a "size" column 360 and a "required" column 362 each identify characteristics for the corresponding fields similar to, and in many cases identical to, the like-named columns of the ATP database schema 200 of Figure 15, temperature database schema 250 of Figure 16, and/or the pH database schema 300 of Figure 17, so will not be discussed further in the interest of brevity.

[0085] The MVP database schema 350 includes a "record ID" field 364 for storing a record identifier, and a "record type" field 366 for storing a record type. The MVP database schema 350 includes also includes a "date" field 368, a "time" field 370, and a "code" field 372 for storing data similar or identical to the data stored in the like-named fields of the ATP database schema 200 of Figure 15 temperature database schema 250 of Figure 16, and/or pH database schema 300 of Figure 17.

[0086] A "zone" field 374 stores information similar or identical to the "zone" field 222 of the ATP database schema 200 of Figure 15. A "pH" field 376 stores information similar or identical to the "pH" field 322 of the pH database schema 300 of Figure 17. A "temperature" field 378 stores temperature information similar or identical to the "temperature" field 272 of the temperature database schema 250 of Figure 16. A "P/W/F ATP" field 380 stores an ATP pass, warning, fail indication similar or identical to the "P/W/F index" field 226 of the ATP database schema 200 of Figure 15. An "ATP warning" field 382 and an "ATP failure" field 384 store ATP warning and ATP failure limits, respectively, similar or identical to the "warning" and "failure" fields 234, 236, of the ATP database schema 200 of Figure 15. A "P/F pH" field 386 stores a PH pass/fail indicator similar or identical to the like-named field 324 of the pH database schema 300 of Figure 17. A "pH min" field 388 and a "pH max" field 390 store minimum and maximum pH values similar or identical to the "min limit" and "max limit" fields 322, 334 of the pH database schema 300 of Figure 17. A "temp" field 392 stores a temperature pass/fail indication similar or identical to the like-named field 274 of the temperature database schema 250 of Figure 16. A "temp min" field 394 and a "temp max" field 396 store a minimum and maximum temperature limit, respectively, similar or identical to the "min limit" and "max limit" fields 282, 284 of the temperature database schema 250 of Figure 16. An "MVP" field 398 stores an MVP identifier similar to the "MVP" fields 242, 292, 342 of the ATP, temperature and pH database schemas 200, 250, 300, respectively, of Figures 15-17, respectively.

[0087] Figure 19 shows a graph 400 of the cleanliness zone measurements 408, temperature measurements 410, and pH measurements 410, stored in the respective data sets. The instrument 100 may generate the graph 400, for example, on the display screen 104 or alternatively as a computer-readable file. Alternatively, an external computer may generate the graph 400 from data received from the instrument 100 or other measuring device. The graph may additionally, or alternatively take the form of a "hard copy", such as printed paper (not shown).

[0088] The graph 400 includes a first axis 402 representing the cleanliness zone and pH values. The first axis 402 is illustrated extending vertically along the right side of the graph 400. The graph 400 includes a second axis 404 representing temperature values, which is illustrated extending vertically along the left side of the graph 400.
The graph 400 includes a third axis 406 representing dates and/or time, the third axis 406 illustrated extending horizontally. One skilled in the art will recognize that other scales and/or orientations of the axes may be selected based on, in part, the specific data to be analyzed. For example, other data sets, such as conductivity oxidation reduction potential, pressure and/or dissolved gases, may be graphed in combination with each other and/or in combination with the ATP, temperature and pH data sets.

Each of the data sets may take the form of a separate sheet of a spreadsheet implemented using a spreadsheet program. The spreadsheet program may supply the user interface, data manipulation, filtering and analysis tools, for example graphing tools. Alternatively, or additionally, the instrument 100 or other device may include a customized user interface and/or customized data manipulation, filtering and analysis tools. The spreadsheet program is preferably suitable for hosting on the instrument 100. The overlay of data in tabular, and particularly in graphical form, provides an intuitive tool for identifying patterns between the different data sets. The overlay of data may also be represented in tabular form, for example, as a spreadsheet. Thus, a user may be able to identify patterns and/or cause and effect relationships between, for example, a test point such as a surface on which a food item is prepared and the temperature and pH of the food item. The user may further employ filtering based on any number of the fields to create a graph or table of the desired data. Typically, the graphing tools also allow the selection of axis and/or scale.

The various embodiments described above can be combined to provide further embodiments.

Although specific embodiments, and examples for the invention are described herein for illustrative purposes, various equivalent modifications can be made without departing from the scope of the invention, as will be recognized by those skilled in the relevant art. The teachings provided herein of the invention can be applied to wide variety of applications as noted. The various embodiments described can be combined to provide further embodiments.

These and other changes can be made to the invention in light of the above detailed description. In general, in the following claim, the terms used should not be construed to limit the invention to the specific embodiments disclosed in the specification. Accordingly, the invention is not limited by the disclosure, but instead its scope is determined entirely by the following claims.

Claims

1. A method of facilitating an evaluation of at least one hazard analysis and critical control point (HACCP) test point in a processing or handling environment, comprising:

2. The method of claim 1 wherein graphing the ATP data, the set of temperature data and the set of pH data on the same graph comprises:

3. The method of claim 1 wherein storing the set of ATP data comprises storing a respective cleanliness zone value for each of the test points.

4. The method of claim 1 wherein storing the set of ATP data comprises storing a respective raw count of light intensity (RLU) for each of the test points.

5. The method of claim 1 wherein storing the set of ATP data includes storing a number of test point identifiers corresponding to each of a number of test points, a respective cleanliness zone value or RLU for each of the test points, and a pass/warning/failure indicator for each of the test points.

6. The method of claim 1 wherein storing the set of temperature data includes storing at least one temperature value corresponding to a temperature of an item that passed the test point.

7. The method of claim 1 wherein storing the set of temperature data includes storing at least one temperature value corresponding to a temperature of an item that passed the test point, and a temperature pass/failure indicator for the item that passed the test point.

8. The method of claim 1 wherein storing a set of pH data includes storing at least one pH value corresponding to a pH of an item that passed the test point.

9. The method of claim 1 wherein storing a set of pH data includes storing at least one pH value corres-
sponding to a pH of an item that passed the test point, and a pH pass/failure indicator for item that passed the test point.

10. The method of claim 1 wherein storing the set of ATP data is combined with storing at least one set of data from a second parameter including, but not limited to, conductivity, oxidation reduction potential, protein residues, dissolved gases or specific ions.

11. The method of claim 1 wherein graphing the ATP data and the set of temperature data and the set of pH data on the same graph comprises:

- graphing the set of ATP data along a first axis of the graph; and
- graphing the set of temperature data and the set of pH data, or a set of conductivity data, a set of oxidation reduction potential data, a set of pressure data, or a set of dissolved gas data along at least a second axis of the graph, wherein the set of data graphed along at least the second axis is for a same HACCP test point as the ATP data.

12. A computer-readable media storing instructions for causing a computer to facilitate an evaluation of at least one hazard analysis critical control point (HACCP) test point in a processing or handling environment, by:

- storing a set of ATP data to a first data structure on the computer-readable media; and
- storing a set of temperature data and a set of pH data for a same respective HACCP test point as the ATP data to the first data structure to create a single source set of data for manipulation and analysis of the set of ATP data, the set of temperature data and the set of pH data that is stored to the first data structure by at least one of an identification of the HACCP test point, a date and a time stored in respective fields of the first data structure.

13. The computer-readable media of claim 12 wherein storing a set of ATP data is combined with storing at least one set of data from a second parameter including, but not limited to, conductivity, oxidation reduction potential, protein residues, dissolved gases or specific ions.

14. The computer-readable media of claim 12 storing instructions for causing the computer to facilitate the evaluation of a test point, further characterized by:

- storing instructions for graphing the set of ATP data and at least one set of data from a second parameter, including, but not limited to, conductivity, oxidation reduction potential, protein residues, dissolved gases or specific ions.

15. The computer-readable media of claim 12 storing instructions for causing the computer to facilitate the evaluation of a test point, further characterized by:

- storing instructions for graphing the set of ATP data, the set of temperature data and the set of pH data along parallel axes of the same graph.

16. The computer-readable media of claim 12 wherein storing a set of ATP data includes storing a respective cleanliness zone value or a raw count of light intensity value for each of the test points.

17. The computer-readable media of claim 12 wherein storing a set of temperature data includes storing at least one temperature value corresponding to a temperature of an item that either passed or failed the test point.

18. The computer-readable media of claim 12 wherein storing a set of temperature data includes storing at least one temperature value corresponding to a temperature of an item that passed the test point, and a temperature pass/failure indicator for the item that either passed or failed the test point.

19. The computer-readable media of claim 12 wherein storing a set of temperature data includes storing at least one temperature value corresponding to a temperature of an item that passed the test point.

20. The computer-readable media of claim 12 wherein storing a set of temperature data includes storing at least one temperature value corresponding to a temperature of an item that passed the test point, and a temperature pass/failure indicator for the item that either passed or failed the test point.

21. The computer-readable media of claim 12 wherein storing a set of pH data includes storing at least one pH value corresponding to a pH of an item that passed the test point.

22. The computer-readable media of claim 12 wherein
storing the set of pH data includes storing at least one pH value corresponding to a pH of an item that passed the test point, and a pH pass/failure indicator for item that passed the test point.

Patentansprüche

1. Verfahren zur Erleichterung einer Beurteilung wenigstens eines Prüfpunkts einer Gefahrenanalyse und eines kritischen Kontrollpunkts (HACCP) in einer Verarbeitungs- oder Handling-Umgebung, umfassend:

Speichern eines Satzes von ATP-Daten in einer ersten Datenstruktur;
Speichern eines Satzes von Temperaturdaten und eines Satzes von pH-Daten zur ersten Datenstruktur, um einen einzigem Quellensatz von Daten zur Manipulation und Analyse des Satzes von ATP-Daten, den Satz von Temperaturdaten und den Satz von pH-Daten zu schaffen; und

2. Verfahren nach Anspruch 1, wobei das grafische Darstellen der ATP-Daten, des Satzes von Temperaturdaten und des Satzes von pH-Daten auf dem gleichen Diagramm umfasst:

3. Verfahren nach Anspruch 1, wobei das Speichern des Satzes von ATP-Daten das Speichern eines jeweiligen Reinheitszonenwertes für jeden der Prüfpunkte umfasst.

11. Verfahren nach Anspruch 1, wobei das grafische Darstellen der ATP-Daten und des Satzes von Temperaturdaten und des Satzes von pH-Daten auf dem gleichen Diagramm umfasst:

Grafisches Darstellen des Satzes von ATP-Daten entlang einer ersten Achse des Diagramms; und
Grafisches Darstellen des Satzes von Temperaturdaten und des Satzes von pH-Daten auf dem gleichen Diagramm umfasst:
gramms, wobei der Satz von Daten, der entlang wenigstens der zweiten Achse grafisch dargestellt ist, für einen gleichen HACCP-Prüfpunkt wie die ATP-Daten ist.

12. Computerlesbare Datenträger zur Speicherung von Befehlen, um zu bewirken, dass ein Computer eine Beurteilung wenigstens eines Prüfpunkts von einem Gefahrenanalyse-Kontrollpunkt (HACCP) in einer Verarbeitungs- oder Handling-Umgebung zu erleichtern durch:

Speichern eines Satzes von ATP-Daten in einer erste Datenstruktur auf den computerlesbaren Datenträgern; und

14. Computerlesbare Datenträger nach Anspruch 12, die Befehle speichern um zu bewirken, dass der Computer die Beurteilung eines Prüfpunkts erleichtert, ferner gekennzeichnet durch:

Speichern von Befehlen zur grafischen Darstellung des Satzes von ATP-Daten und wenigstens eines Satzes von Daten von einem zweiten Parameter, der Leitfähigkeit, Oxidations-Reduktionspotenzial, Proteinreste, aufgelöste Gase oder spezifische Ionen einschließt, aber nicht darauf beschränkt ist.

15. Computerlesbare Datenträger nach Anspruch 12, die Befehle speichern um zu bewirken, dass der Computer die Beurteilung eines Prüfpunkts erleichtert, ferner gekennzeichnet durch:

Revendications

1. Un procédé destiné à faciliter une évaluation d’au moins un point d’essai d’analyse des dangers - points critiques pour leur maîtrise (HACCP) dans un environnement de transformation ou de manipulation, comprenant les étapes consistant à :

- stocker un ensemble de données ATP selon une première structure de données ;
- stocker un ensemble de données de température et un ensemble de données de pH pour un même point d’essai HACCP respectif que les données ATP selon la même structure de données pour créer un seul ensemble source de données pour la manipulation et l’analyse de l’ensemble des données ATP, l’ensemble des données de température et l’ensemble des données de pH ; et
- tracer un graphe des données ATP et de l’ensemble des données de température et de l’ensemble des données de pH sur un même graphique, l’ensemble des données de température et l’ensemble des données de pH stockées selon la première structure de données étant liées à l’ensemble des données ATP stockées selon la même structure de données par au moins une d’une identification du point d’essai HACCP, une date et une heure stockées dans des champs respectifs de la première structure de données.

2. Le procédé de la revendication 1 dans lequel tracer le graphe des données ATP, l’ensemble des données de température et l’ensemble des données de pH sur le même graphique comprend l’étape consistant à :

- tracer le graphe de l’ensemble des données ATP, l’ensemble des données de température et l’ensemble des données de pH sur des axes parallèles du même graphique.

3. Le procédé de la revendication 1 dans lequel stocker l’ensemble des données ATP comprend stocker une valeur de zone de propreté respective pour chacun des points d’essai.

4. Le procédé de la revendication 1 dans lequel stocker l’ensemble des données ATP comprend stocker un comptage brut respectif d’intensité lumineuse (RLU) pour chacun des points d’essai.

5. Le procédé de la revendication 1 dans lequel stocker l’ensemble des données ATP comprend stocker un certain nombre d’identificateurs de points d’essai correspondant à chacun d’un certain nombre de points d’essai, une valeur de zone de propreté respective ou RLU pour chacun des points d’essai, et un indicateur de réussite/avertissement/échec pour chacun des points d’essai.

6. Le procédé de la revendication 1 dans lequel stocker l’ensemble des données de température comprend stocker au moins une valeur de température correspondant à une température d’un élément qui a réussi le point d’essai.

7. Le procédé de la revendication 1 dans lequel stocker l’ensemble des données de température comprend stocker au moins une valeur de température correspondant à une température d’un élément qui a réussi le point d’essai, et un indicateur de réussite/échec de température pour l’élément qui a réussi le point d’essai.

8. Le procédé de la revendication 1 dans lequel stocker un ensemble de données de pH comprend stocker au moins une valeur de pH value correspondant à un pH d’un élément qui a réussi le point d’essai.

9. Le procédé de la revendication 1 dans lequel stocker un ensemble de données de pH comprend stocker au moins une valeur de pH correspondant à un pH d’un élément qui a réussi le point d’essai, et un indicateur de réussite/échec de pH d’un élément qui a réussi le point d’essai.

10. Le procédé de la revendication 1 dans lequel stocker l’ensemble des données ATP est combiné avec stocker au moins un ensemble de données d’un deuxième paramètre y compris, mais sans s’y limiter, la conductivité, le potentiel d’oxydoréduction, les résidus de protéines, les gaz dissous ou les ions spécifiques.

11. Le procédé de la revendication 1 dans lequel tracer le graphe des données ATP et de l’ensemble des données de température et de l’ensemble des données de pH sur le même graphique comprend :

- tracer le graphe des données ATP sur le premier axe du graphique ; et
- tracer le graphe de l’ensemble des données de température et de l’ensemble des données de pH, ou un ensemble de données de conductivité, un ensemble de données de potentiel d’oxy-
do-réduction, un ensemble de données de pression, ou un ensemble de données de gaz dissous sur au moins un deuxième axe du graphique, l'ensemble de données tracées sur au moins le deuxième graphique étant pour le même point d'essai HACCP que les données ATP.

12. Instructions pour le stockage sur un support lisible par ordinateur destinées à amener un ordinateur à faciliter une évaluation d’au moins un point d’essai d’analyse des dangers - points critiques pour leur maîtrise (HACCP) dans un environnement de transformation ou de manipulation, en :

- stockant un ensemble de données ATP selon une première structure de données sur un support lisible par ordinateur ;
- stockant un ensemble de données de température et un ensemble de données de pH pour un même point d’essai HACCP respectif que les données ATP selon la première structure de données pour créer un seul ensemble source de données pour la manipulation et l’analyse de l’ensemble des données ATP, l’ensemble des données de température et l’ensemble des données de pH, partageant une valeur dans au moins un d’un champ de point d’essai, un champ de date ou un champ d’heure; et
- tracant un graphe des données ATP et de l’ensemble des données de température et de l’ensemble des données de pH sur au moins un axe parallèle du même graphique, l’ensemble des données de température et l’ensemble des données de pH stockées à la première structure de données étant liées à l’ensemble des données ATP stockées selon la première structure de données par au moins une identification du point d’essai HACCP, une date et une heure stockées dans des champs respectifs de la première structure de données.

13. Le support lisible par ordinateur de la revendication 12 dans lequel stocker l’ensemble des données ATP est combiné avec stocker au moins un ensemble de données d’un deuxième paramètre y compris, mais sans s’y limiter, la conductivité, le potentiel d’oxydo-réduction, les résidus de protéines, les gaz dissous ou les ions spécifiques.

14. Le support lisible par ordinateur de la revendication 12 stockant des instructions destinées à amener un ordinateur à faciliter l’évaluation d’un point d’essai, caractérisé en sus par le fait de :

stocker des instructions pour tracer le graphe de l’ensemble des données ATP et au moins un ensemble de données d’un deuxième paramètre, y compris, mais sans s’y limiter, la conductivité, le potentiel d’oxydo-réduction, les résidus de protéines, les gaz dissous ou les ions spécifiques.

15. Le support lisible par ordinateur de la revendication 12 stockant des instructions destinées à amener un ordinateur à faciliter l’évaluation d’un point d’essai, caractérisé en sus par le fait de :

stocker des instructions pour tracé le graphe de l’ensemble des données ATP, l’ensemble des données de température et l’ensemble des données de pH sur des axes parallèles du même graphique.

16. Le support lisible par ordinateur de la revendication 12 dans lequel stocker un ensemble de données ATP comprend stocker une valeur de zone de propreté respective ou un comptage brut de valeur d’intensité lumineuse pour chacun des points d’essai.

17. Le support lisible par ordinateur de la revendication 12 dans lequel stocker un ensemble de données ATP comprend stocker un certain nombre d’identificateurs de points d’essais correspondant à chacun d’un certain nombre de points d’essai, une valeur de zone de propreté respective pour chacun des points d’essai et un indicateur de réussite/avertissement/échec pour chacun des points d’essai.

18. Le support lisible par ordinateur de la revendication 12 dans lequel stocker un ensemble de données de température comprend stocker au moins une valeur de température correspondant à une température d’un élément qui a soit réussi soit échoué au point d’essai.

19. Le support lisible par ordinateur de la revendication 12 dans lequel stocker un ensemble de données de température comprend stocker au moins une valeur de température correspondant à une température d’un élément qui a réussi au point d’essai, et un indicateur de réussite/échec pour l’élément qui a soit réussi soit échoué au point d’essai.

20. Le support lisible par ordinateur de la revendication 12 dans lequel stocker un ensemble de données de pH comprend stocker au moins une valeur de pH correspondant à un pH d’un élément qui a réussi le point d’essai.

21. Le support lisible par ordinateur de la revendication 12 dans lequel stocker un ensemble de données de pH comprend stocker au moins une valeur de pH correspondant à un pH d’un élément qui a réussi le point d’essai.
22. Le support lisible par ordinateur de la revendication 12 dans lequel stocker l’ensemble des données de pH comprend stocker au moins une valeur de pH correspondant à un pH d’un élément qui a réussi le point d’essai, et un indicateur de réussite/échec de pH pour l’élément qui a réussi le point d’essai.
Fig. 1C
Fig. 12
Fig. 13

- CD-ROM DISK
- REceiving DEVICE MEMORY
- CPU
- INPUT/OUTPUT
- INTERNAL DISPLAY
- REMOTE DATABASE
- KEYBOARD

Diagram represents a system with interconnected components labeled as above.
Fig. 14
ATP Data Set

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Structure Item</th>
<th>Data Type</th>
<th>Valid Range</th>
<th>Size</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>TestPoint</td>
<td>Result.testPoint</td>
<td>Integer</td>
<td>0 to 999</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Date</td>
<td>Result.time</td>
<td>DateTime</td>
<td>32874 to 50406</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>calc(Result.time)</td>
<td>DateTime</td>
<td>--</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Code</td>
<td>Result.runTime</td>
<td>Long</td>
<td>1 to 999999999</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Zone</td>
<td>calc(Result.sp)</td>
<td>Single</td>
<td>0.0 to 9.9</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>RLU</td>
<td>eval(Result.sp)</td>
<td>Integer</td>
<td>0–10,000</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>P/W/F Index</td>
<td>P/W/F Index</td>
<td>Integer</td>
<td>-1,0,1</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Product</td>
<td>calc(Zone)</td>
<td>Integer</td>
<td>0 to 99</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Plant</td>
<td>TestPoint.product</td>
<td>Integer</td>
<td>0 to 99</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Other</td>
<td>TestPoint.plant</td>
<td>Integer</td>
<td>0 to 99</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Warning</td>
<td>TestPoint.other</td>
<td>Single</td>
<td>0.0 to 9.9</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Failure</td>
<td>eval[TestPoint.sp]</td>
<td>Single</td>
<td>0.0 to 9.9</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Name</td>
<td>TestPoint.text</td>
<td>String</td>
<td></td>
<td>15</td>
<td>No</td>
</tr>
<tr>
<td>Memo</td>
<td>--</td>
<td>String</td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>MVP</td>
<td>--</td>
<td>String</td>
<td></td>
<td>15</td>
<td>No</td>
</tr>
</tbody>
</table>

Fig. 15
Temp Data Set

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Structure Item</th>
<th>Data Type</th>
<th>Valid Range</th>
<th>Size</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>TestPoint</td>
<td>Result.testPoint</td>
<td>Integer</td>
<td>0 to 999</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Date</td>
<td>Result.time</td>
<td>DateTime</td>
<td>32874 to 50406</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>calc(Result.time)</td>
<td>DateTime</td>
<td>--</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Code</td>
<td>Result.runTime</td>
<td>Long</td>
<td>1 to 99999999</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Temp</td>
<td>eval(Result.sp)</td>
<td>Single</td>
<td>-5.0 to 105.0</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>P/F Temp</td>
<td>calc(Temp)</td>
<td>Integer</td>
<td>-1,1</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Product</td>
<td>TestPoint.product</td>
<td>Integer</td>
<td>0 to 99</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Plant</td>
<td>TestPoint.plant</td>
<td>Integer</td>
<td>0 to 99</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Other</td>
<td>TestPoint.other</td>
<td>Integer</td>
<td>0 to 99</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Min Limit</td>
<td>eval(TestPoint.sp)</td>
<td>Single</td>
<td>-5.0 to 105.0</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Max Limit</td>
<td>eval(TestPoint.sp)</td>
<td>Single</td>
<td>-5.0 to 105.0</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Calibration</td>
<td>--</td>
<td>DateTime</td>
<td>32874 to 50406</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Name</td>
<td>TestPoint.text</td>
<td>String</td>
<td></td>
<td>15</td>
<td>No</td>
</tr>
<tr>
<td>Memo</td>
<td>--</td>
<td>String</td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>MVP</td>
<td>--</td>
<td>String</td>
<td></td>
<td>15</td>
<td>No</td>
</tr>
</tbody>
</table>

Fig. 16
pH Data Set

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Structure Item</th>
<th>Data Type</th>
<th>Valid Range</th>
<th>Size</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>TestPoint</td>
<td>Result.testPoint</td>
<td>Integer</td>
<td>0 to 999</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Date</td>
<td>Result.time</td>
<td>DateTime</td>
<td>32874 to 50406</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>calc(Result.time)</td>
<td>DateTime</td>
<td>---</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Code</td>
<td>Result.runTime</td>
<td>Long</td>
<td>1 to 99999999999</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>pH</td>
<td>eval(Result.sp)</td>
<td>Single</td>
<td>0.0 to 14.0</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>P/F pH</td>
<td>calc(pH)</td>
<td>Integer</td>
<td>-1,1</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Product</td>
<td>TestPoint.product</td>
<td>Integer</td>
<td>0 to 99</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Plant</td>
<td>TestPoint.plant</td>
<td>Integer</td>
<td>0 to 99</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Other</td>
<td>TestPoint.other</td>
<td>Integer</td>
<td>0 to 99</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Min Limit</td>
<td>eval(TestPoint.sp)</td>
<td>Single</td>
<td>0.0 to 14.0</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Max Limit</td>
<td>eval(TestPoint.sp)</td>
<td>Single</td>
<td>0.0 to 14.0</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Calibration</td>
<td>--</td>
<td>DateTime</td>
<td>32874 to 50406</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Name</td>
<td>TestPoint.text</td>
<td>String</td>
<td>15</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Memo</td>
<td>--</td>
<td>String</td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>MVP</td>
<td>--</td>
<td>String</td>
<td>15</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>
MVP Data Set

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Source Field</th>
<th>Data Type</th>
<th>Valid Range</th>
<th>Size</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>RecordID</td>
<td>[none]</td>
<td>Long</td>
<td>1 to max records</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>RecordType</td>
<td>.RecordType</td>
<td>Integer</td>
<td>1 to 3</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Date</td>
<td>_.Date</td>
<td>DateTime</td>
<td>32874 to 50406</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>_.Time</td>
<td>DateTime</td>
<td>--</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Code</td>
<td>_.Code</td>
<td>Long</td>
<td>1 to 99999999</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Zone</td>
<td>ATP.Zone</td>
<td>Single</td>
<td>0.0 to 9.9</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>pH</td>
<td>pH,pH</td>
<td>Single</td>
<td>0.0 to 14.0</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Temp</td>
<td>Temp.Temp</td>
<td>Single</td>
<td>-5.0 to 105.0</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>P/W/F ATP</td>
<td>ATP.P/W/F Index</td>
<td>Integer</td>
<td>-1, 0, 1</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>ATP Warning</td>
<td>ATP.Warning</td>
<td>Single</td>
<td>0.0 to 9.9</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>ATP Failure</td>
<td>ATP.Failure</td>
<td>Single</td>
<td>0.0 to 9.9</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>P/F pH</td>
<td>pH,P/F pH</td>
<td>Integer</td>
<td>-1, 1</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>pH Min</td>
<td>pH.Min Limit</td>
<td>Single</td>
<td>0.0 to 14.0</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>pH Max</td>
<td>pH.Max Limit</td>
<td>Single</td>
<td>0.0 to 14.0</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>P/F Temp</td>
<td>Temp.P/F Temp</td>
<td>Integer</td>
<td>-1, 1</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Temp Min</td>
<td>Temp.Min Limit</td>
<td>Single</td>
<td>-5.0 to 105.0</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Temp Max</td>
<td>Temp.Max Limit</td>
<td>Single</td>
<td>-5.0 to 105.0</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>MVP</td>
<td>_.MVP</td>
<td>Single</td>
<td></td>
<td>15</td>
<td>No</td>
</tr>
</tbody>
</table>

Fig. 18
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5827675 A, Skiffington [0017]

Non-patent literature cited in the description

- 21 C.F.R. Parts 123 and 1240 Procedures for the Safe and Sanitary Processing and Importing of Fish and Fishery Products; Final Rule, December 1995 [0002]
- 21CFR Part 120: Hazard Analysis and Critical Control Point (HACCP); Procedures for the Safe and Sanitary Processing and Importing of Juice; Final Rule, January 2001 [0002]