(19)
(11)EP 1 930 452 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.01.2019 Bulletin 2019/02

(21)Application number: 06807938.3

(22)Date of filing:  30.08.2006
(51)International Patent Classification (IPC): 
C22C 32/00(2006.01)
C22C 9/00(2006.01)
B22F 7/00(2006.01)
C22C 1/04(2006.01)
C22C 1/02(2006.01)
B22D 19/14(2006.01)
(86)International application number:
PCT/ES2006/000493
(87)International publication number:
WO 2007/026039 (08.03.2007 Gazette  2007/10)

(54)

METAL MATRIX MATERIAL BASED ON SHAPE-MEMORY ALLOY POWDERS, PRODUCTION METHOD THEREOF AND USE OF SAME

METALLMATRIXMATERIAL BASIEREND AUF FORMSPEICHER-LEGIERUNGSPULVERN, PRODUKTIONSVERFAHREN DAVON UND VERWENDUNG

MATERIAU COMPOSE D'UNE MATRICE METALLIQUE A BASE DE POUDRES D'ALLIAGE A MEMOIRE DE FORME ET SON PROCEDE D'OBTENTION ET D'UTILISATION


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30)Priority: 31.08.2005 ES 200502129

(43)Date of publication of application:
11.06.2008 Bulletin 2008/24

(73)Proprietor: UNIVERSIDAD DEL PAIS VASCO-EUSKAL HERRIKO UNIBERSITATEA
48940 Leioa (ES)

(72)Inventors:
  • SAN JUAN NUÑEZ, Jose Maria
    E-48940 LEIOA (Vizcaya) (ES)
  • NÓ SÁNCHEZ, Maria Luisa
    E-48940 LEIOA (Vizcaya) (ES)

(74)Representative: Balder IP Law, S.L. 
Paseo de la Castellana 93 5ª planta
28046 Madrid
28046 Madrid (ES)


(56)References cited: : 
FR-A- 2 706 139
JP-A- 10 017 959
FR-A- 2 772 657
US-B1- 6 346 132
  
  • WEI Z G ET AL: "Preparation of a smart composite material with TiNiCu shape memory particulates in an aluminium matrix" MATERIALS LETTERS, NORTH HOLLAND PUBLISHING COMPANY. AMSTERDAM, NL, vol. 32, no. 5-6, 1 October 1997 (1997-10-01), pages 313-317, XP004336599 ISSN: 0167-577X
  • JUAN ET AL: "Internal friction in a new kind of metal matrix composites" MATERIALS SCIENCE AND ENGINEERING A: STRUCTURAL MATERIALS:PROPERTIES, MICROSTRUCTURE & PROCESSING, LAUSANNE, CH, vol. 442, no. 1-2, 22 November 2006 (2006-11-22), pages 429-432, XP005775905 ISSN: 0921-5093
  • LOPEZ G A ET AL: "Influence of the matrix and of the thermal treatment on the martensitic transformation in metal matrix composites" MATERIALS SCIENCE AND ENGINEERING A: STRUCTURAL MATERIALS:PROPERTIES, MICROSTRUCTURE & PROCESSING, LAUSANNE, CH, vol. 481-482, 25 May 2008 (2008-05-25), pages 546-550, XP022595702 ISSN: 0921-5093 [retrieved on 2008-04-10]
  • KOZLOV A. ET AL.: 'Application of the high power ultrasonics for production of composite materials' METALLOFIZIKA I NOVEISHIE TEKHNOLOGII vol. 23, 2001, pages 228 - 231, XP008077841
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the invention



[0001] The invention relates to the area of Material Science and Technology as far as the design and production of the materials are concerned, and to the area of Physical Technology with regard to the properties of high damping.

[0002] The sectors of industrial activity in which the invention can apply are: domestic appliances and domotics, machine-tools and machinery in general, electronic packaging, transport including aeronautics, aerospace, construction.

State of the art



[0003] The materials that have traditionally displayed the highest coefficient of damping have been polymers, owing to their visco-elastic behaviour. Nevertheless, in general, polymers have a low elastic modulus, which is a disadvantage for the design of materials with high damping for structural applications. In fact, the merit index for the design of structural damping is: the product of the elastic modulus (or rigidity modulus) E and the coefficient of damping tan(Φ), so the aim is to optimise the relation tan(Φ)) E. For this reason, various types of high damping metal materials have been developed, also known as HIDAMETS (High Damping Metals), since metals have an elastic modulus very much higher than polymers.

[0004] Among metal materials, some of the ones with the greatest coefficient of damping are Shape Memory Alloys (SMA) [1]. These alloys undergo a thermoelastic martensitic transformation (reversible) between their high temperature phase, known as beta, and their low temperature phase, known as martensite, which can be induced by cooling or by the application of a mechanical stress. The interphases of martensite are mobile both during the transformation and in the martensite phase, and under the effect of a vibration or external mechanical stress they are liable to undergo movement, absorbing mechanical energy and giving rise to the powerful damping displayed by SMAs [2]. Copper-based SMAs are known to display a coefficient of damping higher than those of Ti-Ni which are the SMAs that are commercially used in practically all applications.

[0005] Nevertheless, given that massive SMAs still did not offer a sufficiently high coefficient of damping, a large number of Polymer Matrix Composite Materials have been developed containing rods, sheets, threads, etc., of SMA for various applications. In this field there are innumerable scientific publications and numerous patents.

[0006] In parallel, during the last decade the production technology for SMA powders has been developed by means of powder metallurgy, especially in copper-based alloys [3, 4]. In this field too, there are numerous scientific publications and patents, especially in Ti-Ni.

[0007] The most recent advance in the field of materials with powerful damping has been the development of Metal Matrix Composite Materials, where various concepts or types of material have been considered, which are described below:
  1. a).- Composite materials formed directly by various sheets or pieces of SMA, whether this be of Ti-Ni or of copper base. In this case, as well as a great many publications, patent US4808246 can be highlighted.
  2. b).- Composite materials with a soft metal matrix, responsible for the damping, and rigid particles (W, SiC) in a variable percentage, the sole aim of which is to increase the E modulus of the material [6].
  3. c).- Composite materials with a soft metal matrix, responsible for the damping, and ceramic particles (VO2) in a small proportion (1%) which contribute a narrow damping peak (of width 0.2°C) owing to an anomaly in the rigidity of the particles when they undergo a phase transformation [7].
  4. d).- Composite materials formed from particles of SMA with a rigid metal matrix (usually of aluminium or copper), with the aim of improving the structural or other properties of the matrix. In these, a small proportion of SMA particles are used since their aim is to improve the properties of the matrix. In this field, as well as scientific publications, there are also various patents [8-11].
  5. e).- Porous materials (between 5% and 40% pores) formed from particles of SMA for damping. In this case, patent US-5687958 can be highlighted.


[0008] Of particular relevance is U.S. Patent No. 6,346,132. This document discloses a composite material containing a metallic second phase dispersed in a metallic matrix material. The metallic second phase makes up 5 to 60 volume % of the overall composite material. The matrix material is preferably an aluminium alloy. However, this patent does not disclose directly and unambiguously a metal matrix comprising metals of melting point below 330°C or alloys of said metals with a solidifying point below 330°C.

[0009] The technical problem that is raised and which has led to the present invention is to achieve a material with a high coefficient of damping tan(Φ), whose maximum can be adjusted to a particular temperature range, depending on the application it is intended for. Moreover, in the majority of applications, the elastic modulus E is required to be as high as possible in order to optimise the relation tan(Φ) · E.

[0010] In view of the analysis presented on the state of the art, we consider that the materials forming the object of the present invention constitute an authentic novelty due to the combination of various aspects that are stated below:

*).- In the inventive materials, the SMA powder particles constitute the majority element with a percentage between 45% and 70%, being responsible for the powerful damping of the composite material.

*).- The powder particles are of copper base SMA and display the proper martensite transformation in an adjustable temperature range.

*).- The temperature range of the damping maximum of the composite material is very wide (> 50°C) and can be adjusted by controlling the composition of the SMA powder particles.

*).- The matrix has to be a low melting point metal matrix, and be ductile at the martensite transformation temperature of the SMA particles.

*).- The matrix contributes to the damping background and generates an amplifying effect of the damping of the particles, never described so far.

*).- The composite materials thus obtained can display a tan(Φ) · E relation that can be optimised in a wide temperature range, better than any other material presently specified.


References:



[0011] 
  1. [1] Shape Memory Materials. Edit. K. Otsuka, C.M. Wayman. Cambridge University Press, Cambridge (1998).
  2. [2] Damping behaviour during martensitic transformation in Shape memory Alloys. J. San Juan, M.L. Nó. Journal of Alloys and Compounds 355 (2003) pp 65-71.
  3. [3] Martensitic transformation in Cu-Al-Ni Shape Memory Alloys processed by Powder Metallurgy. J. San Juan, R.B. Perez-Saez, V. Recarte, M.L. Nó, G. Caruana, M. Lieblich, O. Ruano. Journal de Physique IV (1995) pp C8-919.
  4. [4] Advanced Shape Memory Alloys processed by Powder Metallurgy. R.B. Perez-Saez, V. Recarte, M.L. Nó, O. Ruano, J. San Juan. Advanced Engineering Materials 2 (2000) pp 49-53.
  5. [5] Composite material in rod, tube, strip, sheet or plate shape with reversible thermomechanical properties and process for its production. J. Albrech, T. Duerig. BBC Brow Boveri & Cie, Pat. US4808246 (1989).
  6. [6] Damping and stifness of particulate SiC-lnSn composite, M.N. Ludwigson, R.S. Lakes, C.C. Swan, Journal of Composite Materials 36 (2002) pp 2245-54.
  7. [7] Extreme damping composite materials with negative-stifness inclusions. R.S. Lakes, T. Lee, A. Bersie, Y.C. Wang. Nature 410 (2001) pp 565-567.
  8. [8] Metallic composite material having improved strength and vibration-damping property. Y. Furuya, T. Masumoto. Pat. JP6264161 (1994).
  9. [9] Metal matrix composite material enhanced in strength, damping capacity, radiation resistance and corrosion resistance. Y. Furuya, Y. Nishi., T. Masumoto. Pat. JP7048637 (1995).
  10. [10] Metal matrix composite reinforced with shape memory alloy. D. Barrett. US ARMY, Pat. US5508116 (1996).
  11. [11] Composite material and its production. J. Ninomiya, T. Suzuki, A. Hideno. FURUKAWA ELECTRIC CO Ltd. Pat. JP10017959 (1998).
  12. [12] Metallic damping body. R. Renz, J. Kraemer. DAIMLER BENZ AG, Pat. US-5687958 (1997).

Description of the invention



[0012] The present invention relates to a metal matrix composite material characterised in that it is based on particles of shape-memory alloy powder, having a copper base with a concentration of between 45% and 70% by volume in relation to the total volume of the material, said powder particles being supported by a metal matrix.

[0013] According to a particular embodiment of the invention, the copper base is present in the material at a concentration of between 50% and 60% by volume in relation to the total volume of the composite material.

[0014] The inventive material displays a thermoelastic martensitic transformation at between -150°C and +250°C.

[0015] According to a particular embodiment of the material, the copper base is selected from among Cu-Al-Ni, Cu-Zn-Al and Cu-Al-Mn.

[0016] Said metal matrix of metals or alloys surrounds the powder particles and acts as a binder for the composite material.

[0017] The metal matrix comprises:
  • metals of melting point below 330°C or
  • alloys of said metals with a solidifying point below 330°C.


[0018] Said metal, or metals (or their alloys), of low melting point, must be ductile at the temperature of the adjusted maximum damping. Among the low melting points metals that can constitute the metal matrix can be selected, among others, In, Sn, Pb, Cd, Tl and their alloys.

[0019] In addition, according to particular embodiments of the material, the alloy powder particles will be able to have the same single concentration of copper base, or the composite material will be able to include particles of different concentrations of base copper. By means of heat treatments or other methods in the field of powder metallurgy, such as mechanical alloying for example, particles will be able to be included with a concentration gradient of copper base with the aim of the martensite transformation displaying a wider temperature range and thereby obtain a damping maximum that is widened in temperature.

[0020] In the event that the powder particles do not all have the same concentration of copper base, the percentage of particles with a different concentration of copper base can be equal to or less than 15% in relation to the entire composite material.

[0021] Other kinds of particles of different composition will also be able to be included in the composite material, being able to be rigid, metallic or ceramic, and having the sole purpose of increasing the modulus of the composite material.

[0022] Said powder particles of different composition can be present in the material in a percentage equal to or less than 15% of the composite material. Moreover, these particles can be chosen from among Rhenium, Tungsten, Molybdenum, Silicon Carbide and Boron Carbide.

[0023] The present invention furthermore relates to a method for obtaining a metal matrix composite material as defined above, which comprises:
  • preparing the shape-memory alloy powder particles, and
  • infiltrating the metal matrix.


[0024] The shape-memory alloy powder particles can be obtained by means of spraying with gas or by any other method permitting powder particles to be obtained which display the thermoelastic martensite transformation proper to shape-memory alloys.

[0025] Said method can furthermore comprise a stage of adjusting the temperature range of the damping maximum of the composite material via the direct or inverse martensite transformation temperatures of the powder particles, varying the composition of the constituent elements of the shape-memory alloy.

[0026] According to particular embodiments, said method can comprise the inclusion in the composite material of particles of different concentrations of copper base, which can be included in the composite material by means of heat treatment.

[0027] According to particular embodiments, said method can comprise the inclusion in the composite material of particles with a concentration gradient in the composite material by means of mechanical alloying.

[0028] The method as claimed comprises:
  • preparing copper base powder particles,
  • introducing said particles into a mould,
  • degasifying in vacuo, preferably at a temperature of between 120°C and 300°C, and
  • injecting the molten metal of the matrix by means of infiltration in vacuo.


[0029] The infiltration is carried out under pressure which can be achieved by means of centrifugation or by means of applying gas pressure to the melt.

[0030] In an alternative method (not claimed), when the metal matrix comprises one or more metals with a melting point above 330°C, or alloys of those metals, the properties of the martensite transformation of the shape-memory alloy powder particles will have to be preserved, due to which said method can be a powder metallurgy method, which comprises:
  • mixing the shape-memory alloy powder particles with powders of the metal or alloy of the matrix,
  • degasifying in vacuo,
  • and compacting.


[0031] In this case, the compaction can be carried out using sinterisation with uniaxial stressing at a temperature below 300°C or the compaction can also be done by means of previous encapsulating in vacuo and subsequent isostatic compacting at high pressure at a temperature below 300°C.

[0032] This method can also possibly be used in the case of metal matrices with lower melting point, such as those mentioned above in the embodiment described in the method.

[0033] In the alternative method (not claimed) in which the matrix comprises metals with a melting point higher than 330°C the method can alternatively be an infiltration method at high temperature, which can comprise:
  • preparing copper base powder particles,
  • introducing said particles into a mould,
  • degasifying in vacuo,
  • heating to above the temperature of the eutectoid of the corresponding SMA, such that the particles are in the high temperature phase, known as beta, proper to these alloys,
  • infiltrating the metal matrix at high temperature, and
  • tempering the composite material in a rapid cooling medium. Said rapid cooling medium can be water.


[0034] The choice of the metal matrix will serve to optimise the binder properties of the composite material, as will optimise the relation tan(Φ) · E, and will be chosen according to the type of SMA used and the range of temperatures at which the composite material is going to find itself under service conditions in the various applications.

[0035] From the technical point of view, the shape-memory alloy powder particles contribute a high coefficient of damping for the composite material, owing to the movement of the martensite interphases, especially in the proximity of the martensite transformation temperature (direct or inverse). The matrix permits absorption of the deformation which the particles undergo when the martensite interphases move, whether this be in the martensite phase or when undergoing the transformation induced by temperature or stress. In this way, the matrix absorbs the deformation of the particles preventing the composite material from degrading. As well as serving as support for the particles in the composite material, the matrix also contributes to the continual damping background and generates an amplifying effect for the damping of the particles.

[0036] These materials incorporate a novel concept which solves the problem of obtaining a high coefficient of damping, adjustable in a specific temperature range. The temperature range of the damping maximum can be adjusted between -150°C and +250°C, via the martensite transformation temperatures (direct or inverse) of the powder particles, which are in turn controlled by means of the composition of the elements constituting the alloy with shape-memory.

[0037] The advantages of the material lie in the fact that there does not currently exist any material permitting continual adjustment of the damping maximum peak in the desired range of temperatures. These materials display a coefficient of damping higher than other metallic materials and they optimise the relation tan(Φ) x E, which is used in the design of materials for damping, better than other alternative materials.

[0038] The optional addition of rigid, metallic or ceramic particles, along with particles of SMA, will have the aim of increasing the elastic modulus of the composite material.

[0039] The present invention also refers to the use of the composite material defined earlier for the absorption of vibrations. Said vibrations can be acoustic or mechanical.

[0040] The potential industrial applications of the present invention can be very numerous, and in general are all those in which a high damping of vibrations is required. Given below are some examples of applications which the materials of the present invention will be able to have:

* In the domestic appliances sector, for absorption of vibrations and reduction of the ambient noise produced by them (washing machines, spin dryers, dishwashers, etc.)

* In the Machine-Tools sector, for damping the vibrations of the machine and thereby be able to improve the precision of the machining and increase the machining speed. Moreover, it will also contribute to reducing ambient noise (acoustic pollution) in the workplace.

* In the opto-electronic material industry, as a material for "electronic packing" with the aim of absorbing vibrations and protecting circuits and devices.

* In the transport sector, for absorbing vibrations and increasing the comfort of the user, contributing to a "noise-clean" environment. Moreover, in the case of the Aeronautical sector, it can contribute to improving the fatigue life of certain structural elements, by reducing the amplitude of the vibrations that they are subjected to.

* In the construction industry, for the manufacture of "anti-seismic" devices, based on high absorption of mechanical energy.



[0041] The solution contributed by the present invention to the problem raised is therefore a novel concept of composite material based on shape-memory alloy (SMA) powder particles with copper base, as the main damping elements with a percentage ≥ 40% embedded in a ductile metal matrix, of low melting point.

[0042] The concept in itself in innovative, since in traditional composite materials it is the matrix which acts as the damping element and the particles or fibres are added in order to increase the modulus.

[0043] The use of copper base SMA powders is in response to the fact that said alloys display a coefficient of damping higher than Titanium-Nickel base SMAs. Furthermore, via the control of the composition of these powder particles, the temperature of the damping maximum can be adjusted. The low melting point metal matrix, as well as providing support for the particles, also generates an amplifying effect on the damping, never before described.

Examples of inventive embodiment



[0044] An example of embodiment of the composite materials that have been described is the following:
Alloy powders of Cu-Al-Ni have been used with a concentration by weight: 13.1% Al, 3.1% Ni, 83.8% Cu.
The powders were produced by means of spraying by gas. And powders have been used that were passed through a sieve of sizes between 25 and 50 microns.
The martensite transformation temperatures of the sprayed powders, measured by means of differential sweeping calorimetry (DSC), are: Ms = 65°C, Mf = 27°C, As = 51°C, Af = 95°C.

[0045] As matrix metal, in this case Indium of purity 99.99% was used.

[0046] The powders introduced into a teflon mould were degasified at 130°C for 6 hours in a vacuum of 0.01 mbar.

[0047] The infiltration was performed at 190°C, by means of applying a helium gas pressure of 3 bars on the melt.

[0048] The composite material contained 60% by volume of Cu-Al-Ni particles and 40% indium.

[0049] The damping coefficient tan(Φ) has been measured in torsion with a mechanical electroscopy equipment which permits one to work at different frequencies and according to temperature, since, as is well known, the coefficient of damping of a material depends on these two parameters.

[0050] The composite material displays two damping maxima at 65°C and 100°C corresponding to the direct and inverse martensite transformation respectively. Stated below are the values of the coefficient of damping for different frequencies:
  • at the frequency of 3 Hz, tan(Φ) > 0.01, between -100°C and +125°C, with a maximum of tan(Φ) ≥ 0.05,
  • at the frequency of 1 Hz, tan(Φ) > 0.01, between -100°C and +125°C, with a maximum of tan(Φ) ≥ 0.1,
  • at the frequency of 0.1 Hz, tan(Φ) > 0.035, between -100°C and +125°C, with a maximum of tan(Φ) ≥ 0.3,
  • at the frequency of 0.03 Hz, tan(Φ) > 0.05, between -100°C and +125°C, with a maximum of tan(Φ) ≥ 0.4,
  • at the frequency of 0.01 Hz, tan(Φ) > 0.09, between -100°C and +125°C, with a maximum of tan(Φ) ≥ 0.6.



Claims

1. A metal matrix composite material comprising particles of shape-memory alloy powder having a copper base with a concentration of between 45% and 70% by volume in relation to the total volume of the material, characterised in that said powder particles are supported by a metal matrix comprising metals of melting point below 330°C or alloys of said metals with a solidifying point below 330°C.
 
2. A metal matrix composite material according to claim 1, wherein the concentration of the particles of shape-memory alloy powder having a copper base is between 50% and 60% by volume in relation to the total volume of the composite material.
 
3. A metal matrix composite material according to claim 1 or 2, wherein the particles of shape-memory alloy powder having a copper base are selected from a group consisting of Cu-Al-Ni, Cu-Zn-Al and Cu-Al-Mn.
 
4. A metal matrix composite material according to claim 1, wherein the metal matrix comprises a metal selected from a group consisting of In, Sn, Pb, Cd, TI and their alloys.
 
5. A metal matrix composite material according to claim 1, wherein the particles of shape-memory alloy powder all possess the same concentration of copper base.
 
6. A metal matrix composite material according to claim 1, wherein a percentage of the particles of shape-memory alloy powder have different concentrations of copper base.
 
7. A metal matrix composite material according to claim 6, wherein said percentage of particles of shape-memory alloy powder is less than or equal to 15% in relation to the total volume of composite material.
 
8. A metal matrix composite material according to any one of claims 1 to 7, characterised in that it further comprises particles of different composition selected from a group consisting of rigid, metallic and ceramic particles.
 
9. A metal matrix composite material according to claim 8, wherein said particles of different composition are powder particles selected from a group consisting of rhenium, tungsten, molybdenum, silicon carbide and boron carbide.
 
10. A metal matrix composite material according to claim 1, characterised in that it comprises:

• 60% by volume of Cu-Al-Ni particles in relation to the volume of material, with a concentration by weight of 13.1% Al, 3.1% Ni, 83.8% Cu,

• 40% by volume of an indium matrix.


 
11. A method for obtaining a composite material defined in any of claims 1 to 10, characterised in that it comprises:

• preparing the particles of shape-memory alloy powder, and

• infiltrating the metal matrix.


 
12. A method for obtaining a composite material according to claim 11, characterised in that it further comprises adjusting a temperature range of the damping maximum of the composite material via direct or inverse martensitic transformation temperatures of the particles of shape-memory alloy powder, varying the composition of the constituent elements of the shape-memory alloy.
 
13. A method for obtaining a composite material according to claim 12, characterised in that it comprises including in the composite material particles of different concentrations of copper base.
 
14. A method for obtaining a composite material according to claim 13, wherein the particles of different concentrations of copper base are included in the composite material by means of heat treatment.
 
15. A method for obtaining a composite material according to claim 13, characterised in that it comprises including particles with a concentration gradient of copper base in the composite material by means of mechanical alloying.
 
16. A method according to claim 11, characterised in that it comprises:

• preparing the particles of shape-memory alloy powder having a copper base,

• introducing said particles into a mould,

• degasifying in vacuo, and

• injecting the molten metal of the matrix by means of infiltration in vacuo.


 
17. A method according to claim 16, wherein the infiltration is carried out under pressure achieved by means of centrifugation or by means of applying gas pressure to the melt.
 
18. A method according to claim 16, wherein the degasifying in vacuo is carried out at a temperature of between 120°C and 300°C.
 
19. Use of the composite material defined in any of claims 1 to 10, for absorption of vibrations.
 
20. Use according to claim 19 wherein the vibrations are selected from among acoustic and mechanical vibrations.
 


Ansprüche

1. Metallmatrix-Verbundmaterial, das Partikel aus einem Formgedächtnis-Legierungspulver auf Kupferbasis mit einer Konzentration zwischen 45 Vol.-% und 70 Vol.-%, bezogen auf das Gesamtvolumen des Materials aufweist, dadurch gekennzeichnet, dass die Pulverpartikel von einer Metallmatrix getragen werden, die Metalle mit einem Schmelzpunkt unter 330°C oder Legierungen dieser Metalle mit einem Erstarrungspunkt von unter 330°C aufweist.
 
2. Metallmatrix-Verbundwerkstoff gemäß Anspruch 1, wobei die Konzentration der Partikel aus Formgedächtnis-Legierungspulver auf Kupferbasis zwischen 50 Vol.-% und 60 Vol.-% bezogen auf das Gesamtvolumen des Verbundwerkstoffes ist.
 
3. Metallmatrix-Verbundwerkstoff gemäß Anspruch 1 oder 2, wobei die Partikel aus Formgedächtnis-Legierungspulver auf Kupferbasis aus der Gruppe, bestehend aus Cu-Al-Ni, Cu-Zn-Al und Cu-Al-Mn, ausgewählt sind.
 
4. Metallmatrix-Verbundwerkstoff gemäß Anspruch 1, wobei die Metallmatrix ein Metall aufweist, dass aus der Gruppe, bestehend aus In, Sn, Pb, Cd, T1 und deren Legierungen, ausgewählt ist.
 
5. Metallmatrix-Verbundwerkstoff gemäß Anspruch 1, wobei die Partikel aus Formgedächtnis-Legierungspulver gesamthaft die gleiche Konzentration der Kupferbasis aufweisen.
 
6. Metallmatrix-Verbundwerkstoff gemäß Anspruch 1, wobei ein Prozentsatz der Partikel des Formgedächtnis-Legierungspulvers verschiedene Konzentrationen der Kupferbasis aufweisen.
 
7. Metallmatrix-Verbundwerkstoff gemäß Anspruch 6, wobei der Prozentsatz der Partikel des Formgedächtnis-Legierungspulvers kleiner oder gleich 15% bezogen auf das Gesamtvolumen des Verbundwerkstoffes ist.
 
8. Metallmatrix-Verbundwerkstoff gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass er ferner Partikel unterschiedlicher Zusammensetzung aufweist, die aus der Gruppe bestehend aus starren, metallischen und keramischen Partikeln ausgewählt sind.
 
9. Metallmatrix-Verbundwerkstoff gemäß Anspruch 8, wobei die Partikel unterschiedlicher Zusammensetzung Pulverpartikel sind, die aus der Gruppe bestehend aus Rhenium, Wolfram, Molybdän, Siliziumkarbid und Borkarbid ausgewählt sind.
 
10. Metallmatrix-Verbundwerkstoff gemäß Anspruch 1, dadurch gekennzeichnet, dass er aufweist:

- 60 Vol.-% Cu-Al-Ni-Partikel bezogen auf das Materialvolumen, mit einer Gewichtskonzentration von 13,1% Al, 3,1% Ni, 83,8% Cu,

- 40 Vol.-% einer Indiummatrix.


 
11. Verfahren zur Herstellung eines Verbundmaterials gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es aufweist:

- Herstellung der Partikel aus Formgedächtnis-Legierungspulver, und

- Infiltrieren in die Metallmatrix.


 
12. Verfahren zur Herstellung eines Verbundmaterials gemäß Anspruch 11, dadurch gekennzeichnet, dass es ferner Einstellen eines Temperaturbereichs des Dämpfungsmaximums des Verbundwerkstoffs durch direkte oder inverse martensitische Umwandlungstemperaturen der Partikel des Formgedächtnis-Legierungspulvers sowie Variieren der Zusammensetzung der Bestandteilelemente der Formgedächtnis-Legierung aufweist.
 
13. Verfahren zur Herstellung eines Verbundmaterials gemäß Anspruch 12, dadurch gekennzeichnet, dass es Aufnehmen von Partikeln unterschiedlicher Konzentrationen auf Kupferbasis aufweist.
 
14. Verfahren zur Herstellung eines Verbundmaterials gemäß Anspruch 13, wobei die Partikel verschiedener Konzentrationen der Kupferbasis durch Wärmebehandlung in den Verbundwerkstoff aufgenommen werden.
 
15. Verfahren zur Herstellung eines Verbundmaterials gemäß Anspruch 13, dadurch gekennzeichnet, dass es Aufnehmen von Partikeln mit einem Konzentrationsgradienten der Kupferbasis in den Verbundwerkstoff mittels mechanischer Legierung aufweist.
 
16. Verfahren gemäß Anspruch 11, dadurch gekennzeichnet, dass es aufweist:

- Herstellen der Partikel aus Formgedächtnis-Legierungspulver mit einer Kupferbasis,

- Einbringen der Partikel in eine Form,

- Entgasen im Vakuum, und

- Injizieren des geschmolzenen Metalls der Matrix mittels Infiltration im Vakuum.


 
17. Verfahren gemäß Anspruch 16, wobei die Infiltration unter Druck mittels Zentrifugation oder mittels Anwenden von Gasdruck auf die Schmelze durchgeführt wird.
 
18. Verfahren gemäß Anspruch 16, wobei das Entgasen im Vakuum bei einer Temperatur zwischen 120°C und 300°C durchgeführt wird.
 
19. Verwendung des Verbundwerkstoffs gemäß einem der Ansprüche 1 bis 10 für eine Absorption von Vibrationen.
 
20. Verwendung gemäß Anspruch 19, wobei die Vibrationen aus akustischen und mechanischen Schwingungen ausgewählt sind.
 


Revendications

1. Matériau composite à matrice métallique comprenant des particules de poudre d'alliage à mémoire de forme à base de cuivre avec une concentration comprise entre 45 % et 70 % en volume par rapport au volume total du matériau, caractérisé en ce que les particules de poudre sont supportées par une matrice métallique comprenant des métaux à point de fusion inférieur à 330 °C ou des alliages desdits métaux à point de solidification inférieur à 330 °C.
 
2. Matériau composite à matrice métallique selon la revendication 1, dans lequel la concentration des particules de poudre d'alliage à mémoire de forme à base de cuivre est comprise entre 50 % et 60 % en volume par rapport au volume total du matériau composite.
 
3. Matériau composite à matrice métallique selon la revendication 1 ou 2, dans lequel les particules de poudre d'alliage à mémoire de forme à base de cuivre sont choisies dans un groupe constitué de Cu-Al-Ni, Cu-Zn-Al et Cu-Al-Mn.
 
4. Matériau composite à matrice métallique selon la revendication 1, dans lequel la matrice métallique comprend un métal choisi dans un groupe constitué par In, Sn, Pb, Cd, TI et leurs alliages.
 
5. Matériau composite à matrice métallique selon la revendication 1, dans lequel les particules de poudre d'alliage à mémoire de forme possèdent toutes la même concentration de base de cuivre.
 
6. Matériau composite à matrice métallique selon la revendication 1, dans lequel un pourcentage des particules de poudre d'alliage à mémoire de forme ont des concentrations différentes de base de cuivre.
 
7. Matériau composite à matrice métallique selon la revendication 6, dans lequel le pourcentage de particules de poudre d'alliage à mémoire de forme est inférieur ou égal à 15 % par rapport au volume total du matériau composite.
 
8. Matériau composite à matrice métallique selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend en outre des particules de différentes compositions choisies dans un groupe constitué de particules rigides, métalliques et céramiques.
 
9. Matériau composite à matrice métallique selon la revendication 8, dans lequel les particules de différentes compositions sont des particules de poudre choisies dans un groupe constitué du rhénium, du tungstène, du molybdène, du carbure de silicium et du carbure de bore.
 
10. Matériau composite à matrice métallique selon la revendication 1, caractérisé en ce qu'il comprend :

- 60 % en volume de particules de Cu-Al-Ni par rapport au volume de matière, avec une concentration en poids de 13,1% Al, 3,1% Ni, 83,8% Cu,

- 40 % en volume d'une matrice à l'indium.


 
11. Procédé d'obtention d'un matériau composite défini dans l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comprend :

- la préparation des particules de poudre d'alliage à mémoire de forme, et

- l'infiltration de la matrice métallique.


 
12. Procédé d'obtention d'un matériau composite selon la revendication 11, caractérisé en ce qu'il comprend en outre l'ajustement d'une plage de température de l'amortissement maximum du matériau composite par le biais de températures de transformation martensitique directe ou inverse des particules de poudre d'alliage à mémoire de forme, la variation de la composition des éléments constitutifs de l'alliage à mémoire de forme.
 
13. Procédé d'obtention d'un matériau composite selon la revendication 12, caractérisé en ce qu'il comprend l'inclusion dans le matériau composite de particules de différentes concentrations en base de cuivre.
 
14. Procédé d'obtention d'un matériau composite selon la revendication 13, dans lequel les particules de différentes concentrations en base de cuivre sont incluses dans le matériau composite par traitement thermique.
 
15. Procédé d'obtention d'un matériau composite selon la revendication 13, caractérisé en ce qu'il comprend l'inclusion de particules ayant un gradient de concentration en base de cuivre dans le matériau composite au moyen d'un alliage par voie mécanique.
 
16. Procédé selon la revendication 11, caractérisé en ce qu'il comprend :

- la préparation des particules de poudre d'alliage à mémoire de forme à base de cuivre,

- l'introduction des particules dans un moule,

- le dégazage sous vide, et

- l'injection du métal fondu de la matrice par infiltration sous vide.


 
17. Procédé selon la revendication 16, dans lequel l'infiltration est effectuée sous pression obtenue par centrifugation ou par application d'une pression de gaz sur la masse fondue.
 
18. Procédé selon la revendication 16, dans lequel le dégazage sous vide est effectué à une température comprise entre 120 °C et 300 °C.
 
19. Utilisation du matériau composite défini dans l'une quelconque des revendications 1 à 10 pour l'absorption de vibrations.
 
20. Utilisation selon la revendication 19, dans laquelle les vibrations sont choisies parmi les vibrations acoustiques et les vibrations mécaniques.
 






Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description