(19)
(11)EP 1 552 367 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.01.2019 Bulletin 2019/02

(21)Application number: 03793329.8

(22)Date of filing:  21.08.2003
(51)International Patent Classification (IPC): 
G06F 1/20(2006.01)
G01K 7/42(2006.01)
G06F 1/32(2006.01)
G01K 1/02(2006.01)
(86)International application number:
PCT/US2003/026429
(87)International publication number:
WO 2004/019195 (04.03.2004 Gazette  2004/10)

(54)

AN APPARATUS FOR THERMAL MANAGEMENT OF MULTIPLE CORE MICROPROCESSORS

VORRICHTUNG ZUR THERMISCHEN VERWALTUNG VON MEHRKERNMIKROPROZESSOREN

DISPOSITIF DE GESTION THERMIQUE DE MICROPROCESSEURS À NOYAUX MULTIPLES


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

(30)Priority: 23.08.2002 US 227125

(43)Date of publication of application:
13.07.2005 Bulletin 2005/28

(73)Proprietor: Sony Corporation of America
New York, NY 10022 (US)

(72)Inventors:
  • RUSU, Stefan
    Sunnyvale, CA 94087 (US)
  • TAM, Simon
    Redwood City, CA 94065 (US)

(74)Representative: MFG Patentanwälte Meyer-Wildhagen Meggle-Freund Gerhard PartG mbB 
Amalienstraße 62
80799 München
80799 München (DE)


(56)References cited: : 
EP-A1- 0 683 558
US-A- 5 829 879
US-A- 6 091 255
US-A1- 2003 110 012
US-A- 5 723 998
US-A- 6 047 248
US-A1- 2002 084 905
  
  • ANONYMOUS: "Conversion of thermal-diode measurement to analog reading" RESEARCH DISCLOSURE, KENNETH MASON PUBLICATIONS, HAMPSHIRE, GB, vol. 429, no. 67, January 2000 (2000-01), XP007125352 ISSN: 0374-4353
  • BOYLE S R ET AL: "A CMOS CIRCUIT FOR REAL-TIME CHIP TEMPERATURE MEASUREMENT", INTELLECTUAL LEVERAGE: DIGEST OF PAPERS OF THE SPRING COMPUTER SOCIETY INTERNATIONAL CONFERENCE (COMPCON). SAN FRANCISCO, FEB. 28 - MAR. 4, 1994; [PROCEEDINGS OF THE SPRING COMPUTER SOCIETY INTERNATIONAL CONFERENCE. (COMPCON)], LOS ALAMITOS, IEEE COM, vol. -, 28 February 1994 (1994-02-28), pages 286-291, XP000479404, DOI: 10.1109/CMPCON.1994.282911 ISBN: 978-0-8186-5380-3
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] The present invention pertains to the field of integrated circuit design. More particularly, the present invention relates to a method and apparatus for the management for thermal and power management of multiple processor cores on a single die.

BACKGROUND OF THE INVENTION



[0002] An integrated circuit (IC) is a device consisting of a number of connected circuit elements, such as transistors and resistors, fabricated on a single chip of silicon crystal or other semiconductor material. During operation, an IC consumes power causing the temperature of the IC to increase. An overheated IC can potentially result in reduced performance and even operation failure.

[0003] A microprocessor is an example of an IC. Because of higher operating frequencies, the trend in microprocessors is toward increased power consumption and dissipation with every new micro-architecture. In particular, server class processors having multiple processor cores are typically power limited by increasing processor density. A processor core typically includes an instruction register, an input/output bus, a floating point unit, an integer execution unit, a L0 cache, and a L1 cache.

[0004] To help reduce power dissipation, thermal and power management of multiple processor cores on a single IC is desired. The goal is to achieve maximum compute throughput while keeping the junction temperature below the reliability limit for each processor core.

[0005] US 2003/110012 A1 (Orenstein), cited in the International Search Report, discloses a system for distribution of processing activity across processing hardware based on power consumption and/or thermal considerations. One embodiment includes a plurality of processing units and a monitor to obtain monitor (e.g., power consumption, or temperature or some combination thereof) values from the processing units. The monitor transfers a process from one processing unit to another in response to the monitor values from the processing units.
US patent no. 6,047,248 discloses a system and method using thermal feedback to cooperatively vary a voltage and frequency of a circuit to control heating while maintaining synchronization. A CMOS ring oscillator is used as on-chip thermal sensor which sends out a square wave signal whose frequency is an inverse function of temperature.

BRIEF DESCRIPTION OF THE DRAWINGS



[0006] The embodiments of the present invention are illustrated by way of example and not in the figures of the accompanying drawings, in which like references indicate similar elements and in which:

FIG. 1A is one embodiment of a multiple core processor floor plan having multiple on die thermal sensors; FIG. 1B is one embodiment of a processor core having a plurality of thermal sensors;

FIG. 2 is one embodiment of a thermal sensor circuit; and

FIG. 3 is one embodiment of a thermal management unit circuit that computes the frequency of each processor core.


DETAILED DESCRIPTION



[0007] In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components and circuits have not been described in detail so as not to obscure the present invention.

[0008] Figure 1A depicts a multiple core processor 100 having multiple on die thermal sensors. For this embodiment of the invention, the multiple core processor 100 comprises eight processor cores 110. Each of the processor
cores 110 is an isolated processor or processing unit. The multiple core processor is not limited to having eight processor cores. A processor core may comprise a floating point unit, an integer execution unit, a L0 cache, and a L1 cache. In addition, a processor core 110 may comprise a plurality of thermal sensors 115. A processor core comprising a plurality of thermal sensors 115 is depicted in figure 1B.

[0009] For this embodiment of the invention, each of the processor cores 110 is coupled to an L2 cache 120. The processor cores 110, however, are not limited to having an individual L2 cache 120. For example, the processor cores 110 may be coupled to a single cache.

[0010] The processor cores 110 and L2 caches 120 are coupled to an input/output (I/O) 130 and a thermal management unit (TMU) 140. The I/O 130 serves as a hardware interface between the multiple core processor and external devices. The TMU 140 is located in a central location of the die and receives the outputs of the thermal sensors 115. The thermal sensors 115 may be placed near hot spots of a processor core 110, such as the floating point unit or the integer execution unit. A processor core 110 may have a number of hot spots. Thus, a plurality of thermal sensors 115 may be used for each processor core 110.

[0011] The TMU 140 monitors the temperature of the thermal sensors 115 and ensures that the processor 100 delivers the maximum throughput without any hot spot exceeding the maximum allowed junction temperature. The TMU 140 may be programmed by software to optimize the highest overall throughput or to give priority to a few application threads running on the processor at the expense of others. For example, the TMU 140 may be programmed using the operating system.

[0012] The TMU 140 controls the operating frequency and operating voltage of each processor core 110. For this embodiment of the invention, each of the processor cores 110 has a different operating frequency, while the entire processor 100 only has two voltages. The top processor cores 110 of the processor 100 operate at a first voltage and the bottom processor cores 110 operate at a second voltage. The invention, however, is not limited to a processor 100 having only two operating voltages. The frequencies of the processor cores 110 are coordinated to match the maximum frequencies the cores 110 can run at each operating voltage. Thus, the frequencies of the top processor cores 110 are limited by the first voltage and the bottom processor cores are limited by the second voltage.

[0013] The thermal sensors 115 may be implemented using an adjustable trip point. When the temperature of a given hot spot exceeds this preset trip point, the TMU 140 is notified. The TMU may then adjust the frequency of that processor core 110 or the voltage of that group of cores to reduce the thermal dissipation of the hot spots to below the trip point. Note that power is defined by the expression

where P represents power, V represents voltage, C represents capacitance, and f is the frequency. From equation 1, it can be seen that reducing the frequency also linearly reduces the power dissipation. Alternatively, power of a processing core 110 may be reduced by lowering the voltage value. However, when an operating voltage of a group of processor cores 110 is adjusted, the frequencies of those cores need to be adjusted correspondingly because the maximum frequency of each processor core 110 is limited by the operating voltage.

[0014] An embodiment of a thermal sensor circuit is shown in figure 2. The thermal sensor circuit comprises a temperature-to-voltage converter 210, a level shifter 220, a ring oscillator 230, and a buffer 240. The temperature-to-voltage converter 210 may comprise a reference bias 212 and a thermal diode 214. The temperature-to-voltage converter 210 produces an output voltage having a limited range. For example, the output voltage may be in the range of 0.3 volts to 0.7 volts. The level shifter 220 takes the output of the temperature-to-voltage converter and generates a biasing voltage. This generated voltage is then input to the ring oscillator 230.

[0015] For this embodiment of the invention, the ring oscillator comprises a plurality of inverters 232. The number of CMOS inverters 232 is an odd integer greater than one in order to generate a toggling signal having a frequency. The number of inverters 232 and the delay of each inverter 232 in the oscillator 230 help to determine the generated frequency. Each of the plurality of inverters 232 is coupled to a pull down transistor 234. The strength and frequency of the signal generated by the oscillator 230 also depend, in part, on the pull down transistors 234 and the biasing voltage that controls the pull down transistors 234. As a result, the frequency of the signal generated by the oscillator 230 is a function of the temperature sensed by the thermal diode 214. An increase in temperature causes the frequency of the signal generated by the oscillator 230 to decrease, while a decrease in temperature causes the frequency of the signal generated by the oscillator 230 to increase. The buffer 240 ensures the signal generated by the oscillator 230 has enough drive strength to reach the TMU.

[0016] For another embodiment of the invention, the ring oscillator 230 comprises a plurality of differential amplifiers. Similar to the inverter design described above, the number of differential amplifiers is an integer greater than one. Each of the differential amplifiers may be biased by the biasing voltage generated by the level shifter 220.

[0017] An embodiment of a TMU circuit in a processor is depicted in figure 3. This TMU circuit comprises a plurality of counters 310. Each of the counters 310 is coupled to a digital controller 340. Moreover, a first counter 310 may be coupled to a reference thermal sensor 320. All other counters 310 may be coupled to thermal sensors 330 located in remote areas of the die such as processor cores. The remote thermal sensors 330 are monitored by the digital controller 340. Specifically, the digital controller 340 may monitor the frequency encoded temperature information from each remote thermal sensor 330. The digital controller 340 compares the remote temperatures against the local temperature reference as sensed by the reference thermal sensor 320.

[0018] For one embodiment of the invention, the digital controller 340 may compare the time in which a first counter 310, clocked by a first signal generated by a reference thermal sensor 320, takes to count to a predetermined value against the time it takes for a second counter 310, clocked by a second signal generated by a remote thermal sensor 330 to reach the same predetermined value. The digital controller 340 controls when the counters 310 start and stop counting. If the counter 310 clocked by the reference thermal sensor 320 reaches the target value before the counter 310 clocked by the remote thermal sensor 330, the digital controller decreases an operating frequency or an operating voltage of a processing core. It follows that if the counter 310 clocked by the remote thermal sensor 330 reaches the target value before the counter 310 clocked by the reference thermal sensor 320, the digital controller increases an operating frequency or an operating voltage of a processing core. Therefore, adjustments to each processor core voltage and frequency are determined by the digital controller 340 in order to maximize the overall compute throughput of the processor. The operating frequency of each processing core may be adjusted by adjusting the phase locked loops (PLL) that provide clocks to each core.

[0019] A look-up table within the digital controller 340 may determine the adjustment values to the frequency and the voltage. Thus, if the difference in temperature between the reference thermal sensor 320 and a remote thermal sensor 330 is large, the adjustment will be greater than if the temperature difference in small. For example, to adjust the frequency of a processing core, the digital controller 340 may look-up a multiplying ratio value of the PLL. The value of the selected multiplying ratio is a function of the difference in temperature between the reference thermal sensor 320 and a remote thermal sensor 330 in that processing core. The frequency of the clock generated by the PLL is dependent upon the selected multiplying ratio.

[0020] Alternatively, the adjustment values may be a single step value. For example, the digital controller 340 may be coupled to an oscillating structure of a PLL that generates a processor clock. Under this implementation, as long as the difference in sensed temperature between a remote thermal sensor 330 and a reference thermal sensor 320 is greater than a specified limit, an adjustment in frequency or voltage will be made by the digital controller 340 at the step value. While this single step value implementation may not be as quick in reducing power dissipation on a processor, it reduces the design complexity and takes up less die area than a look-up table implementation.

[0021] For another embodiment of the invention, the digital controller 340 compares the number of signal transitions of a signal generated by a reference thermal sensor 320 against the number of signal transitions of a signal generated by a remote thermal sensor 330 over a given period of time. The counters 310 are used to count the signal transitions from the reference thermal sensor 320 and the remote thermal sensor 330 signals. The larger the count value over the given time period, the cooler the sensed area. Thus, if the area of the reference thermal sensor 320 is determined to be cooler than the area of a given remote thermal sensor 330, the digital controller 340 reduces the operating frequency or the operating voltage of the processor core of where that remote thermal sensor 330 is located. Similarly, if the area of the reference thermal sensor 320 is determined to be hotter than the area of the remote thermal sensor 330, the digital controller 340 increases the operating frequency or the operating voltage of the processor core of where the remote thermal sensor 330 is located.

[0022] In the foregoing specification the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modification and changes may be made thereto. The specification and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense.


Claims

1. An apparatus comprising:

a plurality of thermal sensors (115), each thermal sensor (115) comprising:

a temperature-to-voltage converter circuit (210) configured to output a voltage dependent upon a sensed temperature of a processor;

a ring oscillator (230) coupled to the temperature-to-voltage converter circuit (210), wherein the ring oscillator (230) is configured to generate a digital signal having a frequency which is a function of the sensed temperature;

a thermal management unit (140), comprising:

a plurality of counters (310) to count a number of cycles of the digital signals over a period of time;

a digital controller (340) coupled to each of the counters (310), the digital controller (340) configured to either:

compare a time taken by a first counter (310) to count to a target value with a time taken by a second counter (310) to count to the target value, or

compare the number of cycles of the digital signal counted by a first counter (310) with the number of cycles of the digital signal counted by a second counter (310),

wherein the comparison of the respective times taken by the first and second counter (310) or the respective number of cycles counted by the first and second counter (310) is used to control an operating frequency and an operating voltage of a processing core of the processor.


 
2. The apparatus of claim 1, further comprising: a level shifter (220) coupled to the temperature-to-voltage converter circuit (210), wherein the level shifter (220) reads the voltage output from the temperature-to-voltage converter circuit (210) and generates a bias voltage.
 
3. The apparatus of claim 2, wherein the bias voltage generated by the level shifter (220) biases the ring oscillator (230).
 
4. The apparatus of claim 3, wherein the ring oscillator (230) comprises a plurality of inverters (232), wherein each of the plurality of inverters (232) is coupled to a pull down transistor that biases the ring oscillator (230).
 
5. The apparatus of claim 1, wherein the digital signal frequency is proportional to the sensed temperature.
 
6. The apparatus of claim 5, wherein the digital signal frequency decreases if the sensed temperature increases.
 
7. The apparatus of claim 1, wherein the digital controller (340) is configured to:

decrease the operating frequency of the processing core of the processor if the number of cycles of the digital signal is greater than the reference value, and

increase the operating frequency of the processor core if the number of cycles is less than the reference value.


 
8. The apparatus of claim 7, further comprising a phase locked loop coupled to the digital controller (340), wherein the phase locked loop is configured to provide a clock having the operating frequency to the processor core of the processor, the digital controller (340) configured to adjust the phase locked loop.
 
9. The apparatus of claim 8, wherein the digital controller (340) adjusts:

a multiplying ratio of the phase locked loop, and an oscillator of the phase locked loop; and

wherein the digital controller (340) is configured to decrease the operating voltage of the processing core of the processor when the number of cycles of the digital signal is greater than the reference value, and to increase the operating voltage of the processor core when the number of cycles of the digital signal is less than the reference value.


 
10. A method comprising:

monitoring a reference thermal sensor (320);

monitoring a plurality of thermal sensors (330) placed in a processor having a first and second processor core; and

adjusting an operating frequency and an operating voltage of one of the processor cores of the processor based on a comparison of a temperature of a thermal sensor of the processor core with that of the reference thermal sensor (320).


 
11. The method of claim 10, further comprising: increasing an operating frequency or voltage of the first processor core to improve throughput of the first processor core if a temperature at the reference thermal sensor (320) is greater than that of a thermal sensor at the first processor core; and decreasing an operating frequency or voltage of the first processor core if a temperature at the thermal sensor exceeds the temperature at the reference thermal sensor (320).
 
12. The method of claim 11, wherein the operating frequency or voltage adjustment is made according to a look-up table, wherein the greater the temperature at the reference thermal sensor (320) is exceeded, the greater the operating frequency or voltage is adjusted.
 
13. The method of claim 10, wherein the plurality of thermal sensors sense the temperature of a floating point unit of the first processor core.
 
14. The method of claim 10, wherein the plurality of thermal sensors sense the temperature of an integer execution unit point unit of the first processor core.
 


Ansprüche

1. Einrichtung, die Folgendes umfasst:

mehrere Wärmesensoren (115), wobei jeder Wärmesensor (115) Folgendes umfasst:

einen Temperatur-zu-Spannung-Wandlerschaltkreis (210), der zum Ausgeben einer Spannung konfiguriert ist, die von einer erfassten Temperatur eines Prozessors abhängt;

einen Ringoszillator (230), der mit dem Temperatur-zu-Spannung-Wandlerschaltkreis (210) gekoppelt ist, wobei der Ringoszillator (230) zum Erzeugen eines digitalen Signals mit einer Frequenz konfiguriert ist, die eine Funktion der erfassten Temperatur ist;

eine Wärmeverwaltungseinheit (140), die Folgendes umfasst:

mehrere Zähler (310) zum Zählen der Anzahl an Zyklen der digitalen Signale über eine Zeitperiode;

eine digitale Steuerung (340), die mit jedem der Zähler (310) gekoppelt ist, wobei die digitale Steuerung (340) zu Folgendem konfiguriert ist:

entweder Vergleichen einer Zeit, die von dem ersten Zähler (310) zum Zählen zu einem Zielwert aufgenommen wird, mit einer Zeit, die von einem zweiten Zähler (310) zum Zählen zu dem Zielwert aufgenommen wird, oder Vergleichen der Anzahl an Zyklen des digitalen Signals, gezählt durch einen ersten Zähler (310), mit der Anzahl an Zyklen des digitalen Signals, gezählt durch einen zweiten Zähler (310),

wobei der Vergleich der jeweiligen Zeiten, die durch den ersten und zweiten Zähler (310) aufgenommen wurden, oder der jeweiligen Anzahl an Zyklen, die durch den ersten und zweiten Zähler (310) gezählt wurden, verwendet wird, um eine Betriebsfrequenz und eine Betriebsspannung des Verarbeitungskerns des Prozessors zu steuern.


 
2. Einrichtung nach Anspruch 1, die ferner einen Pegelumsetzer (220) umfasst, der mit dem Temperatur-zu-Spannung-Wandlerschaltkreis (210) gekoppelt ist, wobei der Pegelumsetzer (220) die Spannungsausgabe von dem Temperatur-zu-Spannung-Wandlerschaltkreis (210) liest und eine Vorspannung erzeugt.
 
3. Einrichtung nach Anspruch 2, wobei die durch den Pegelumsetzer (220) erzeugte Vorspannung den Ringoszillator (230) vorspannt.
 
4. Einrichtung nach Anspruch 3, wobei der Ringoszillator (230) mehrere Inverter (232) umfasst, wobei jeder der mehreren Inverter (232) mit einem Pull-Down-Transistor gekoppelt ist, der den Ringoszillator (230) vorspannt.
 
5. Einrichtung nach Anspruch 1, wobei die digitale Signalfrequenz proportional zu der erfassten Temperatur ist.
 
6. Einrichtung nach Anspruch 5, wobei die digitale Signalfrequenz abnimmt, falls die erfasste Temperatur zunimmt.
 
7. Einrichtung nach Anspruch 1, wobei die digitale Steuerung (340) zu Folgendem konfiguriert ist:

Verringern der Betriebsfrequenz des Verarbeitungskerns des Prozessors, falls die Anzahl an Zyklen des digitalen Signals größer als der Referenzwert ist, und Erhöhen der Betriebsfrequenz des Prozessorkerns, falls die Anzahl an Zyklen geringer als der Referenzwert ist.


 
8. Einrichtung nach Anspruch 7, die ferner eine Phasenregelschleife umfasst, die mit der digitalen Steuerung (340) gekoppelt ist, wobei die Phasenregelschleife zum Liefern eines Takts mit der Betriebsfrequenz an den Prozessorkern des Prozessors konfiguriert ist, wobei die digitale Steuerung (340) zum Anpassen der Phasenregelschleife konfiguriert ist.
 
9. Einrichtung nach Anspruch 8, wobei die digitale Steuerung (340) Folgendes anpasst:

ein Multiplikationsverhältnis der Phasenregelschleife und einen Oszillator der Phasenregelschleife; und

wobei die digitale Steuerung (340) zum Verringern der Betriebsfrequenz des Verarbeitungskerns des Prozessors, wenn die Anzahl an Zyklen des digitalen Signals größer als der Referenzwert ist, und zum Verringern der Betriebsfrequenz des Prozessorkerns, wenn die Anzahl an Zyklen des digitalen Signals geringer als der Referenzwert ist, konfiguriert ist.


 
10. Verfahren, das Folgendes umfasst:

Überwachen eines Referenzwärmesensors (320);

Überwachen mehrerer Wärmesensoren (330), die in einem Prozessor mit einem ersten und zweiten Prozessorkern platziert sind; und

Anpassen einer Betriebsfrequenz und einer Betriebsspannung von einem der Prozessorkerne des Prozessors basierend auf einem Vergleich einer Temperatur eines Wärmesensors des Prozessorkerns mit jener des Referenzwärmesensors (320).


 
11. Verfahren nach Anspruch 10, das ferner Folgendes umfasst: Erhöhen einer Betriebsfrequenz oder -spannung des ersten Prozessorkerns, um einen Durchsatz des ersten Prozessorkerns zu verbessern, falls eine Temperatur bei dem Referenzwärmesensor (320) größer als jene eines Wärmesensors bei dem ersten Prozessorkern ist; und Verringern einer Betriebsfrequenz oder -spannung des ersten Prozessorkerns, falls eine Temperatur bei dem Wärmesensor die Temperatur bei dem Referenzwärmesensor (320) überschreitet.
 
12. Verfahren nach Anspruch 11, wobei die Anpassung der Betriebsfrequenz oder -spannung gemäß einer Nachschlagetabelle erfolgt, wobei die Betriebsfrequenz oder -spannung umso größer angepasst wird, je mehr die Temperatur bei dem Referenzwärmesensor (320) überschritten wird.
 
13. Verfahren nach Anspruch 10, wobei die mehreren Wärmesensoren die Temperatur einer Gleitkommaeinheit des ersten Prozessorkerns erfassen.
 
14. Verfahren nach Anspruch 10, wobei die mehreren Wärmesensoren die Temperatur einer Integerausführungseinheitpunkteinheit des ersten Prozessorkerns erfassen.
 


Revendications

1. Appareil comprenant :

une pluralité de capteurs de température (115), chaque capteur de température (115) comprenant :

un circuit convertisseur de température en tension (210) configuré pour délivrer en sortie une tension en fonction d'une température détectée d'un processeur ;

un oscillateur en anneau (230) couplé au circuit convertisseur de température en tension (210), l'oscillateur en anneau (230) étant configuré pour générer un signal numérique ayant une fréquence qui est une fonction de la température détectée ;

une unité de gestion thermique (140) comprenant :

une pluralité de compteurs (310) pour compter un nombre de cycles des signaux numériques sur une période de temps ;

un dispositif de commande numérique (340) couplé à chacun des compteurs (310), le dispositif de commande numérique (340) étant configuré pour :

comparer un temps pris par un premier compteur (310) pour compter jusqu'à une valeur cible à un temps pris par un second compteur (310) pour compter jusqu'à la valeur cible, ou

comparer le nombre de cycles du signal numérique compté par un premier compteur (310) au nombre de cycles du signal numérique compté par un second compteur (310),

la comparaison des temps respectifs pris par les premier et second compteurs (310) ou le nombre respectif de cycles comptés par les premier et second compteurs (310) étant utilisée pour commander une fréquence de fonctionnement et une tension de fonctionnement d'un noyau de traitement du processeur.


 
2. Appareil selon la revendication 1, comprenant en outre : un dispositif de décalage de niveau (220) couplé au circuit convertisseur de température en tension (210), le dispositif de décalage de niveau (220) lisant la sortie de tension du circuit convertisseur de température en tension (210) et générant une tension de polarisation.
 
3. Appareil selon la revendication 2, la tension de polarisation générée par le dispositif de décalage de niveau (220) polarisant l'oscillateur en anneau (230).
 
4. Appareil selon la revendication 3, l'oscillateur en anneau (230) comprenant une pluralité d'onduleurs (232), chacun de la pluralité d'onduleurs (232) étant couplé à un transistor d'excursion basse qui polarise l'oscillateur en anneau (230).
 
5. Appareil selon la revendication 1, la fréquence de signal numérique étant proportionnelle à la température détectée.
 
6. Appareil selon la revendication 5, la fréquence de signal numérique diminuant si la température détectée augmente.
 
7. Appareil selon la revendication 1, le dispositif de commande numérique (340) étant configuré pour :

diminuer la fréquence de fonctionnement du noyau de traitement du processeur si le nombre de cycles du signal numérique est supérieur à la valeur de référence, et

augmenter la fréquence de fonctionnement du noyau de processeur si le nombre de cycles est inférieur à la valeur de référence.


 
8. Appareil selon la revendication 7, comprenant en outre une boucle à verrouillage de phase couplée au dispositif de commande numérique (340), la boucle à verrouillage de phase étant configurée pour fournir une horloge ayant la fréquence de fonctionnement au noyau de processeur du processeur, le dispositif de commande numérique (340) étant configuré pour ajuster la boucle à verrouillage de phase.
 
9. Appareil selon la revendication 8, le dispositif de commande numérique (340) ajustant :

un rapport de multiplication de la boucle à verrouillage de phase, et un oscillateur de la boucle à verrouillage de phase ; et

le dispositif de commande numérique (340) étant configuré pour diminuer la tension de fonctionnement du noyau de traitement du processeur lorsque le nombre de cycles du signal numérique est supérieur à la valeur de référence, et pour augmenter la tension de fonctionnement du noyau de processeur lorsque le nombre de cycles du signal numérique est inférieur à la valeur de référence.


 
10. Procédé comprenant :

la surveillance d'un capteur de température de référence (320) ;

la surveillance d'une pluralité de capteurs de température (330) placés dans un processeur ayant des premier et second noyaux de processeur ; et

l'ajustement d'une fréquence de fonctionnement et d'une tension de fonctionnement de l'un des noyaux de processeur du processeur sur la base d'une comparaison d'une température d'un capteur de température du noyau de processeur à celle du capteur de température de référence (320).


 
11. Procédé selon la revendication 10, comprenant en outre : l'augmentation d'une fréquence ou d'une tension de fonctionnement du premier noyau de processeur pour améliorer le débit du premier noyau de processeur si une température au niveau du capteur de température de référence (320) est supérieure à celle d'un capteur de température au niveau du premier noyau de processeur ; et la diminution d'une fréquence ou d'une tension de fonctionnement du premier noyau de processeur si une température au niveau du capteur de température dépasse la température au niveau du capteur de température de référence (320).
 
12. Procédé selon la revendication 11, l'ajustement de la fréquence ou de la tension de fonctionnement étant réalisé selon une table de conversion, plus la température au niveau du capteur de température de référence (320) étant dépassée, plus la fréquence ou la tension de fonctionnement étant ajustée.
 
13. Procédé selon la revendication 10, la pluralité de capteurs de température détectant la température d'une unité à virgule flottante du premier noyau de processeur.
 
14. Procédé selon la revendication 10, la pluralité de capteurs de température détectant la température d'une unité de point d'unité d'exécution entière du premier noyau de processeur.
 




Drawing














Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description