(19)
(11)EP 3 269 516 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
16.09.2020 Bulletin 2020/38

(21)Application number: 17181178.9

(22)Date of filing:  13.07.2017
(27)Previously filed application:
 15.07.2016 US 201615211832
(51)International Patent Classification (IPC): 
B25F 5/00(2006.01)

(54)

AIR TOOL MONITORING APPARATUS, AIR TOOL INCORPORATING SAME AND METHOD OF USING SAME

ÜBERWACHUNGSVORRICHTUNG FÜR EIN PNEUMATISCHES WERKZEUG, PNEUMATISCHES WERKZEUG DAMIT UND VERFAHREN ZUR VERWENDUNG DAVON

APPAREIL DE CONTRÔLE D'OUTIL D'AIR, OUTIL D'AIR L'INCORPORANT ET PROCÉDÉ D'UTILISATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 15.07.2016 US 201615211832

(43)Date of publication of application:
17.01.2018 Bulletin 2018/03

(73)Proprietor: Mabee Engineering Solutions, Inc.
Shelby Township, MI 48315 (US)

(72)Inventors:
  • MABEE, Brian D.
    Shelby Township, MI 48315 (US)
  • KAPLAN, Jeffrey B.
    Greer, SC 29650 (US)
  • WITTE, Darryl V.
    Lee, IL 60530 (US)
  • ADAMS, Jason M.
    Macomb, MI 48044 (US)

(74)Representative: EDP Patent Attorneys B.V. 
Bronland 12-E
6708 WH Wageningen
6708 WH Wageningen (NL)


(56)References cited: : 
WO-A1-2006/136503
US-A1- 2008 032 601
US-A1- 2011 088 921
US-A1- 2005 170 520
US-A1- 2010 252 288
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    1. Field of the invention



    [0001] The present invention relates to an air tool monitoring apparatus, to an air tool incorporating the inventive apparatus, to a system for monitoring multiple air tools, each of which is respectively equipped with the inventive apparatus, and to methods of using the inventive apparatus, air tool, and system.

    2. Description of the Background Art



    [0002] A number of different air tool monitoring systems and devices are known. One example of a commercially available air tool monitoring device is sold under the name "TULMAN" by the Cleco division of the Apex Tool Group, of Sparks, Maryland.

    [0003] Examples of some issued patents relating generally to the field of air tool monitoring and/or control systems and devices include those described in Treible, Jr. US Patent 3,664,183, Takahashi, US Patent 3,699,810, Mallick Jr. US Patent 4,051,351, Whitehouse, US Patent 4,294,110, Borries, US Patent 4,620,449, Rushanan, US Patent 4,903,783, Desmoulins, US Patent 6,565,293, Jaw, US Patent 6,871,160, Butka, US Patent 7,065,456 and Kibblewhite, US Patent 7,823,458. Other examples are shown in WO2006136503A1, US2011088921A1, US2005170520A1 or US2008032601A1.

    [0004] Although the known devices have some utility for their intended purposes, a need still exists in the art for improved air tool monitoring systems and devices. In particular, there is a need for improved air tool monitoring systems and devices which will allow for efficient power usage of the monitoring apparatus, which will permit wireless communication with data storage media, and which will overcome the difficulties encountered with the known art.

    SUMMARY OF THE INVENTION



    [0005] An air tool monitoring apparatus according to claim 1 includes a housing having a hollow chamber formed therein, and also having an inlet and an outlet formed therein, each of the inlet and an outlet in fluid communication with the chamber.

    [0006] The apparatus also includes a first sensor for sensing a condition indicative of tool usage, a battery disposed in the housing, and a microprocessor operatively connected to the housing and including a timer, RAM, ROM, and a unique identifier.

    [0007] The first sensor may include one or more components selected from the list including accelerometers, air pressure sensors, Hall effect sensors, vibration sensors, and microphones.

    [0008] The apparatus further includes a communication device for sending data from the microprocessor to a data collection device.

    [0009] Also according to claim 1, the apparatus includes second sensor operatively attached to the housing for sensing a condition indicative of tool wear. The second sensor may include one or more components selected from microphones, accelerometers, vibration sensors, and total usage meters.

    [0010] Further, the apparatus may include a third sensor for sensing environmental conditions within the chamber, such as temperature, pressure, humidity, or the like.

    [0011] Optionally, the apparatus may include a display device for displaying information to an operator. Such a display device may include a liquid crystal screen or an LED screen.

    [0012] The apparatus may be configured as a separate unit configured to be attached to an air tool. Alternatively, the apparatus may be configured as an integral, original equipment component, installed during manufacturing of an air tool, such as inside of a handle of the tool.

    [0013] An air tool comprising the air tool monitoring apparatus of claim 1 and a method of using the apparatus are also contemplated according to the present invention and are described further herein, according to claims 6 and 7.

    [0014] For a more complete understanding of the present invention, the reader is referred to the following detailed description section, which should be read in conjunction with the accompanying drawings. Throughout the following detailed description and in the drawings, like numbers refer to like parts.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0015] 

    Figure 1A is a perspective view of an air tool monitoring apparatus according to an illustrative embodiment of the present invention.

    Figure 1B is a first end plan view of the air tool monitoring apparatus of Figure 1A, showing the outlet end.

    Figure 1C is a side plan view of the air tool monitoring apparatus of Figure 1A.

    Figure 1D is a second end plan view of the air tool monitoring apparatus of Figure 1A, showing the inlet end;

    Figure 2A is a first cross-sectional view of the apparatus of Figure 1A, taken along a central vertical plane extending in a direction parallel to a longitudinal axis.

    Figure 2B is an end plan view of the apparatus of Figure 1A, showing the outlet end with an end cap removed.

    Figure 3 is a is an exploded perspective view of the apparatus of Figure 1A.

    Figure 4 is a generalized electrical diagram showing an illustrative electronic arrangement of the apparatus of Figure 1A.

    Figure 5A a perspective view of an air tool monitoring apparatus according to a second illustrative embodiment of the present invention.

    Figure 5B is a first end plan view of the air tool monitoring apparatus of Figure 5A, showing the outlet end.

    Figure 5C is a side plan view of the air tool monitoring apparatus of Figure 5A.

    Figure 5D is a second end plan view of the air tool monitoring apparatus of Figure 5A, showing the inlet end;

    Figure 6A is a first cross-sectional view of the apparatus of Figure 5A, taken along line B-B of Figure 5B, which line represents a central vertical plane extending in a direction parallel to a longitudinal axis.

    Figure 6B is an end plan view of the apparatus of Figure 6A, showing the outlet end with an end cap removed.

    Figure 7 is a is an exploded perspective view of the apparatus of Figure 5A.

    Figure 8 is a cutaway view of an air tool having an apparatus according to the invention integrally installed inside of a handle portion of the tool; and

    Figure 9 is a flow chart showing steps in an exemplary method of using the apparatus hereof.


    DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS



    [0016] It should be understood that only structures considered necessary for clarifying the present invention are described herein. Other conventional structures, and those of ancillary and auxiliary components of the system, are assumed to be known and understood by those skilled in the art.

    [0017] Referring now to Figures 1A-3 of the drawings, an air tool monitoring apparatus according to a first illustrative embodiment of the present invention is shown generally at 20. The apparatus 20 may be configured as a separate unit, configured to be attached to a conventional air tool.

    [0018] Alternatively, the apparatus 20 may be configured as an integral, original equipment component, installed as part of the tool, such as an interior component of a tool handle, during manufacturing of an air tool.

    [0019] The apparatus 20 functions by directly or indirectly measuring multiple application metrics of tool operation, either continuously or at a predefined time interval, and also records the data in on-board storage for intermittent transfer and for later analysis.

    [0020] In this first embodiment as shown in Figures 1A-3, the air tool monitoring apparatus 20 is shown in a substantially rectangular block or parallelepiped shape with rounded corner portions, but the apparatus can be made in essentially any desired shape.

    [0021] As shown in Figures 1A-3, the air tool monitoring apparatus 20 according to the first embodiment includes a hollow housing 22 having a primary housing chamber 23 formed therein. In the depicted embodiment, the housing 22 includes a main housing body 22B and first and second end plates 22E1 and 22E2, respectively.

    [0022] Optionally, the housing 22 may have a secondary housing chamber 18 formed therein, to receive and store selected electronic components such as a battery, circuit board, timing circuit and microprocessor, to be described below. Optionally but not necessarily, the secondary housing chamber 18 may be separate from, and out of fluid communication with the primary housing chamber.

    [0023] The first end plate 22E1 has a plurality of spaced-apart threaded bores 25 formed therein to receive threaded shaft portions of fasteners 17 therein. The housing 22 also has an inlet 24 and an outlet 26 formed therein, each of the inlet and an outlet being in fluid communication with the primary housing chamber 23, to allow compressed air to selectively flow through the housing and into a body portion of the air tool (not shown).

    [0024] The apparatus 20 also includes a first sensor, such as, for example, a Hall effect sensor shown at 30, for sensing a condition indicative of tool activity, as well as a battery 32 disposed inside of the housing 22. A battery holder 31 may also be provided.

    [0025] The first sensor may include one or more components selected from the list including accelerometers, air pressure sensors, Hall effect sensors, vibration sensors, and microphones.

    [0026] In addition to the above, the apparatus 20 includes a circuit board 33 with a microprocessor 34 which is operatively connected to the housing. The circuit board 33 may be disposed in a slot formed inside of the housing 22, as shown. Alternatively, the circuit board may be located on the outside of the housing, beneath an attached cover plate (not shown)

    [0027] Referring also to Figure 4, the microprocessor 34 includes a timer circuit 34T, a memory module 34M including RAM and ROM, which may be selectively programmable, and a unique identifier such as, for example, a serial number, which may be alphanumeric. The memory module 34M keeps a record of the total cumulative activity time of the tool. Additional external memory 34EX may be used, if required.

    [0028] The microprocessor 34 is designed to remain off whenever the tool is not in use to extend the useful life of the battery 32, allowing the apparatus to use a relatively small battery, and the microprocessor is able to sense air flow or vibration when the tool is in use, and to begin recording parameters of tool operation at specified intervals throughout the time that the tool is in use, such as once every second, or at a longer interval. Optionally, the microprocessor 34 may be programmed to temporarily turn off or "sleep" between recordation sessions, and to wake up at the specified intervals to record data, in order to preserve battery life.

    [0029] The circuit board 33 includes a switch for starting and stopping the timer in response to information from the first sensor 30. The switch may be a step programmed into the microprocessor 34, turning on the timer in response to input from the first sensor.

    [0030] The circuit board 33 also includes at least one communication device 39 for sending data from the microprocessor to a data collection device, such as a server, local computer or smartphone app, which may be remotely located from the apparatus 20. The communication device(s) 39 may be capable of two-way communication, and may include one or more devices selected from Bluetooth, Wi-Fi, Radio Frequency (RF), Infrared sending and/or receiving unit, ANT+ Device, USB, serial, parallel, and FireWire© wired interface.

    [0031] In the first embodiment of the apparatus shown in Figures 1A-3, the apparatus 20 includes a piston 36, which is slidably disposed in the primary housing chamber 23, and a permanent magnet 50, affixed to a front end of the piston with a fastener 52. The piston 36 is provided to move the magnet 50 rearwardly in the chamber 23 when air pressure at the inlet 24 reaches a level sufficient to move the piston, against a compressive force from a spring 54.
    Such rearward movement of the magnet 50 is detected by the Hall effect sensor 30, which generates a "tool active" signal which is used by the microprocessor to switch both the timer and the microprocessor on.

    [0032] The piston 36 includes a generally cylindrical reduced-diameter portion 38, which is configured and dimensioned to slidably receive the spring 54 thereon without any interference. The piston 36 has a hollow bore 40 formed therein, as shown.

    [0033] The piston 36 also includes a conically tapered front end or nose portion 46, with a threaded opening formed centrally therein, which is configured to receive a threaded shaft portion of the fastener 52 for use in attaching the magnet 50. The nose portion 46 of the piston 36 also has a plurality of flow channels, such as those shown at 42 and 44 in Figure 2A formed therethrough and communicating with the hollow bore 40.

    [0034] A front end portion of the primary housing chamber 23 is formed in a partial conical shape, to provide a seat 47 for sealably receiving the nose portion 46 of the piston.

    [0035] According to the invention, the apparatus includes a second sensor for sensing a condition indicative of tool wear. Where used, the second sensor may include one or more components selected from microphones, accelerometers, vibration sensors, and total usage recordation meters. The second sensor may be the same as, or different from the first sensor. The embodiment of the apparatus 20 shown in Figure 3 includes a three-axis accelerometer 35, and an acoustic or vibration sensor 37, and may include a separate acoustic sensor 41 (Fig. 4)

    [0036] Further, the apparatus may include a third sensor for sensing environmental conditions within the chamber, such as temperature, pressure, humidity, or the like. The embodiment of the apparatus 20 shown in Figure 3 includes a sensor 28 for sensing both temperature and humidity, as well as a pressure sensor 29.

    [0037] One example of a generalized circuit diagram which could be used for the apparatus of Figures 1A-3 is shown in Figure 4.

    [0038] Optionally, the apparatus may include a display device for displaying information to an operator regarding operation of the tool. Where used, such a display device may include a liquid crystal display or an LED display.

    [0039] The apparatus 20 is capable of two-way communications with other supported devices (i.e. phone, tablet, laptop, workstation) using one or more appropriate protocols, in order to make programmatic changes (upgrades/patches), add/remove features, and transfer data to and from the device by utilizing custom software/firmware.

    Second Embodiment



    [0040] Referring now to Figures 5A-7 of the drawings, an air tool monitoring apparatus according to a second illustrative embodiment of the present invention is shown generally at 220. The apparatus 220 may be configured as a separate unit, configured to be attached to a conventional air tool.

    [0041] Alternatively, the apparatus 220 may be configured as an integral, original equipment component, installed as part of the tool, such as an interior component of a tool handle, during manufacturing of an air tool.

    [0042] The apparatus 220 functions by directly or indirectly measuring multiple application metrics of tool operation at a continuous predefined time interval, and also records the data in on-board storage for intermittent transfer and for later analysis.

    [0043] The second embodiment of the apparatus 220 includes fewer components than the first embodiment. In this second embodiment as shown in Figures 5A-7, the air tool monitoring apparatus 220 is shown in a substantially cylindrical shape, but the apparatus can be made in essentially any desired shape.

    [0044] As shown in Figures 5A-7, the air tool monitoring apparatus 220 according to the second embodiment includes a hollow housing 222 having a primary housing chamber 223 formed therein. In the depicted embodiment, the housing 222 includes a main housing body 222B and first and second end plates 22E1 and 22E2, respectively.

    [0045] The first end plate 222E1 has a plurality of spaced-apart threaded bores 225 formed therein to receive threaded shaft portions of fasteners 17 therein. The housing 222 also has an inlet 224 and an outlet 226 formed therein, each of the inlet and an outlet being in fluid communication with the primary housing chamber 223, to allow compressed air to selectively flow through the housing and into a body portion of the air tool (not shown).

    [0046] The apparatus 220 also includes a first sensor, such as, for example, the pressure sensor shown at 229 (Fig. 7), for sensing a condition indicative of tool activity, as well as a battery 232 disposed inside of the housing 222. A battery holder 231 may also be provided.

    [0047] The first sensor may include one or more components selected from the list including accelerometers, air pressure sensors, vibration sensors, and microphones.

    [0048] In addition to the above, the apparatus 220 includes a circuit board 233 with a microprocessor 234 which is operatively connected to the housing. The microprocessor 234 includes a timer circuit, a memory module including RAM and ROM, and a unique identifier such as, for example, a serial number, which may be alphanumeric. The memory module keeps a record of the total cumulative activity time of the tool.

    [0049] The circuit board 233 includes a switch for starting and stopping the timer in response to information from the first sensor 230, and at least one communication device for sending data from the microprocessor to a data collection device, which may be remotely located. The communication device(s) may include one or more devices selected from Bluetooth, Wi-Fi, Radio Frequency (RF), Infrared sending and/or receiving unit, ANT+ wireless communication device, USB, serial, parallel, and FireWire© wired interface.

    [0050] According to the invention, the apparatus includes a second sensor for sensing a condition indicative of tool wear. Where used, the second sensor may include one or more components selected from microphones, accelerometers, vibration sensors, and total usage recordation meters. The second sensor may be the same as, or different from the first sensor. The embodiment of the apparatus 220 shown in Figure 7 includes a three-axis accelerometer 235, and an acoustic or vibration sensor 237.

    [0051] Further, the apparatus may include a third sensor for sensing environmental conditions inside of the apparatus, such as temperature, pressure, humidity, or the like. The embodiment of the apparatus 20 shown in Figure 3 includes a sensor 228 for sensing both temperature and humidity, as well as a pressure sensor 229.

    Third Embodiment



    [0052] Referring now to Figure 8, an air tool is shown generally at 300. This air tool 300 is formed using the handle 310 of the tool as a housing of a third embodiment of the present invention, which can be configured substantially as described herein for the first or second embodiments, modified as appropriate.

    System for Monitoring Multiple Air Tool Usage



    [0053] A system for monitoring multiple air tool usage according to the present invention could be provided where each of the air tools in the system is provided with a tool usage monitoring apparatus, such as the apparatus 20 or 220 described herein. The system includes a main control processor which intermittently receives input data from each of the air tools included in the system. The main control processor includes a non-volatile memory which has a plurality of maps stored therein indicating normal operating parameters indicative of normal and acceptable tool operating conditions, cautionary operating parameters indicative of either a need for scheduled maintenance or approaching failure or obsolescence, and "red flag" operating parameters indicative of a failing or dangerous tool which should be removed from operation.

    [0054] The main control processor could be programmed to print a daily or weekly report showing operating parameters for each tool. In addition, the main control processor could be programmed to issue a warning to plant management, at specified intervals, that specific tools are in need of repair or replacement if the performance of such tools indicate such conditions.

    [0055] For example, if the accelerometer or vibration sensor indicates a level of vibration out of specifications, the tool containing such sensor may need to be taken out of use due to possible tool failure or a possible safety risk to an operator or user of the tool.

    Method of Use



    [0056] The present invention also relates to a method of using the air tool monitoring apparatus as described herein, where such monitoring apparatus is operatively attached to an air tool.

    [0057] The method according to the invention includes a first step of sensing when the air tool is activated at an initial time T1 using a first sensor, such as the Hall effect sensor 30, the vibration sensor or the accelerometer. This step is shown at 120 in the flow chart of Figure 9.

    [0058] The method according to the invention also includes a step of turning on a microprocessor and beginning operation of a timer at time T1 in response to the sensed activation of the tool. This step is shown at 122 in the flow chart of Figure 9.

    [0059] The method according to the invention also includes a step of sensing an amount of wear on the tool using a second sensor which may be the same as, or different from the first sensor. This step is shown at 126 in the flow chart of Figure 9.

    [0060] The method according to the invention also includes a step of continuing operation of the timer while the tool operates during a current cycle. This step is shown at 124 in the flow chart of Figure 9. Steps 124 and 126 may be performed in any order.

    [0061] The method according to the invention also includes a step of recording operating parameters at least once per hour during the current cycle, using at least one third sensor which is an environmental sensor. This step is shown at 128 in the flow chart of Figure 9.

    [0062] The method according to the invention also includes a step of sensing deactivation of the tool at a time T2 at the end of the current cycle using the first sensor. This step is shown at 130 in the flow chart of Figure 9.

    [0063] The method according to the invention also includes a step of stopping the timer when deactivation of the tool is sensed. This step is shown at 132 in the flow chart of Figure 9.

    [0064] The method according to the invention also includes a step of adding the total time of the current cycle to a stored value in non-volatile computer memory, where the stored value represents total usage time of the tool. This step is shown at 134 in the flow chart of Figure 9.

    [0065] Optionally, the method according to the invention may include a reporting step of transmitting data representative of the operating parameters of the tool during the current cycle to a data collector. This step is shown at 136 in the flow chart of Figure 9.

    [0066] Although the present invention has been described herein with respect to a number of specific illustrative embodiments, the foregoing description is intended to illustrate, rather than to limit the invention, which is defined by the appended claims.


    Claims

    1. An air tool monitoring apparatus (20,220), comprising:

    a housing (22,222) having a hollow chamber (23,223) formed therein, and also having an inlet (24,224) and an outlet (26,226) formed therein, each of the inlet and an outlet being in fluid communication with the chamber (23,223);

    a first sensor (30,230) for sensing a condition indicative of tool usage and a second sensor (35,37,41,235,237,241) operatively attached to the housing for sensing a condition indicative of tool wear;

    a battery (32,232) disposed in the housing;

    a microprocessor (34,234) operatively connected to the housing and comprising a timer, RAM, ROM, and a unique identifier;

    a communication device (39,239) for sending data from the microprocessor to a data collection device.


     
    2. The apparatus of claim 1, wherein the first sensor includes one or more components selected from accelerometers, air pressure sensors, Hall effect sensors, vibration sensors, and microphones.
     
    3. The apparatus of claim 1, wherein the first sensor includes a Hall effect sensor.
     
    4. The apparatus of claim 1, wherein the second sensor includes one or more components selected from microphones, accelerometers, vibration sensors, and total usage meters.
     
    5. The apparatus of claim 1, wherein the microprocessor (34,234) is programmed to temporarily turn off or sleep between recordation sessions, and to wake up at the specified intervals to record data.
     
    6. An air tool comprising a handle having the apparatus of claim 1 therein.
     
    7. A method of using the air tool monitoring apparatus of claim 1 operatively attached to an air tool, said method comprising the steps of:

    sensing when the air tool is activated at an initial time T1 using a first sensor,

    turning on a microprocessor (34,234) and beginning operation of a timer at time T1 in response to the sensed activation of the tool;

    sensing an amount of wear on the tool using a second sensor (35,37,41,235,237,241) which may be the same as or different from the first sensor (30,230);

    continuing operation of the timer while the tool operates during a current cycle;

    recording operating parameters at least once per hour during continuing operation of the tool, using at least one third sensor which is an environmental sensor;

    sensing deactivation of the tool at a time T2 at the end of the current cycle using the first sensor;

    stopping the timer when deactivation of the tool is sensed; and

    adding the total time of the current cycle to a stored value in non-volatile computer memory, where the stored value represents total usage time of the tool.


     
    8. The method of claim 7, further comprising a step of a reporting transmitting data representative of the operating parameters of the tool during the current cycle from the air tool monitoring apparatus to a data collector.
     


    Ansprüche

    1. Überwachungsvorrichtung für ein pneumatisches Werkzeug (20, 220), umfassend:

    ein Gehäuse (22, 222), das eine darin ausgebildete Hohlkammer (23, 223) aufweist und in dem außerdem ein Einlass (24, 224) und ein Auslass (26, 226) ausgebildet sind, wobei jeder vom Einlass und dem Auslass in Fluidverbindung mit der Kammer (23, 223) stehen;

    einen ersten Sensor (30, 230) zum Erfassen eines Zustands, der Werkzeugbenutzung anzeigt, und einen zweiten Sensor (35, 37, 41, 235, 237, 241), der betriebsfähig am Gehäuse angebracht ist, um einen Zustand zu erfassen, der Werkzeugabnutzung anzeigt;

    eine Batterie (32, 232), die im Gehäuse eingerichtet ist;

    einen Mikroprozessor (34, 234), der betriebsfähig mit dem Gehäuse verbunden ist und einen Zeitgeber, RAM, ROM und eine eindeutige Kennung umfasst;

    eine Kommunikationsvorrichtung (39, 239) zum Senden von Daten vom Mikroprozessor an eine Datensammelvorrichtung.


     
    2. Vorrichtung nach Anspruch 1, wobei der erste Sensor eine oder mehrere Komponenten ausgewählt aus Beschleunigungsmessern, Luftdrucksensoren, Hall-Effekt-Sensoren, Vibrationssensoren und Mikrofonen beinhaltet.
     
    3. Vorrichtung nach Anspruch 1, wobei der erste Sensor einen Hall-Effekt-Sensor beinhaltet.
     
    4. Vorrichtung nach Anspruch 1, wobei der zweite Sensor eine oder mehrere Komponenten ausgewählt aus Mikrofonen, Beschleunigungsmessern, Vibrationssensoren und Gesamtnutzungsmessern beinhaltet.
     
    5. Vorrichtung nach Anspruch 1, wobei der Mikroprozessor (34, 234) dafür programmiert ist, sich zwischen Aufzeichnungssitzungen vorübergehend auszuschalten oder in einen Ruhezustand zu versetzen und zu den festgelegten Intervallen aktiv zu werden, um Daten aufzuzeichnen.
     
    6. Pneumatisches Werkzeug, umfassend einen Griff, in dem sich die Vorrichtung nach Anspruch 1 befindet.
     
    7. Verfahren zum Verwenden der Überwachungsvorrichtung für ein pneumatisches Werkzeug nach Anspruch 1, die betriebsfähig an einem pneumatischen Werkzeug angebracht ist, wobei das Verfahren die folgenden Schritte umfasst:

    Erfassen, unter Verwendung eines ersten Sensors, wenn das pneumatische Werkzeug zu einer Anfangszeit T1 aktiviert wird,

    Einschalten eines Mikroprozessors (34, 234) und Beginnen mit dem Betrieb eines Zeitgebers zum Zeitpunkt T1 als Reaktion auf die erfasste Aktivierung des Werkzeugs;

    Erfassen einer Menge an Verschleiß am Werkzeug unter Verwendung eines zweiten Sensors (35, 37, 41, 235, 237, 241), der gleich dem oder verschieden vom ersten Sensor (30, 230) sein kann;

    Fortsetzen des Betriebs des Zeitgebers, während das Werkzeug in einem aktuellen Zyklus betrieben wird;

    Aufzeichnen von Betriebsparametern mindestens einmal pro Stunde während des kontinuierlichen Betriebs des Werkzeugs unter Verwendung mindestens eines dritten Sensors, der ein Umgebungssensor ist;

    Erfassen von Deaktivierung des Werkzeugs zu einem Zeitpunkt T2 am Ende des aktuellen Zyklus unter Verwendung des ersten Sensors;

    Stoppen des Zeitgebers, wenn die Deaktivierung des Werkzeugs erfasst wird; und

    Addieren der Gesamtzeit des aktuellen Zyklus zu einem gespeicherten Wert in nichtflüchtigem Computerspeicher, wobei der gespeicherte Wert die Gesamtnutzungszeit des Werkzeugs repräsentiert.


     
    8. Verfahren nach Anspruch 7, ferner umfassend einen Schritt der Berichterstattung, bei dem Daten, die für die Betriebsparameter des Werkzeugs während des aktuellen Zyklus repräsentativ sind, von der Überwachungsvorrichtung für ein pneumatisches Werkzeug an eine Datensammeleinheit übertragen werden.
     


    Revendications

    1. Appareil de contrôle d'outils d'air (20, 220) comprenant :

    un boîtier (22, 222) ayant une chambre creuse (23, 223) formée à l'intérieur, et ayant également une entrée (24, 224) et une sortie (26, 226) formée à l'intérieur,

    chacune de l'entrée et de la sortie sont en communication fluidique avec la chambre (23, 223) ;

    un premier capteur (30, 230) pour détecter une condition indicative d'une utilisation d'outil et un second capteur (35, 37, 41, 235, 237, 241) fixé de manière fonctionnelle au boîtier pour détecter une condition indicative d'une usure d'outil ;

    une batterie (32, 232) disposée dans le boîtier ;

    un microprocesseur (34, 234) connecté de manière fonctionnelle au boîtier et comprenant un temporisateur, une RAM, une ROM et un identifiant unique ;

    un dispositif de communication (39, 239) pour envoyer des données à partir du microprocesseur jusqu'à un dispositif de collecte de données.


     
    2. Appareil selon la revendication 1, le premier capteur comprenant un ou plusieurs composants choisis parmi des accéléromètres, des capteurs de pression d'air, des capteurs à effet Hall, des capteurs de vibrations et des microphones.
     
    3. Appareil selon la revendication 1, le premier capteur comprenant un capteur à effet Hall.
     
    4. Appareil selon la revendication 1, le second capteur comprenant un ou plusieurs composants choisis parmi des microphones, des accéléromètres, des capteurs de vibrations et des compteurs de consommation totale.
     
    5. Appareil selon la revendication 1, le microprocesseur (34, 234) étant programmé pour se mettre hors tension ou en sommeil temporairement entre des sessions d'enregistrement, et pour se réveiller à des intervalles spécifiés afin d'enregistrer des données.
     
    6. Outil d'air comprenant une poignée ayant dans celle-ci l'appareil selon la revendication 1.
     
    7. Procédé d'utilisation de l'appareil de contrôle d'outils d'air selon la revendication 1, fixé de manière fonctionnelle à un outil d'air, ledit procédé comprenant les étapes de :

    la détection du moment où l'outil d'air est activé à un moment initial T1 au moyen d'un premier capteur, la mise sous tension d'un microprocesseur (34, 234) et la mise en service d'un temporisateur au temps T1 en réponse à l'activation détectée de l'outil ;

    la détection du degré d'usure de l'outil au moyen d'un deuxième capteur (35, 37, 41, 235, 237, 241) qui peuvent être identique ou différent du premier capteur (30, 230) ;

    la poursuite du fonctionnement du temporisateur pendant que l'outil fonctionne au cours d'un cycle actuel ;

    l'enregistrement des paramètres de fonctionnement au moins une fois par heure pendant le fonctionnement continu de l'outil, au moyen d'au moins un troisième capteur qui est un capteur d'environnement ;

    la détection de la désactivation de l'outil à un moment T2 à la fin du cycle actuel au moyen du premier capteur ;

    l'arrêt du temporisateur lorsque la désactivation de l'outil est détectée ; et

    l'addition de la durée totale du cycle actuel à une valeur stockée dans une mémoire non volatile d'ordinateur, où la valeur stockée représente le temps d'utilisation total de l'outil.


     
    8. Procédé selon la revendication 7, comprenant en outre une étape de rapport de transmission de données représentatives des paramètres de fonctionnement de l'outil pendant le cycle actuel de l'appareil de contrôle d'outils d'air à un collecteur de données.
     




    Drawing






































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description