(19)
(11)EP 0 266 953 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
28.02.1990 Bulletin 1990/09

(21)Application number: 87309487.4

(22)Date of filing:  27.10.1987
(51)International Patent Classification (IPC)5F02C 7/232

(54)

Fuel distributing and metering assembly

Kraftstoffverteil- und Dosiereinrichtung

Dispositif de distribution et de dosage de carburant


(84)Designated Contracting States:
FR GB

(30)Priority: 04.11.1986 US 926492

(43)Date of publication of application:
11.05.1988 Bulletin 1988/19

(73)Proprietor: FUEL SYSTEMS TEXTRON INC.
Zeeland Michigan 49464 (US)

(72)Inventors:
  • Halvorsen, Robert M.
    Birmingham Michigan 48010 (US)
  • Bradley, Jerome R.
    Sterling Heights Michigan 48078 (US)
  • Long, Gregory F.
    Canton Michigan 48188 (US)

(74)Representative: Hartley, David et al
Withers & Rogers 4 Dyer's Buildings Holborn
London, EC1N 2JT
London, EC1N 2JT (GB)


(56)References cited: : 
GB-A- 2 158 570
US-A- 3 625 252
US-A- 2 993 338
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a fuel distributing and metering valve assembly and more particularly such a valve assembly for providing a plurality of separate metered fuel streams from a common fuel flow.

    [0002] U.S. Patent No. 2 993 338 issued July 25, 1961 to H.D. Wilsted discloses a fuel spray bar assembly which supplied fuel from an annular fuel manifold extending around the outside of the engine casing and having radially extending tubular spray bars received fuel from the manifold.

    [0003] Our British Patent specification GB-A 2 158 570 discloses a fuel staging and distribution system having a plurality of staging valve assemblies actuated mechanically by a common synchronising ring to distribute and stage fuel flow to each of a plurality of spray bars or bundles of spray bars or fuel nozzles in a gas turbine engine. A fuel nozzle assembly is described which comprises a support strut and fuel injection nozzle on the support strut, the strut having fuel inlet means, chamber means receiving fuel from the fuel inlet means, fuel outlet means in fuel flow relation between the chamber means and the nozzle for supplying fuel thereto, and a valve means in the chamber for controlling fuel to the fuel outlet means, the valve means having a rotary valve member, an orifice relative to which the valve member is rotated to control fuel flow to the fuel outlet means and actuated means connected to the valve member and accessible for actuation outside the strut to rotate the valve member relative to the orifice means. The valve member is a valve disc having a circumferential shut-off and staging groove movable relative to the metering orifices.

    [0004] U.S. Patent No. 2 806 519 issued September 17, 1957 to K.A. Basford, et al discloses a fuel control system for an internal combustion engine with means for compensating for an engine operating variable. The system includes a piston/cylinder actuator which varies the extent of eccentric rotation of a spring biased plate valve relative to multiple fuel passages.

    [0005] U.S. Patent No. 3 625 252 issued December 7, 1971 to T.W. Bermel provides a linearly variable fluidic resistor which includes a rotatable valve, multiple resistive paths between first and second fluid chambers, and separate single flow external output connections for the chambers.

    [0006] According to the present invention, we now propose a fueld distributing and metering valves assembly comprising:

    (a) a valve body having a fuel inlet and an internal chamber which receives fuel from the inlet;

    (b) a movable valve disposed in the chamber and having spaced apart first and second valve orifices for generating first and second fuel flows;

    (c) a valve seat disposed in the chamber and having spaced apart first and second seat orifices relative to which the respective valve orifices are moved by movement of the valve to meter the first and second fuel flows;

    (d) first and second fuel discharge paths in the chamber downstream of the valve seat for receiving and discharging the respective first and second metered fuel flows including first and second upstream discharge passages spaced apart for receiving the respective first and second metered fuel flows from the respective seat orifices and first and second downstream discharge passage nested longitudinally one within the other and displaced transversely relative to at least one of said first and second upstream discharge passages and including a discharge passage transversely interconnecting said at least one of said first and second upstream discharge passages with the respective one of the first and second downstream discharge passage displaced transversely therefrom, and

    (e) means for moving the valve relative to the valve seat.



    [0007] The invention thus includes a fuel distributing and metering valve assembly having a movable valve in a chamber receiving fuel from a source with the valve having multiple valve orifices or openings such as metering slots spaced apart transversely thereon for generating multiple fuel flows from the fuel in the chamber and a valve seat having multiple seat orifices or openings spaced transversely apart and relative to which the valve orifices are moved by movement of the valve to meter each of the multiple fuel flows independently of one another.

    [0008] A fuel discharge path is provided from the valve assembly to a fuel nozzle, fuel spray bar, or other fuel injection device requiring separate multiple fuel flows thereto for discharge as separate multiple fuel flows into a gas turbine engine combustor, afterburner and the like.

    [0009] The fuel discharge path to each such fuel injection device includes multiple upstream fuel discharge passages transversely spaced apart with each passage receiving a respective one of the metered fuel flows from a respective seat orifice and further includes multiple downstream fuel discharge passages nested longitudinally one inside the other to conduct one fuel flow inside another. The nested downstream fuel discharge passages are transversely displaced relative to one or more of the upstream discharge passage and in a preferred embodiment are substantially in line relative to one of the upstream discharge passages.

    [0010] The valve assembly includes a transverse fuel discharge passage inter-connecting each of the upstream discharge passages to the respective associated transversely displaced downstream nested discharge passages.

    [0011] In a preferred embodiment of the invention, the innermost downstream discharge passage is substantially coaxial with its associated upstream discharge passage and includes an upstream open end to receive fuel directly from the upstream discharge passage whereas the other downstream discharge passage nested around the innermost downstream discharge passage includes an upstream end which located downstream of the open end of the innermost passage and is inter-connected by a downstream transverse discharge passage to its associated upstream discharge passage, which is transversely displaced relative thereto.

    [0012] In another preferred embodiment of the invention, the fuel valve assembly includes a pair of fuel nozzles on a support strut, each requiring a primary (low) flow and secondary (high) flow fuel stream. The valve assembly includes a valve member with two pairs of primary and secondary orifices and a valve seat member with two pairs of primary and secondary orifices for generating two sets of metered primary and secondary fuel flows from a common source of fuel in the chamber for discharge of one set to each nozzle. The fuel discharge path for each of the fuel nozzles includes primary and secondary upstream discharge passages transversely spaced apart and longitudinally nested primary and secondary downstream discharge passages with the secondary discharge passage being outside or around the primary discharge passage and displaced transversely from its associated upstream secondary discharge passage and interconnected therewith by a transverse discharge passage. The innermost primary downstream discharge passage is coaxially aligned beneath the associated primary upstream discharge passage to receive fuel therefrom, the fuel receiving end of the primary downstream discharge passage being upstream relative to the fuel receiving end of the secondary downstream passage receiving fuel from the transverse passage.

    [0013] The multiple upstream and downstream fuel discharge passages are preferably provided in inserts positioned successively beneath the valve seat and the nested downstream discharge passages are formed by hollow tubes positioned one within the other with the inner tube extending upstream farther than those therearound.

    [0014] An embodiment of this invention will now be described by way of example with reference to the accompanying drawings in which:

    Figure 1 is a plan view of a fuel distributing and metering assembly of the invention;

    Figure 2 is a longitudinal cross-sectional view along line 2-2 in Figure 1;

    Figure 3 is an enlarged longitudinal cross-sectional view of Figure 2;

    Figure 4 is a plan view of the rotary valve in the open position;

    Figure 5 is a plan view of the rotary valve in the closed position;

    Figure 6 is a section taken along line 6-6 in Figure 2;

    Figure 7 is a section taken along line 7-7 in Figure 2;

    Figure 8 is a section taken along lines 8-8 in Figure 2;

    Figure 9 is a section taken along lines 9-9 in Figure 2;

    Figure 10 is a schematic illustration of a fuel control system employing the fuel distributing and metering assembly shown in the above Figures; and

    Figure 11 is a graph of fuel flow versus rotary valve position for the assembly.



    [0015] With reference to Figure 10, a fuel supply system for a gas turbine engine is shown including a fuel distributing and metering assembly 10 having fuel injector nozzles 12, 14 disposed within the combustor 16 of a gas turbine engine. The assembly 10 includes a flange 10a mounted on the combustor or other casing 11 of the engine as is known. The pilot nozzle 12 supplies relatively low fuel flow for low engine power operation while the main nozzle 14 supplies relatively high fuel flow for high engine power operation. As will become apparent hereinafter, the pilot nozzle operates initially when the assembly 10 is actuated by synchronising ring 22 and the main nozzle 14 subsequently operates in conjunction with the pilot nozzle to provide additional fuel flows to the combustor.

    [0016] Although not shown, those skilled in the art will appreciate that a plurality of assemblies 10 are disposed circumferentially around the combustor and each assembly includes and actuated arm 24 connected to synchronising ring 22 so that all of the assemblies are actuated in unison by the ring as controlled by a suitable electrohydraulic servo control (not shown) which forms no part of this invention.

    [0017] Each fuel distributing and metering assembly 10 has a single fuel inlet 26 connected by a fuel conduit 32 to a single common fuel manifold 34 supplied fuel under pressure by pump 36 and valve 37 through conduit 38.

    [0018] With respect to the fuel distributing and metering assembly of the invention, reference is made initially to Fig. 3 where it can be seen each assembly 10 includes an elongate valve body 40 having the flange 10a and inlet fitting 26 integrally thereon as shown. Inside the valve body 10 is a longitudinal cylindrical chamber 42 which houses the internal valve components as now described.

    [0019] Extending through a top cap 44 sealed to the end of the valve body by o-ring 46 is a rotary valve 50 having a valve plate 52 and longitudinally extending shaft 54 rotatable about longitudinal axis A through the chamber 42. It is apparent the upper end of the shaft 54 extends outside the cap 44 and is connected to actuated arm 24 for rotation of the shaft 54 by movement of the synchronizing ring which is imparted to the shaft by actuated arm 24.

    [0020] An o-ring seal 60 is disposed around the shaft 54 between cap 44 and bushing 62 to prevent fuel leakage therepast. The lower end of shaft 54 is guideably mounted on pin 64 also coaxial with axis A for rotation relative thereto. Between the lower and upper ends of the shaft 54 is a spring 66. Spring 66 bears upwardly against annular fixed plate 68 and downwardly against fixed annular collar 70 so as to bias the valve plate 52 downwardly against the valve seat 72 to effect positive metal-to-metal sealing.

    [0021] As shown, the upper portion 42a of longitudinal chamber 42 receives fuel from inlet fitting 26. A cylindrical tubular fuel filter 74 is disposed in upper chamber 42a concentric with the longitudinal axis A to filter debris and foreign matter from the fuel prior to its entering chamber 42a.

    [0022] Valve seat 72 is carried downstream of valve plate 52 on a first cylindrical disc insert 76 and first insert is carried in turn on second cylindrical disc insert 78 in chamber 42. Pin 64 is received in bore 65 in the first insert. As shown, the second insert 78 is supported axially or longitudinally on annular inner shoulder 80 of the valve body. The first insert 76 includes a depending annular flange 82 received in annular recess of the second insert. The first insert also includes a circumferential groove 84 in which an o-ring seal 86 is disposed to seal against fuel leakage between the circumference of the first insert and the wall defining cylindrical chamber 42.

    [0023] Mounted upstream atop the first insert 76 is the cylindrical disc shaped valve seat 72. The valve seat includes a depending outer annular flange received in recess 92 in the first insert. As shown, the valve seat 72 is stationary in the chamber while the rotary valve 50 is rotatable relative thereto.

    [0024] The valve plate 52 of rotary valve 50 includes a primary pilot orifice 100, secondary pilot orifice 102, primary main orifice 104 and secondary main orifice 106 (see Figure 6) extending through the longitudinal or axial thickness, i.e. from one side (outer upstream side in communication with fuel reservoir chamber 42a) of the valve plate to the other side (inner downstream side) in positive sealing contact with the inner side of the valve seat so that fuel flows through these orifices to generate four fuel flow streams, two fuel streams (primary and secondary) for each nozzle 12, 14. In effect, the valve orifices 100-106 generate four fuel flow streams from the fuel in chamber or reservoir 42a.

    [0025] The valve plate 52 also includes a groove 111 partially around the circumference to receive a stop pin 113 projecting upwardly from the valve seat 72 to control the maximum rotary motion of the valve 50. For example, Figure 4 shows the valve full open position as will be explained with upstanding stop pin 113 abutted against radial shoulder 111 a of groove 111 and Figure 5 shows the valve full closed position with stop pin 113 abutted against radial shoulder 111 b. In this way, the rotary stroke of valve 50 is controlled.

    [0026] As shown best in Figure 6, the valve orifices 100-106 have different configurations to control fuel flow rate differently for each nozzle 12, 14 and for each of the primary and secondary fuel flow rates to each nozzle 12, 14. The orifices are angularly and transversely spaced apart about the same circle from axis A. The primary pilot orifice 100 and primary main orifice 104 are arcuate narrow slots while the secondary pilot orifice 102 is a wider arcuate slot and the secondary main orifice 106 is a cylindrical bore. Of course, as those skilled in the art will appreciate, the length, width and location of the orifice 100-106 can be varied to provide different fuel flows.

    [0027] The valve seat 72 includes four orifices 110, 112, 114 and 116 in its inner side mating with the inner side of the valve plate 52 and relative to which the valve orifices 100-106 are moved by rotation of valve 50 to meter the four fuel flow streams as the orifices 100-106 move. The valve seat orifices 110-116 are shown alone best in Figure 7 and relative to valve orifices 100-106 in Figures 4 and 5.

    [0028] The seat orifices 110-116 extend through the longitudinal thickness of the valve seat 72 into respective larger cylindrical discharge bores 120, 122, 124, 126 angularly and transversely spaced on the outer or downstream side thereof, see Figure 2 and 7 beneath the respective seat orifice.

    [0029] When the valve 50 is in the closed position of Figure 5 no fuel flow passes through any of the valve orifices 100-106 or seat orifices 110-116. In full open position of Figure 4, the primary pilot fuel flow passes through valve orifice 100, seat orifice 110 and into discharge bore 120 in the valve seat. Secondary fuel flow passes through valve orifice 102, seat orifice 112 and into discharge bore 122. Primary main fuel flow passes through valve orifice 104, seat orifice 114 and into discharge bore 124. Secondary main fuel flow passes through valve orifice 106, seat orifice 116 and into discharge bore 126.

    [0030] Referring to Figure 5, which shows the valve closed position it is clear that counterclockwise rotation of the rotary valve 50 will cause the primary pilot orifice 100 to gradually register with primary seat orifice 110 before any of the other orifices are registered to provide metered primary fuel to pilot nozzle 12 first. Following flow of the primary pilot fuel flow past orifices 100, 110 and thereupon further rotation of the valve, the secondary pilot orifice 102 will gradually register with primary seat orifice 112 to provide metered secondary fuel to pilot nozzle 12 in addition to the primary fuel flow.

    [0031] Upon slightly further counterclockwise rotation of the valve, the primary main orifice 104 will gradually register with primary main seat orifice 114 to provide metered primary fuel flow to main nozzle 14. Still further rotation of the valve in that direction will gradually register secondary main orifice 106 with secondary main seat orifice 116 to provide metered secondary fuel flow in addition to primary fuel flow to main nozzle 14 while pilot nozzle 12 still receives its primary and secondary fuel flows.

    [0032] Those skilled in the art will understand that the four fuel flows are metered to a maximum flow rate as the valve orifices 100-106 gradually register with and gradually expose seat orifices 110-116 to the fuel flow rate through the valve orifices until maximum flow rate is achieved for each fuel flow at the valve open position of Figure 4.

    [0033] The fuel flow curve versus rotary position of the valve 50 for the orifices shown in the Figures is illustrated in Figure 11. Flow is plotted in PPH (pints/hour: equivalent to pints x 0.5638 litres/hour.

    [0034] As mentioned, downstream discharge bores 120-126 are aligned beneath their respective seat orifices 110-116 to receive fuel flow therefrom Figure 7. Aligned beneath discharge bores 120-126 in an angularly and transversely spaced array are cylindrical angular spaced discharge bores 130, 132, 134, 136 in the first insert, e.g. see Figure 3, 4 and 8. First insert 76 includes cylindrical plugs 137 and 138 in the respective primary pilot and primary main discharge bores 130 and 134. Each plug 137, 138 has an open upper end 137a, 138a to receive primary pilot and primary main fuel flow from the respective discharge plug 137, 138 to pass through longitudinal cylindrical discharge passages 137b, 138b in the plugs. Passages 137b, 138b in turn communicate with the open upper ends 150a, 154a of primary fuel discharge tubes 150, 154 received in larger diameter counterbores in the downstream side of each plug as shwon in Figures 2 and 8. Each plug 137, 138 includes an o-ring seal around its circumference for preventing fuel leakage therepast.

    [0035] As shown best in Figure 3, the downstream end of each plug 137, 138 is tapered conically inwardly and the fuel tubes 150, 154 are brazed or welded to the respective downstream end.

    [0036] The secondary pilot and main fuel discharge bores 132, 136 extend through the axial thickness of the first insert 76 to the downstream side thereof without any plugs therein, Figure 8.

    [0037] As will be explained later, primary pilot and primary main fuel flow through the inner downstream discharge passages in tubes 150, 154 respectively, flows through the inner tube passages in strut portion 10b of the valve body to the pilot and main nozzles 12, 14 for discharge into the combustor.

    [0038] On the other hand, secondary pilot and main fuel flow discharges from discharge bores 132, 136 in the first insert 76 into transverse discharge slots 160, 162 in the upstream side of the second insert 78, see Fig. 9. Transverse slots 160, 162 are machined into the upstream side of insert 78 and include a radially defined portion 160a, 162a whose center axis is substantially coaxial with that of the respective discharge bore 132, 136 in the upstream first insert 76. The slots 160, 162 also include a straight sided rectilinear portion 160b, 162b extending transversely from the radial portion to downstream discharge bores 170, 172 in the upstream side of the second insert through which tubes 150, 152 extend as shown coaxial therewith.

    [0039] Disposed in each downstream discharge bore 170, 172 are plugs 180, 182, respectively, through which tubes 150,154 also extend. The plugs 180,182 are disposed downstream or below the upstream side to a selected depth or transverse plane generally the same or co-planar as the selected depth or plane as the bottom of transverse slots 160, 162. The plugs 180, 182 include longitudinal cylindrical passages 180a, 182a through which the tubes 150, 154 extend and which define outer annular secondary pilot and main fuel downstream discharge passages 180b, 182b around tubes 150, 154 respectively to receive the respective secondary pilot or main fuel flow through transverse slots 160, 162.

    [0040] Each plug 180, 182 includes a larger diameter counterbore in the downstream end thereof receiving the open upstream end of the respective secondary pilot and main fuel tubes 152, 156 as shown. The secondary fuel flowing through outer annular passages 180b, 182b is received in the respective tube 152, 156 and flows through the tubes in the outer annular downstream discharge fuel passages around fuel in tubes 150, 154 through strut portion 1 Ob to the respective pilot or main nozzle 12, 14.

    [0041] As shown best in Figures 2 and 9, the downstream discharge passage 180b and tube 150 for primary and secondary pilot fuel for pilot nozzle 12 are nested longitudinally one inside the other and are in communication with longitudinally nested tubes 150, 152. Similarly, downstream discharge passage 182b and tube 154 for primary and secondary main fuel for main nozzle 14 are nested longitudinally one inside the other and are in communication with longitudinally nested tubes 154, 156. Nesting of the primary and secondary pilot discharge passages and primary and secondary main discharge passages longitudinally one inside the other thus begins at a transverse plane generally coincident with the upstream end of plugs 180, 182.

    [0042] Each plug 180, 182 includes a circumferential o-ring 181, 183 for fuel sealing purposes.

    [0043] As shown in Figure 2, longitudinally nested tubes 150, 152 and 154, 156 extend through strut portion 10b to respective fuel nozzles 12, 14 which may be of known construction for injecting pilot and main fuel into the combustor.


    Claims

    1. A fuel distributing and metering valve assembly (10) comprising:

    a) a valve body (40) having a fuel inlet (26) and an internal chamber (42) which receives fuel from the inlet;

    (b) a movable valve (50) disposed in the chamber (42) and having spaced apart first (100) and second (102) valve orifices for generating first and second fuel flows;

    c) a valve seat (72) disposed in the chamber (42) and having spaced apart first (110) and second (112) seat orifices relative to which the respective valve orifices are moved by movement of the valve (50) to meter the first and second fuel flows;

    d) first and second fuel discharge paths in the chamber downstream of the valve seat for receiving and discharging the respective first and second metering fuel flows including first (120, 130) and second (122, 132) upstream discharge passages spaced apart for receiving the respective first and second metered fuel flows from the respective seat orifices and first (150) and second (180b) downstream discharge passages nested longitudinally one within the other and displaced transversely relative to at least one (132) of said first and second upstream discharge passages and including a discharge passage (160) transversely interconnecting said at least one of said first and second upstream discharge passages with the respective one (180b) of the first and second downstream discharge passages displaced transversely therefrom, and

    e) means (24) for moving the valve relative to the valve seat.


     
    2. An assembly according to claim 1 wherein the longitudinally nested first (150) and second (180b) downstream discharge passages are in general alignment downstream of the other (130) of the first and second upstream discharge passages.
     
    3. An assembly according to claim 2 wherein the longitudinally nested first (150) and second (180b) downstream discharge passages are substantially coaxial with the other (13) of the first and second upstream discharge passages.
     
    4. An assembly according to claim 2 wherein the longitudinally nested first (150) and second (180b) downstream discharge passages are in general alignment with the respective one (120, 130) of the first and second upstream discharge passages conducting fuel to the inner (150) one of the first and second downstream discharge passages.
     
    5. An assembly according to any one of claims 1 to 4 wherein the inner one (150) of the longitudinally nested first (150) and second (180b) downstream discharge passages includes an open end upstream of the open end of the outer one (108b) thereof.
     
    6. An assembly according to claim 5 wherein the transverse discharge passage (160) extends transversely between said at least one (132) of said first and second upstream discharge passages and said outer one (180b) of said first and second downstream discharge passages.
     
    7. An assembly according to Claim 6 wherein the transverse discharge passage (160) is generally co-planar with the upstream open end of the outer one (180b) of said first and second downstream discharge passages so as to convey fuel thereto.
     
    8. An assembly according to any one of claims 1 to 7 wherein the first (130) and second (132) upstream discharge passages are formed in a first insert (76) downstream of the valve seat (72) and the longitudinally nested first (150) and second (180b) downstream discharge passages are formed in a second insert (78) downstream of the first insert (76) with the transverse discharge passage (160) being defined between the first and second insert.
     
    9. An assembly according to claim 8 wherein the transverse discharge passage (160) is formed in the upstream side of the second insert (78) facing the downstream side of the first insert (76).
     
    10. An assembly according to claim 8 wherein the first (130) and second (132) upstream discharge passages and first (150) and second (180b) downstream discharge passages extend longitudinally relative to the chamber.
     
    11. An assembly according to claim 8 wherein the first (150) and second (180b) downstream passages extend downstream from the second insert (78) as longitudinally nested inner (150) and outer (152) tubes.
     
    12. An assembly according to any one of claims 1 to 11 wherein two pairs of each of the said first (100, 104) and second (102, 106) valve orifices, first (110, 114) and second (112,116) seat orifices and first and second discharge paths are present.
     
    13. An assembly according to any one of claims 1 to 12 wherein the means for moving the valve comprises a mechanical actuator (24).
     
    14. An assembly according to any one of claims 1 to 13 wherein the actuator is a rotary actuator arm (24) to rotate the valve.
     
    15. A fuel-distributing and metering assembly according to claim 1 which comprises:

    a) a valve body (40) having a single upstream fuel inlet (26) and a downstream strut portion with a fuel nozzle (12) thereon for discharging separate primary and secondary fuel streams, said valve body (40) having a longitudinal chamber (42), the upstream portion of which receives fuel from the inlet,

    b) a rotary valve (50) in the upstream portion and having angularly and transversely spaced primary (100) and secondary (102) valve orifices for generating separate primary and secondary fuel flows for the nozzle (12);

    c) a valve seat (72) downstream of the rotary valve (50) in the chamber (42) and having angularly and transversely spaced primary (110) and secondary (112) seat orifices relative to which the respective primary (100) and secondary (102) valve orifices are angularly displaced by rotary movement of the valve (50) to meter each of the separate primary and secondary fuel flows;

    d) a first insert (76) downstream of the valve seat ( 72) in the chamber (42) and having angularly and transversely spaced primary (130) and secondary (132) longitudinal fuel discharge passages aligned with the respective primary (110) and secondary (112) seat orifices for receiving the respective metered primary and secondary fuel flows;

    e) a second insert (78) downstream of the first insert (76) in the chamber (42) and having longitudinally nested inner primary (180b) and outer secondary (150) fuel discharge passages aligned with the primary fuel discharge passage (130) of the first insert and transversely displaced from the secondary fuel discharge passage (132) of the first insert (76) and further having a transverse discharge (160) passage extending from a portion thereof aligned downstream relative to the secondary fuel discharge passage (132) in the first insert (76) to the outer secondary fuel passage (180b) of the second insert (78) to conduct secondary fuel thereto, the inner fuel discharge passage (150) extending upstream to receive fuel from the primary fuel discharge passage (130) of the first insert (76) and the outer secondary fuel passage (180b) receiving secondary fuel downstream therefrom the transverse passage (160) in the second insert (78); and

    f) means (24) for rotating the rotary valve.


     
    16. An assembly according to claim 15 wherein the inner primary fuel passage (150) of the second insert (78) comprises an inner tube (150) and the outer secondary fuel passage comprises an annular passage (180b) formed by an outer tube (152) concentrically disposed around and spaced from the inner tube (150).
     
    17. An assembly according to Claim 16 wherein the inner tube (150) extends upstream to the first insert (76) and includes an open upstream end received in a plug member (137) therein forming the longitudinal primary fuel passage (130) therein.
     
    18. An assembly according to claim 16 wherein the inner (150) and outer (152) tubes extend in nested relation downstream of the second insert (78) through the strut portion to the nozzle (12).
     
    19. An assembly according to claim 16 wherein the outer tube (152) includes an open upstream end in the second insert (78) received in a plug member (180) therein forming an annular outer secondary fuel passage around the inner tube (15).
     
    20. An assembly according to any one of claims 15 to 19 further including a second fuel nozzle (14) on the strut portion for discharging separate primary and secondary fuel flows and wherein the rotary valve (50) includes an additional second set of primary (104) and secondary (106) valve orifices, the valve seat (72) includes a second set of primary (114) and secondary (116) seat orifices, the first insert (76) includes a second set of primary (134) and secondary (136) longitudinal fuel discharge passages and the second insert (78) includes a second set of primary (154) and secondary (182b) fuel discharge passages and a second transverse discharge passage (162) with the second set functioning to provide the second nozzle with separate metered primary and secondary fuel flows.
     


    Ansprüche

    1. Ventilanordnung (10) zur Verteilung und Dosierung von Brennstoff mit

    a) einem Ventilkörper (40), der einen Brennstoffeinlaß (26) und eine innere Kammer (42) aufweist, die den Brennstoff von dem Einlaß aufnimmt;

    b) einem beweglichen Ventil (50), das in der Kammer (42) angeordnet ist und voneinander im Abstand angeordnete erste (100) und zweite (102) Ventilöffnungen zur Erzeugung eines ersten und eines zweiten Brennstoffstroms aufweist;

    c) einem Ventilsitz (72), der in der Kammer (42) angeordnet ist und im Abstand voneinander angeordnete erste (110) und zweite (112) Sitzöffnungen aufweist, bezüglich derer die jeweiligen Ventilöffnungen durch Bewegung des Ventils (50) zur Dosierung des ersten und zweiten Brennstoffstroms bewegt werden;

    d) erste und zweite Brennstofförderwege in der Kammer stromab von dem Ventilsitz für die Aufnahme und Abgabe des ersten bzw. zweiten dosierten Brennstoffstroms mit einem ersten Stromaufförderkanal (120, 130) und einem zweiten Stromaufförderkanal (122, 132), die im Abstand für die Aufnahme des ersten bzw. zweiten dosierten Brennstoffstroms von den jeweiligen Sitzöffnungen angeordnet sind, und mit einem ersten Stromabförderkanal (150) und einem zweiten Stromabförderkanal (180b), die Längsrichtung ineinander angeordnet und in Querrichtung wenigstens relativ zu einem Kanal (132) des ersten und zweiten Stromaufförderkanals verschoben sind und einen Förderkanal (160) einschließen, der wenigstens einen Kanal der ersten und zweiten Stromaufförderkanäle mit dem jeweiligen einen Kanal (180b) der ersten und zweiten Stromabförderkanäle verbindet, welcher in Querrichtung davon verschoben ist, und

    e) Einrichtungen (24) zum Bewegen des Ventils relativ zum Ventilsitz.


     
    2. Anordnung nach Anspruch 1, bei welcher der erste Stromabförderkanal (150) und der zweite Stromabförderkanal (180b), die in Längsrichtung ineinander angeordnet sind, stromab von dem anderen Kanal (130) des ersten und zweiten Stromaufförderkanals insgesamt fluchtend ausgerichtet sind.
     
    3. Anordnung nach Anspruch 2, bei welcher der erste Stromabförderkanal (150) und der zweite Stromabförderkanal (180b), die in Längsrichtung ineinander angeordnet sind, im wesentlichen koaxial zu dem anderen Kanal (13) des ersten und zweiten Stromaufförderkanals ist.
     
    4. Anordnung nach Anspruch 2, bei welcher der erste Stromabförderkanal (150) und der zweite Stromabförderkanal (180b), die in Längsrichtung ineinander angeordnet sind, insgesamt fluchtend zu dem jeweiligen einen Kanal (120, 130) der ersten und zweiten Stromaufförderkanäle ausgerichtet sind, der Brennstoff zu dem inneren Kanal (150) der ersten und zweiten Stromabförderkanäle führt.
     
    5. Anordnung nach einem der Ansprüche 1 bis 4, bei welcher der innere Kanal (150) des ersten Stromabförderkanals (150) und des zweiten Stromabförderkanals (180b), die in Längsrichtung ineinander angeordnet sind, ein offenes Ende stromauf von dem offenen Ende des äußeren Kanals (108b) aufweist.
     
    6. Anordnung nach Anspruch 5, bei welcher der Querförderkanal (160) sich quer zwischen wenigstens einem Kanal (132) der ersten und zweiten Stromaufförderkanäle und dem äußeren Kanal (180b) der ersten und zweiten Stromabförderkanäle erstreckt.
     
    7. Anordnung nach Anspruch 6, bei welcher der Querförderkanal (160) insgesamt koplanar zu dem stromauf befindlichen offenen Ende des äußeren Kanals (180b) der ersten und zweiten Stromabförderkanäle ist, so daß Brennstoff dorthin gefördert wird.
     
    8. Anordnung nach einem der Ansprüche 1 bis 7, bei welcher der erste Stromaufförderkanal (130) und der zweite Stromaufförderkanal (132) in einem ersten Einsatz (76) stromab vom Ventilsitz (72) ausgebildet sind, und der erste Stromabförderkanal (150) und der zweite Stromabförderkanal (180b), die in Längsrichtung ineinander angeordnet sind, in einem zweiten Einsatz (78) stromab von dem ersten Einsatz (76) ausgebildet sind, wobei der Querförderkanal (160) zwischen dem ersten und zweiten Einsatz ausgebildet ist.
     
    9. Anordnung nach Anspruch 8, bei welcher der Querförderkanal (160) in der Stromaufseite des zweiten Einsatzes (78) ausgebildet ist, die der Stromabseite des ersten Einsatzes (76) zugewandt ist.
     
    10. Anordnung nach Anspruch 8, bei welcher sich der erste Stromaufförderkanal (130) und der zweite Stromaufförderkanal (132) sowie der erste Stromabförderkanal (150) und der zweite Stromabförderkanal (180b) sich in Längsrichtung relativ zu der Kammer erstrecken.
     
    11. Anordnung nach Anspruch 8, bei welcher sich der erste Stromabförderkanal (150) und der zweite Stromabförderkanal (180b) stromab von dem zweiten Einsatz (78) als in Längsrichtung ineinander angeordnete innere (150) und äußere (152) Rohre erstrecken.
     
    12. Anordnung nach einem der Ansprüche 1 bis 11, bei welcher zwei Paare von jeder der ersten Ventilöffnung (100, 104) und der zweiten Ventilöffnung (102, 106) der ersten Sitzöffnung (110, 114) und der zweiten Sitzöffnung (112, 116) sowie der ersten und zweiten Förderwege vorhanden sind.
     
    13. Anordnung nach einem der Ansprüche 1 bis 12, bei welcher die Einrichtungen zum Bewegen des Ventils eine mechanische Betätigungseinrichtung (24) aufweisen.
     
    14. Anordnung nach einem der Ansprüche 1 bis 13, bei welcher die Betätigungseinrichtung ein Drehbetätigungsarm (24) zur Drehung des Ventils ist.
     
    15. Anordnung zur Verteilung und Dosierung von Brennstoff nach Anspruch 1 mit

    a) einem Ventilkörper (40), der einen einzigen Stromaufbrennstoffeinlaß (26) und einen Stromabverstrebungsabschnitt mit einer Brennstoffdüse (12) daran zum Fördern von gesonderten primären und sekundären Brennstoffströmen aufweist, wobei der Ventilkörper (40) eine längsverlaufende Kammer (42) aufweist, deren Stromaufabschnitt Brennstoff von dem Einlaß aufnimmt,

    b) einem Drehventil (50) in dem Stromaufabschnitt, das im Winkel und in Querrichtung im Abstand angeordnete primäre (100) und sekundäre (102) Ventilöffnungen zur Erzeugung gesonderter primärer und sekundärer Brennstoffströme für die Düse (12) aufweist,

    c) einem Ventilsitz (72) stromab von dem Drehventil (50) in der Kammer (42), der im Winkel und in Querrichtung im Abstand angeordnete primäre (110) und sekundäre (112) Sitzöffnungen aufweist, bezüglich derer die primären (100) und sekundären (102) Ventilöffnungen im Winkel durch die Drehbewegung des Ventils (50) verschoben sind, um jeden der gesonderten primären und sekundären Brennstoffströme zu dosieren,

    d) einem ersten Einsatz (76) stromab von dem Ventilsitz (72) in der Kammer (42), der im Winkel und in Querrichtung im Abstand angeordnete primäre (130) und sekundäre (132) in Längsrichtung verlaufende Brennstofförderkanäle aufweist, die zu den primären (110) und sekundären (112) Sitzöffnungen für die Aufnahme des dosierten primären bzw. sekundären Brennstoffstroms fluchtend ausgerichtet sind,

    e) einem zweiten Einsatz (78) stromab von dem ersten Einsatz (76) in der Kammer (42), der in Längsrichtung ineinander angeordnete innere primäre (180b) und äußere sekundäre (150) Brennstofförderkanäle, die fluchtend zu dem primären Brennstofförderkanal (130) des ersten Einsatzes ausgerichtet und in Querrichtung von dem sekundären Brennstofförderkanal (132) des ersten Einsatzes (76) verschoben sind, und weiterhin einen Querförderkanal (160) aufweist, der sich von einem Abschnitt davon, welcher fluchtend stromab bezüglich des sekundären Brennstofförderkanals (132) in dem ersten Einsatz (76) ausgerichtet ist, zu dem äußeren sekundären Brennstoffkanal (180b) des zweiten Einsatzes (78) erstreckt, um sekundären Brennstoff dorthin zu leiten, wobei sich der innere Brennstofförderkanal (150) stromauf erstreckt, um Brennstoff von dem primären Brennstofförderkanal (130) des ersten Einsatzes (76) und dem äußeren sekundären Brennstoffkanal (180b) aufzunehmen, der stromab von dem Querkanal (160) in den zweiten Einsatz (78) sekundären Brennstoff aufnimmt und

    f) Einrichtungen (24) zum Drehen des Drehventils.


     
    16. Anordnung nach Anspruch 15, bei welcher der innere primäre Brennstoffkanal (150) des zweiten Einsatzes (78) ein inneres Rohr (150) aufweist und der äußere sekundäre Brennstoffkanal einen Ringkanal (180b) aufweist, der von einem äußeren Rohr (152) gebildet wird, das konzentrisch um das Ölrohr (150) und im Abstand davon angeordnet ist.
     
    17. Anordnung nach Anspruch 16, bei welcher das innere- Rohr (150) sich stromauf zu dem ersten Einsatz (76) erstreckt und ein offenes Stromaufende hat, das in einem Zapfenelement (137) aufgenommen ist und den längsverlaufenden primären Brennstoffkanal (130) darin bildet.
     
    18. Anordnung nach Anspruch 16, bei welchem das innere Rohr (150) und das äußere Rohr (152) sich in einer ineinander angeordneten Beziehung stromab von dem zweiten Einsatz (78) durch den Verstrebungsabschnitt zu der Düse (12) erstreckt.
     
    19. Anordnung nach Anspruch 16, bei welcher das äußere Rohr (152) ein offenes Stromaufende in dem zweiten Einsatz (78) hat, das in einem Zapfenelement (180) darin aufgenommen ist, das einen ringförmigen äußeren sekundären Brennstoffkanal um das innere Rohr (15) herum bildet.
     
    20. Anordnung nach einem der Ansprüche 15 bis 19, welche weiterhin eine zweite Brennstoffdüse (14) an dem Verstrebungsabschnitt zum Fördern von gesonderten primären und sekundären Brennstoffströmen aufweist, wobei das Drehventil (50) einen zusätzlichen zweiten Satz von primären (104) und sekundären (106) Ventilöffnungen aufweist, der Ventilsitz (72) einen zweiten Satz von primären (114) und sekundären (116) Sitzöffnungen hat, der erste Einsatz (76) einen zweiten Satz von primären (134) und sekundären (136) längsverlaufenden Brennstofförderkanälen aufweist und der zweite Einsatz (78) einen zweiten Satz von primären (154) und sekundären (182b) Brennstofförderkanälen und einen zweiten Querförderkanal (162) aufweist, wobei der zweite Satz so wirkt, daß die zweite Düse mit gesonderten dosierten primären und sekundären Brennstoffströmen versorgt wird.
     


    Revendications

    1. Ensemble (10) formant valve de distribution et de mesure de combustible comprenant:

    a) un corps de valve (40) comportant une entrée de combustible (26) et une chambre interne (42) qui reçoit le combustible de l'entrée;

    b) une valve mobile (50) disposée dans la chambre (42) et comportant, espacés l'un de l'autre, un premier (100) et un second (102) orifices de valve pour engendrer des premier et second débits de combustible;

    c) un siège de valve (72) disposé dans la chambre (42) et comportant, espacés l'un de l'autre, un premier (110) et un second (112) orifices de siège par rapport auxquels les orifices de valve correspondants sont déplacés par le mouvement de la valve (50) pour mesurer les premier et second débits de combustible;

    d) des premier et second trajets de décharge de combustible dans la chambre en aval du siège de valve pour recevoir et décharger les premier et second débits de fluide mesuré correspondants comportant des premiers (120, 130) et des seconds (122, 132) passages de décharge amont espacés les uns des autres pour recevoir les premier et second débits de combustible mesuré correspondants provenant des orifices de siège correspondants et des premier (150) et second (180b) passages de décharge aval emboîtés longitudinalement l'un à l'intérieur de l'autre et déplacés transversalement par rapport à au moins un (132) desdits premier et second passages de décharge amont et comportant un passage de décharge (160) réalisant une interconnexion transversale entre au moins l'un desdits premier et second passages de décharge amont avec celui qui correspond (180b) des premier et second passages de décharge aval déplacés transversalement par rapport à ces derniers et

    e) des moyens (24) pour déplacer la valve par rapport au siège de valve.


     
    2. Ensemble selon la revendication 1 dans lequel les premier (150) et second (180b) passages de décharge aval emboîtés longitudinalement sont sensiblement en alignement vers l'aval de l'autre (130) des premier et second passages de décharge amont.
     
    3. Ensemble selon la revendication 2 dans lequel les premier (150) et second (180b) passages de décharge aval emboîtés longitudinalement sont sensiblement coaxiaux par rapport à l'autre (130) des premier et second passages de décharge amont.
     
    4. Ensemble selon la revendication 2 dans lequel les premier (150) et second (180b) passages de décharge aval emboîtés longitudinalement sont sensiblement en alignement avec le passage correspondant (120, 130) des premier et second passages de décharge amont conduisant le combustible à celui qui se trouve à l'intérieur (150) des premier et second passages de décharge aval.
     
    5. Ensemble selon l'une quelconque des revendications 1 à 4 dans lequel celui qui se trouve à l'intérieur (150) des premier (150) et second (180b) passages de décharge aval emboîtés longitudinalement comporte une extrémité ouverte en amont de l'extrémité ouverte de celui d'entre eux (108b) qui se trouve à l'extérieur.
     
    6. Ensemble selon la revendication 5 dans lequel le passage de décharge transversal (160) s'étend transversalement entre au moins un (132) desdits premier et second passages de décharge amont et ledit passage extérieur (180b) desdits premier et second passages de décharge aval.
     
    7. Ensemble selon la revendication 6 dans lequel le passage de décharge transversal (160) est sensiblement dans un plan qui comporte l'extrémité ouverte amont de celui qui se trouve à l'extérieur (180b) desdits premier et second passages de décharge aval de façon à y transférer le fluide.
     
    8. Ensemble selon l'une quelconque des revendications 1 à 7 dans lequel les premier (130) et second (132) passages de décharge amont sont réalisés dans une première pièce rapportée (76) située en aval du siège de valve (72) et les premier (150) et second (180b) passages de décharge aval emboîtés longitudinalement sont réalisés dans une seconde pièce rapportée (78) en aval de la première pièce rapportée (76), le passage de décharge transversal (160) étant défini entre les première et seconde pièces rapportées.
     
    9. Ensemble selon la revendication 8 dans lequel le passage de décharge transversal (160) est réalisé dans le côté amont de la seconde pièce rapportée (78) en vis-à-vis du côté aval de la première pièce rapportée (76).
     
    10. Ensemble selon la revendication 8 dans lequel les premier (130) et second (132) passages de décharge amont et les premier (150) et second (180b) passages de décharge aval s'étendent longitudinalement par rapport à la chambre.
     
    11. Ensemble selon la revendication 8 dans lequel les premier (150) et second (180b) passages aval s'étendent en aval par rapport à la seconde pièce rapportée (78) de même que par rapport aux tubes interne (150) et externe (152) emboîtés longitudinalement.
     
    12. Ensemble selon l'une quelconque des revendications 1 à 11 dans lequel sont présents deux paires de chacun desdits premiers (100, 104) et seconds (102, 106) orifices de valve, des premiers (110, 114) et seconds (112, 116) orifices de siège et des premier et second trajets de décharge.
     
    13. Ensemble selon l'une quelconque des revendications 1 à 12 dans lequel les moyens pour déplacer la valve consistent en un moyen d'actionnement mécanique (24).
     
    14. Ensemble selon l'une quelconque des revendications 1 à 13 dans lequel le moyen d'actionnement est un bras d'actionnement rotatif (24) prévu pour faire tourner la valve.
     
    15. Ensemble de distribution et de mesure de combustible selon la revendication 1 qui comporte:

    a) un corps de valve (40) comportant une entrée de combustible unique amont (26) et une partie formant entretoise aval qui porte une buse pour le combustible (12) pour décharger des courants de combustible primaire et secondaire distincts, ledit corps de valve (40) comportant une chambre longitudinale (42), la partie amont de celle-ci recevant du combustible de l'entrée,

    b) une valve rotative (50) dans la partie amont et comportant des orifices de valve primaire (100) et secondaire (102) décalés angulairement et transversalement pour engendrer des débits de combustible primaire et secondaire distincts à partir de la buse (12);

    c) un siège de valve (72) en aval de la valve rotative (50) dans la chambre (42) et comportant des orifices de siège primaire (110) et secondaire (112) décalés angulairement et transversalement par rapport auxquels orifices les orifices correspondants de valve primaire (100) et secondaire (102) sont déplacés angulairement en raison du mouvement de rotation de la valve (50) pour mesurer chacun des débits distincts primaire et secondaire;

    d) une première pièce rapportée (76) en aval du siège de valve (72) dans la chambre (42) et comportant des passages de décharge de combustible longitudinaux primaire (130) et secondaire (132) décalés angulairement et transversalement qui sont alignés avec les orifices de siège correspondants primaire (110) et secondaire (112) pour recevoir les débits correspondants de combustible primaire et secondaire mesurés;

    e) une seconde pièce rapportée (78) en aval de la première pièce rapportée (76) dans la chambre (42) et comportant des passages de décharge de combustible primaire intérieur (180b) et extérieur secondaire (150) emboîtés longitudinalement lesquels sont alignés avec le passage de décharge de combustible primaire (130) de la première pièce rapportée et se trouvent décalés transversalement à partir du passage de décharge (132) de combustible secondaire de la première pièce rapportée (76) et qui comportent de plus un passage de décharge transversal (160) s'étendant à partir d'une partie correspondante alignée en aval par rapport au passage de décharge de combustible secondaire (132) dans la première pièce rapportée (76) vers le passage de combustible secondaire extérieur (180b) de la seconde pièce rapportée (78) pour y conduire le combustible secondaire, le passage de décharge de combustible intérieur (150) s'étendant en amont pour recevoir du combustible provenant du passage de décharge de combustible primaire (130) de la première pièce rapportée (76) et le passage de combustible secondaire extérieur (180b) recevant du combustible secondaire en aval de celui-ci à partir du passage transversal (160) de la seconde pièce rapportée (78); et

    f) des moyens (24) pour faire tourner la valve rotative.


     
    16. Ensemble selon la revendication 15 dans lequel le passage de combustible primaire intérieur (150) de la seconde pièce rapportée (78) comporte un tube interne (150) et le passage de fluide secondaire externe comporte un passage annulaire (180b) réalisé par un tube externe (152) disposé de façon concentrique autour du tube intérieur (150) avec un certain espacement entre eux.
     
    17. Ensemble selon la revendication 16 dans lequel le tube interne (150) s'étend en amont de la première pièce rapportée (76) et comporte une extrémité amont ouverte reçue dans un élément formant bouchon (137) constituant dans ce dernier le passage (130) primaire longitudinal de combustible.
     
    18. Ensemble selon la revendication 16 dans lequel les tubes interne (150) et externe (152) s'étendent en emboîtement en aval de la seconde pièce rapportée (78) à travers la partie formant entretoise vers la buse (12).
     
    19. Ensemble selon la revendication 16 dans lequel le tube externe (152) comporte une extrémité amont ouverte dans la seconde pièce rapportée (78) qui est reçue dans un élément formant bouchon (180) formant dans ce dernier un passage secondaire extérieur annulaire pour le combustible autour du tube interne (150).
     
    20. Ensemble selon l'une quelconque des revendications 15 à 19 comportant en outre une seconde buse de combustible (14) sur la partie formant entretoise pour décharger des débits de combustible primaire et secondaire distincts et dans lequel la valve rotative (50) comporte un second groupe supplémentaire d'orifices de valve primaire (104) et secondaire (106), le siège de valve (72) comporte un second groupe d'orifices de siège primaire (114) et secondaire (116), la première pièce rapportée (76) comporte un second groupe de passages de décharge de combustible longitudinaux primaire (134) et secondaire (136) et la seconde pièce rapportée (78) comporte un second groupe de passages de décharge de combustible primaire (154) et secondaire (182b) et un second passage de décharge transversal (162), le second groupe fonctionnant de façon à fournir à la seconde buse des débits primaire et secondaire mesurés de façon distincte.
     




    Drawing