(19)
(11)EP 2 107 599 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.07.2019 Bulletin 2019/27

(21)Application number: 09156243.9

(22)Date of filing:  26.03.2009
(51)International Patent Classification (IPC): 
H01L 21/60(2006.01)
H01L 23/522(2006.01)
H01L 23/525(2006.01)
B81B 7/00(2006.01)
H01L 23/31(2006.01)
H01L 23/485(2006.01)

(54)

Method Of Forming A Wafer Level Package

Verfahren zur Herstellung einer Verpackung auf Waferebene

Procédé de formation d'un emballage au niveau de la tranche


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(30)Priority: 31.03.2008 US 59075

(43)Date of publication of application:
07.10.2009 Bulletin 2009/41

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • Kapusta, Christopher James
    Delanson, NY 12053-2217 (US)
  • Cunningham, Donald
    Dallas, TX 75229-2920 (US)
  • Saia, Richard Joseph
    Niskayuna, NY 12309-2535 (US)
  • Durocher, Kevin
    Waterford, NY 12183-4008 (US)
  • Iannotti, Joseph
    Glenville, NY 12302-4030 (US)
  • Hawkins, William
    Rexford, NY 12148-1316 (US)

(74)Representative: Dennemeyer & Associates S.A. 
Landaubogen 1-3
81373 München
81373 München (DE)


(56)References cited: : 
EP-A2- 0 734 059
US-A1- 2004 063 249
US-A1- 2007 020 999
US-A- 5 757 072
US-A1- 2005 121 770
US-A1- 2007 267 743
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention concerns a method of forming a wafer level package for integrated circuits. Wafer level packages are manufactured using laminated re-distribution layers and high density interconnects.

    [0002] As integrated circuits become increasingly smaller and yield better operating performance, packaging technology for integrated circuit (IC) packaging has correspondingly evolved from leaded packaging to laminated-based ball grid array (BGA) packaging and eventually to chip scale packaging (CSP). Advancements in IC chip packaging technology are driven by ever-increasing needs for achieving better performance, greater miniaturization and higher reliability. New packaging technology has to further provide for the possibilities of batch production for the purpose of large-scale manufacturing thereby allowing economy of scale.

    [0003] One specific form of CSP is wafer level packaging (WLP). WLP adopts an area-array packaging approach that is utilized in BGA packaging. This approach enables WLP to have a packaging outline that is substantially identical in size to the IC chip, making WLP the smallest form of CSP. WLP allows the IC packaging process to be carried out at wafer level as well as incorporate wafer level reliability and facilitate IC burn-in tests. Wafer level packaging has therefore attracted immense interest in the electronics industry for being a potential solution in IC packaging process that can provide low-cost production through large-scale manufacturing.

    [0004] One current WLP manufacturing method is "Re-distribution Layer and Bump" manufacturing. In Re-distribution Layer and Bump manufacturing, a multi-layer thin-film metal rerouting and interconnection system is deposited to each device on the wafer. This additional level of interconnection redistributes the peripheral bonding pads of each chip to an area array of underbump metal pads that are evenly deployed over the chip's surface. The solder balls or bumps used in connecting the device to the application circuit board are subsequently placed over these underbump metal pads. Application of the rerouting and interconnection system is typically achieved using the standard photolithography and thin film deposition techniques employed in the device fabrication itself. That is, a spin-on deposition technique is typically used to deposit a benzocyclobutene (BCB) or polyimide material and form the re-distribution layers. Deposition of the re-distribution layers via a spin-on application process, however, has inherent limitations in regards to the structure and functionality of the resulting WLP that is produced. For example, the formation of spin-on layers on the silicon wafer imparts stress to the silicon wafer, which can result in wafer warpage. To minimize wafer warpage, the number of spin-on layers must be limited to 1 or 2 layers and/or a thicker die than what is preferable must be employed. Also, high temperatures are required to cure spin-on dielectrics, which may not be compatible with all metallurgies. Furthermore, spin-on layers only allow for the redistribution/re-routing of the peripheral bonding pads and do not allow for the incorporation of addition elements into the WLP, such as embedded resistors/capacitors, shielding layers or other micro-electromechanical systems (MEMS).

    [0005] The stress induced on the silicon wafer also imposes limitations on formation of an input/output (I/O) system on the WLP. That is, because of the stress imparted on the silicon wafer by the spin-on layers, larger and more robust bumps (i.e., solder balls/connections) and an underfill epoxy are needed for formation of the I/O system interconnection. Use of these large solder balls and the underfill epoxy limits the bump density of the I/O system and limits the level of miniaturization of the WLP that is achievable.

    [0006] US 2007/267743 describes a semiconductor device including a semiconductor substrate and low dielectric film wiring line laminated structure portions which are provided in regions on the semiconductor substrate, except a peripheral portion thereof. Each of the laminated structure portions has a laminated structure of low dielectric films and a plurality of wiring lines. An insulating film is provided on an upper side of the laminated structure portion and connection pad portions for electrodes are arranged on the insulating film to be electrically connected to the connection pad portions of uppermost wiring lines of the laminated structure portion. Bump electrodes for external connection are provided on the connection pad portions for the electrodes. A sealing film is provided on the insulating film and on the peripheral portion of the semiconductor substrate. Side surfaces of the laminated structure portions are covered with the insulating film or the sealing film. The insulating film is constituted of a passivation film and a protective film provided on the passivation film, whereby the protective film may be formed by a screen printing process, a spin coating process or the like.

    [0007] In US 2005/121770 A1 a wafer level package is disclosed having a redistribution layer whose insulating layers are formed by spin coating and thermal curing.

    [0008] Accordingly there is a need for a method for WLP fabrication that allows for the application of multiple re-distribution layers while minimizing stress and warpage of the wafer die. There is a further need for a fabrication method that reduces solder ball/bump pitch and height to allow for greater density in the I/O system interconnect and miniaturization of the WLP.

    [0009] The invention provides a method of forming a wafer level package in accordance with independent claim 1. Preferred embodiments are defined in the dependent claims.

    [0010] The sequentially laminated re-distribution layers reduce stress on the silicon wafer and allow for formation of a high density input/output (I/O) system interconnection on each chip in a wafer.

    [0011] Various advantages and features will be more readily understood from the following detailed description of preferred embodiments of the invention that is provided in connection with the accompanying drawings, in which:

    FIG. 1 is a top view of a silicon wafer comprised of wafer level packages.

    FIG. 2 is a cross sectional view of a wafer level package having a re-distribution layer laminated thereon.

    FIG. 3 is a cross sectional view of a wafer level package having vias and metal interconnects formed therein.

    FIG. 4 is a top view of a silicon wafer having a re-distribution layer applied thereon and having trenches formed between wafer level packages.

    FIG. 5 is a cross sectional view of a sequentially laminated wafer level package having an input/output system interconnect.

    FIG. 6 is a top view of a sequentially laminated silicon wafer singulated into individual wafer level packages.

    FIG. 7 is a cross sectional view of a sequentially laminated wafer level package having a having a cavity formed therein.

    FIG. 8 is a cross sectional view of a sequentially laminated wafer level package having embedded passives included therein.

    FIG. 9 is a cross sectional view of a sequentially laminated wafer level package having a metal shield included therein.

    FIG. 10 is a cross sectional view of a completed sequentially laminated wafer level package.



    [0012] The invention provides a method of forming a wafer level package (WLP). The WLP is formed by the application of laminate layers to a silicon wafer and the performing of subsequent drilling, metallization, and etching/patterning, to each layer.

    [0013] Referring to FIG. 1, a wafer 10 is shown as being divided into a plurality of wafer level packages (WLPs) or dies 12 (i.e., wafer scale packages). The wafer 10 generally is sliced from monosilicon crystal ingot or polysilicon crystal ingot and prepared such that an integrated circuit layout is formed on its surface. The wafer 10, having IC's formed thereon, comprises a plurality of WLPs 12 and includes a dice area 14 between each of the WLPs 12 that is reserved for cutting the wafer 10 into a plurality of individual WLPs 12 or dies.

    [0014] As shown in FIG. 2, in manufacturing a WLP 12, a base polymer laminate layer 16 is applied to silicon wafer 10 by way of an adhesive material 18 applied therebetween. The base polymer laminate layer 16 is in the form of a pre-formed laminate sheet or film that can be placed on silicon wafer 10, as opposed to a layer that is formed/applied by way of a spin-on technique as is used in the prior art. The base polymer laminate 16 can be formed of Kapton®, Ultem®, polytetrafluoroethylene (PTFE), or another polymer film, such as a liquid crystal polymer (LCP). Referring now to FIG. 3, upon application of base polymer laminate layer 16 to silicon wafer 10, a plurality of vias 20 are formed in the laminate layer. The vias 20 are formed by way of a laser ablation or laser drilling process and are formed at positions corresponding to die pads 22 located on silicon wafer 10. Laser drilling of vias 20 in base polymer laminate layer 16 thus serves to expose the die pads 22.

    [0015] Upon formation of vias 20, a metal layer/material 24 is applied onto base polymer laminate layer 16 by way of, for example, a sputtering or electroplating process. The deposited metal layer/material 24 is then formed into metal interconnects 26. In one exemplary technique, metal layer/material 24 is patterned and etched such that metal interconnects 26 are formed that extend from a top surface 28 of base polymer laminate layer 16 and down through vias 20. Metal interconnects 26 thus form an electrical connection with die pads 22. In this manner, base polymer laminate layer 16 forms a re-distribution layer that acts to redistribute the arrangement of die pads 22, which may (for example) be arranged about a periphery of each WLP 12, into an area array of interconnects distributed over the WLP's surface, as will be explained in greater detail below.

    [0016] Referring now to FIG. 4, a top view of silicon wafer 10 with the applied polymer laminate and metal interconnects 26 is shown. During manufacturing of the WLPs, and upon lamination of the polymer laminate layer 16 onto silicon wafer 10, a step is performed for removing/reducing residual stress in the wafer. That is, in order to reduce or remove residual stress that may be applied to silicon wafer 10 by the lamination of the polymer laminate layer 16 thereon, excess polymer material is removed from dice area 14 between each of the WLPs 12. The polymer material is removed by way of, for example, forming a plurality of trenches 30 (i.e., scribe streets) in the dice area 14 via a laser ablating or dice sawing process. The trenches 30 can be in the range of 100 micrometers. Formation of trenches 30 helps prevent bowing and warpage in the silicon wafer 10 upon subsequent application of additional polymer re-distribution layers.

    [0017] As shown in FIG. 5, upon removal of excess polymer material from dice area, one or more additional polymer laminate layers 32 are applied on base polymer laminate layer 16. Similar to the steps set forth above, a plurality of vias 20 are formed in the additional polymer laminate layers 32 by way of, for example, a laser ablation or laser drilling process. The vias 20 in each of the additional polymer laminate layers 32 are formed at positions corresponding to metal interconnects 26 attached to a polymer laminate layer (e.g., base polymer laminate layer 16) positioned immediately therebelow so as to allow for the further re-distribution of the metal interconnects 26. As further set forth above, metal interconnects are then again formed on the additional polymer laminate layer 32 via a deposition (e.g., sputtering or electroplating) process and subsequent patterning and etching process, so as to deform metal interconnects 26 to extend down through vias 20 and into electrical contact with metal interconnects 26 on the polymer laminate layer 16 positioned immediately therebelow.

    [0018] Referring still to FIG. 5, after a desired number of additional polymer laminate layers 32 have been applied to silicon wafer 10, a plurality of input/output (I/O) interconnections 34 are applied to metal interconnects 26 on a topmost polymer laminate layer to form an I/O system interconnection 36. In one embodiment, I/O interconnections 34 are formed as balls that are soldered to metal interconnects 26 (i.e., solder balls). It is also envisioned, however, that other forms of I/O interconnections 34 can be attached, such as plated bumps, pillar bumps, gold stud bumps, metal filled polymer bumps, or wirebond connections/pads, such that a reliable connection can be formed between the WLP 12 and a motherboard (not shown) to which it is to be attached.

    [0019] The re-distribution of metal interconnects 26 provided by the sequential application of a plurality of polymer laminate layers 16, 32 allows for an increased number of I/O interconnections 34 to be formed on a top surface of WLP 12. That is, for example, solder connections 34 can be more densely packed on WLP 12 due to the re-distribution of metal interconnects 26. Solder connections 34 on WLP 12 are thus formed having a decreased pitch and height as compared to conventional solder balls. For example, solder connections 34 can be formed to have a height of 180 micrometers and a pitch of 80 micrometers. The formation of solder connections 34 at such a size on a flexible polymer laminated layer lowers connection joint stress between the WLP 12 and a motherboard (not shown) to which it is to be mounted, thus also negating the need for an under-filling epoxy mixture that would be applied between the solder connections34, WLP, and a motherboard after soldering of the WLP to the motherboard, as is typically performed in the prior art.

    [0020] As is further shown in FIG. 5, it is also envisioned that silicon wafer 10 can be background to reduce a thickness thereof. The plurality of polymer laminate layers 16, 32 provides sufficient support for such a back-grinding process, as compared to spin-on layers that would not provide sufficient strength for back-grinding to be performed. Back grinding of silicon wafer 10 allows for the depth/thickness of WLP 12 to be reduced, allowing for further miniaturization of the WLP 12. Upon back-grinding of silicon wafer 10 to a desired thickness, the silicon wafer 10 can be cut so as to singulate the wafer into a plurality of individual WLPs 12, as shown in FIG. 6.

    [0021] In another beneficial improvement provided by the manufacturing process of the invention, it is envisioned that greater functionality can be provided to WLP 12 by way of additional elements that may be integrated therein. That is, the plurality of sequential laminations 16, 32 applied to silicon wafer 10 to form WLP 12 can allow for not only re-distribution of the die pads in WLP 12, but can also allow for the integration of a plurality of devices therein. Referring to FIG. 7, in one embodiment, a cavity 38 can be formed between adjacent polymer laminate layers 16, 32 so as to allow for the positioning of one or more micro-structures 40 therein, such as an air bridge and/or micro-electromechanical system (MEMS). The cavity 38 provides protection to microstructure 40 to, thus increasing the longevity thereof and improving the reliability of WLP 12.

    [0022] In another embodiment, and as shown in FIG. 8, it is recognized that embedded passives 42, such as thin film resistors, capacitors, or inductors, can also be integrated into WLP 12. That is, an embedded passive 42 can be applied between adjacent (i.e., neighboring) polymer laminate layers 16, 32 during a separate metallization process, to provide further functionality in WLP 12. In yet another embodiment, FIG. 9 shows the inclusion of a metallic shielding element 44 between adjacent polymer laminate layers 16, 32. Shielding element 44 can provide for radio frequency (RF) or electromagnetic interference (EMI) shielding in WLP 12. Application of the micro-electronic devices shown in FIGS. 7-9 are made possible by the sequential lamination of layers 16, 32 onto silicon wafer 10, and is thus differentiated from the conventional spin-on application of layers on the silicon wafer, in which integration of such micro-electronic devices is not possible.

    [0023] Referring now to FIG. 10, a completed WLP 50 is shown. WLP 50 is shown as including a plurality of re-distribution layers 52 therein. While shown as comprising three re-distribution layers 52, it is envisioned that additional layers can be applied such that, for example, WLP 50 includes five or six re-distribution layers 52 therein. The connections from die pads 54 included on the silicon wafer 56 are re-routed by way of a plurality of metal interconnects 58 formed through each of the re-distribution layers 52. The metal interconnects 58 are formed through vias 60 in the re-distribution layers 52 to electrically connect each of the plurality of re-distribution layers 52. A plurality of solder connections 62 (e.g., solder balls) are applied to metal interconnects 58 on the topmost re-distribution layer 52. The plurality of solder connections 62 form a high density interconnection (HDI) system 64 that allows for miniaturization of the WLP 50 and a lower stress connection between the WLP and a motherboard (not shown). While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention and preferred embodiments thereof are defined by the appended claims.


    Claims

    1. A method of forming a wafer level package comprising:

    providing a silicon wafer (10) having a plurality of integrated circuits (12) formed thereon, with a dice area (14) formed between each of the integrated circuits (12) and each integrated circuit (12) having a plurality of die pads (22) formed thereon;

    adhering a pre-formed base polymer laminate layer (16) to the top surface of the silicon wafer (10) using an adhesive (18);

    forming a plurality of vias (20) through the base polymer laminate layer (16) at positions corresponding to the die pads (22) on the wafer (10);

    forming a plurality of metal interconnects (26) on the base polymer laminate layer (16) such that each of the plurality of metal interconnects (26) extends down through a respective via (20) of the first plurality of vias (20) to electrically connect to a respective die pad (22);

    applying at least one additional pre-formed polymer laminate layer (32) to the base polymer laminate layer (16) and the metal interconnects (26);

    forming an additional plurality of vias (20) through each of the at least one additional polymer laminate layer (16) at positions corresponding to the metal interconnects (26) of the polymer laminate layer (16) positioned immediately therebelow;

    forming an additional plurality of metal interconnects (26) on each of the at least one additional polymer laminate layer (16) such that each of the plurality of metal interconnects (26) extend down through a respective via (20) of the additional plurality of vias (20) into electrical contact with the metal interconnects (26) on the polymer laminate layer (16, 32) positioned immediately therebelow;

    attaching a plurality of input/output (I/O) connections (34) to the metal interconnects (26) directly on a topmost polymer laminate layer (30); and

    singulating the silicon wafer (10) into a plurality of wafer level packages (12), each wafer level package including a portion of the plurality of metal interconnects and a portion of the plurality of I/O connections thereon.


     
    2. The method of claim 1, further comprising back-grinding the silicon wafer (10) to decrease a thickness thereof, wherein the back-grinding occurs after the at least one additional polymer pre-formed laminate layer (32) has been applied.
     
    3. The method of any of claims 1 or 2, wherein forming the plurality of metal interconnects (26) comprises:

    depositing a metal material (24) on the polymer laminate layer (16, 32); and

    patterning and etching the metal material (24) to form the metal interconnects (26).


     
    4. The method of any of claims 1 to 3, further comprising forming a cavity (38) between a pair of adjacent polymer laminate layers (16, 32).
     
    5. The method of claim 4, further comprising positioning at least one of an air bridge and a micro-electromechanical system (MEMS) in the cavity (38).
     
    6. The method of any previous claim, further comprising positioning one of an embedded resistor (42), an embedded inductor (42), and an embedded capacitor (42) between a pair of adjacent polymer laminate layers (16, 32).
     
    7. The method of any preceding claim, further comprising inserting a metal shield (44) between a pair of adjacent polymer laminate layers (16, 32).
     
    8. The method of any preceding claim, further comprising removing the base polymer laminate layer (16) from the dice area (14) between each wafer level package (12) to form a plurality of trenches (30) in the base polymer laminate layer (16) prior to applying the at least one additional polymer pre-formed laminate layer (32).
     
    9. The method of claim 8, wherein forming a plurality of trenches (30) comprises one of laser ablating and dice sawing.
     
    10. The method of any preceding claim, wherein attaching a plurality of I/O connections (34) comprises attaching a plurality of solder connections (62) to the metal interconnects (26) on the topmost polymer laminate layer (32).
     
    11. The method of any preceding claim, wherein the silicon wafer (10) is formed from one of a monosilicon crystal ingot and a polysilicon crystal ingot.
     


    Ansprüche

    1. Verfahren zum Formen einer Packung auf Waferebene, umfassend:

    Bereitstellen eines Silikonwafers (10), der eine Vielzahl von darauf geformten integrierten Schaltungen (12) aufweist, mit einer zwischen jedem der integrierten Schaltungen (12) geformten Würfelfläche (14), und wobei jede integrierte Schaltung (12) eine Vielzahl von darauf geformten Chipkontaktstellen (22) aufweist;

    Ankleben einer vorgeformten Polymerlaminat-Grundschicht (16) auf der oberen Oberfläche des Silikonwafers (10) unter Verwendung eines Klebstoffs (18);

    Formen einer Vielzahl von Kontaktlöchern (20) durch die Polymerlaminat-Grundschicht (16) an Positionen, die den Chipkontaktstellen (22) auf dem Wafer (10) entsprechen;

    Formen einer Vielzahl von metallischen Zwischenverbindungen (26) auf der Polymerlaminat-Grundschicht (16), sodass sich jede der Vielzahl von metallischen Zwischenverbindungen (26) durch ein respektives Kontaktloch (20) der ersten Vielzahl von Kontaktlöchern (20) nach unten erstreckt, um mit einer respektiven Chipkontaktstelle (22) elektrisch zu verbinden;

    Anwenden von mindestens einer zusätzlichen vorgeformten Polymerlaminatschicht (32) auf die Polymerlaminat-Grundschicht (16) und die metallischen Zwischenverbindungen (26);

    Formen einer zusätzlichen Vielzahl von Kontaktlöchern (20) durch jede der mindestens einen zusätzlichen Polymerlaminatschichten (16) an Positionen, die den metallischen Zwischenverbindungen (26) der unmittelbar darunter positionierten Polymerlaminatschicht (16) entsprechen;

    Formen einer zusätzlichen Vielzahl von metallischen Zwischenverbindungen (26) auf jeder der mindestens einen zusätzlichen Polymerlaminatschichten (16), sodass sich jede der Vielzahl von metallischen Zwischenverbindungen (26) durch ein respektives Kontaktloch (20) der zusätzlichen Vielzahl von Kontaktlöchern (20) in elektrischem Kontakt mit den metallischen Zwischenverbindungen (26) auf der unmittelbar darunter positionierten Polymerlaminatschicht (16, 32) nach unten erstreckt;

    Anbringen einer Vielzahl von Eingangs-/Ausgangs-(E/A)-Verbindungen (34) auf den metallischen Zwischenverbindungen (26) direkt auf einer obersten Polymerlaminatschicht (30); und

    Vereinzeln des Silikonwafers (10) in eine Vielzahl von Packungen auf Waferebene (12), wobei jede Packung auf Waferebene einen Abschnitt der Vielzahl von metallischen Zwischenverbindungen und einen Abschnitt der Vielzahl von E/A-Verbindungen darauf enthält.


     
    2. Verfahren nach Anspruch 1, weiter umfassend Schleifen der Rückseite des Silikonwafers (10), um die Dicke davon zu verringern, wobei das Schleifen der Rückseite nach Anwenden von mindestens einer zusätzlichen vorgeformten Polymerlaminatschicht (32) erfolgt.
     
    3. Verfahren nach einem der Ansprüche 1 oder 2, wobei das Formen der Vielzahl von metallischen Zwischenverbindungen (26) umfasst:

    Ablagern eines metallischen Materials (24) auf der Polymerlaminatschicht (16, 32); und

    Strukturieren und Ätzen des metallischen Materials (24), um die metallischen Zwischenverbindungen (26) zu formen.


     
    4. Verfahren nach einem der Ansprüche 1 bis 3, weiter umfassend Formen eines Hohlraums (38) zwischen einem Paar aneinander angrenzender Polymerlaminatschichten (16, 32).
     
    5. Verfahren nach Anspruch 4, weiter umfassend Positionieren von mindestens einem einer Luftbrücke und eines mikroelektromechanischen Systems (MEMS) im Hohlraum (38).
     
    6. Verfahren nach einem der vorstehenden Ansprüche, weiter umfassend Positionieren von einem eines eingebetteten Widerstands (42), eines eingebetteten Induktors (42) und eines eingebetteten Kondensators (42) zwischen einem Paar von aneinander angrenzenden Polymerlaminatschichten (16, 32).
     
    7. Verfahren nach einem der vorstehenden Ansprüche, weiter umfassend Einsetzen einer metallischen Abschirmung (44) zwischen einem Paar von aneinander angrenzenden Polymerlaminatschichten (16, 32).
     
    8. Verfahren nach einem der vorstehenden Ansprüche, weiter umfassend Entfernen der Polymerlaminat-Grundschicht (16) von der Würfelfläche (14) zwischen jeder Packung auf Waferebene (12), um vor Anwenden der mindestens einen zusätzlichen vorgeformten Polymerlaminatschicht (32) eine Vielzahl von Furchen (30) in der Polymerlaminat-Grundschicht (16) zu formen.
     
    9. Verfahren nach Anspruch 8, wobei das Formen einer Vielzahl von Furchen (30) eines von Laserablation und Würfelsägen umfasst.
     
    10. Verfahren nach einem der vorstehenden Ansprüche, wobei das Anbringen einer Vielzahl von E/A-Verbindungen (34) das Anbringen einer Vielzahl von Lötverbindungen (62) an den metallischen Zwischenverbindungen (26) auf der obersten Polymerlaminatschicht (32) umfasst.
     
    11. Verfahren nach einem der vorstehenden Ansprüche, wobei der Silikonwafer (10) aus einem eines kristallinen Monosilikonkristallbarrens und eines kristallinen Polysilikonkristallbarrens geformt wird.
     


    Revendications

    1. Procédé de formation d'un emballage au niveau de la tranche comprenant :

    la fourniture d'une tranche de silicium (10) comportant une pluralité de circuits intégrés formés sur celle-ci, avec une zone de dé (14) formée entre chacun des circuits intégrés (12) et chaque circuit intégré (12) comportant une pluralité de plots de puce (22) formés sur celui-ci ;

    le collage d'une couche de base de stratifié polymère préformé (16) à la surface supérieure de la tranche de silicium (10) en utilisant un adhésif (18) ;

    la formation d'une pluralité de trous d'interconnexion (20) à travers la couche de stratifié polymère de base (16) au niveau de positions correspondant aux plots de puce (22) sur la tranche (10) ;

    la formation d'une pluralité d'interconnexions métalliques (26) sur la couche de stratifié polymère de base (16) de telle manière que chacune de la pluralité d'interconnexions métalliques (26) s'étend vers le bas à travers un trou d'interconnexion (20) respectif de la première pluralité de trous d'interconnexion (20) pour être connectée électriquement à un plot de puce (22) respectif ;

    l'application d'au moins une couche additionnelle de stratifié polymère préformé (32) sur la couche de stratifié polymère de base (16) et les interconnexions métalliques (26) ;

    la formation d'une pluralité additionnelle de trous d'interconnexion (20) à travers chacune des au moins une couche additionnelle de stratifié polymère (16) au niveau de positions correspondant aux interconnexions métalliques (26) de la couche de stratifié polymère (16) positionnée immédiatement en dessous de celles-ci ;

    la formation d'une pluralité additionnelle d'interconnexions métalliques (26) sur chacune des au moins une couche additionnelle de stratifié polymère (16) de telle manière que chacune de la pluralité d'interconnexions métalliques (26) s'étend vers le bas à travers un trou d'interconnexion respectif (20) de la pluralité additionnelle de trous d'interconnexion (20) en contact électrique avec les interconnexions métalliques (26) sur la couche de stratifié polymère (16, 32) positionnée immédiatement en dessous de celles-ci ;

    la fixation d'une pluralité de connexions (34) d'entrée/sortie (E/S) aux interconnexions métalliques (26) directement sur une couche de stratifié polymère la plus supérieure (30) ; et

    la division de la tranche de silicium (10) en une pluralité d'emballages au niveau de la tranche (12), chaque emballage au niveau de la tranche incluant une partie de la pluralité d'interconnexions métalliques et une partie de la pluralité de connexions E/S sur celle-ci.


     
    2. Procédé selon la revendication 1, comprenant en outre l'affûtage du dos de la tranche de silicium (10) pour diminuer une épaisseur de celle-ci, dans lequel l'affûtage du dos a lieu après que l'au moins une couche additionnelle de stratifié polymère préformé (32) a été appliquée.
     
    3. Procédé selon l'une quelconque des revendications 1 ou 2, dans lequel la formation de la pluralité d'interconnexions métalliques (26) comprend :

    le dépôt d'un matériau métallique (24) sur la couche de stratifié polymère (16, 32) ; et

    le modelage des contours et la gravure du matériau métallique (24) pour former les interconnexions métalliques (26).


     
    4. Procédé selon l'une quelconque des revendications 1 à 3, comprenant en outre la formation d'une cavité (38) entre une paire de couches de stratifié polymère (16, 32) adjacentes.
     
    5. Procédé selon la revendication 4, comprenant en outre le positionnement d'au moins l'un d'un pont aérien et d'un microsystème électromécanique (MEMS) dans la cavité (38).
     
    6. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre le positionnement de l'un d'une résistance incorporée (42), d'une inductance incorporée (42) et d'un condensateur incorporé (42) entre une paire de couches de stratifié polymère (16, 32) adjacentes.
     
    7. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre l'insertion d'un écran métallique (44) entre une paire de couches de stratifié polymère (16, 32) adjacentes.
     
    8. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre l'élimination de la couche de stratifié polymère de base (16) de la zone de dé (14) entre chaque emballage au niveau de la tranche (12) pour former une pluralité de tranchées (30) dans la couche de stratifié polymère de base (16) avant l'application de l'au moins une couche additionnelle de stratifié polymère préformé (32).
     
    9. Procédé selon la revendication 8, dans lequel la formation d'une pluralité de tranchées (30) comprend l'un d'une ablation laser et d'un sciage de dé.
     
    10. Procédé selon l'une quelconque des revendications précédentes, dans lequel la fixation d'une pluralité de connexions E/S (34) comprend la fixation d'une pluralité de connexions soudées (62) aux interconnexions métalliques (26) sur la couche de stratifié polymère la plus supérieure (32).
     
    11. Procédé selon l'une quelconque des revendications précédentes, dans lequel la tranche de silicium (10) est formée à partir de l'un d'un lingot de cristal de monosilicium et d'un lingot de cristal de polysilicium.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description