(19)
(11)EP 2 489 244 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.07.2019 Bulletin 2019/27

(21)Application number: 09850467.3

(22)Date of filing:  14.10.2009
(51)International Patent Classification (IPC): 
H05B 37/02(2006.01)
F21V 29/90(2015.01)
H05B 33/08(2006.01)
(86)International application number:
PCT/US2009/060704
(87)International publication number:
WO 2011/046552 (21.04.2011 Gazette  2011/16)

(54)

STABILIZED LIGHT SOURCE HAVING LUMINANCE FEEDBACK CONTROL

STABILISIERTE LICHTQUELLE MIT LEUCHTKRAFTREGELUNG

SOURCE DE LUMIÈRE STABILISÉE AVEC COMMANDE RETOUR DE LUMINANCE


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(43)Date of publication of application:
22.08.2012 Bulletin 2012/34

(73)Proprietor: Hewlett-Packard Development Company, L.P.
Spring TX 77389 (US)

(72)Inventors:
  • PICCIOTTO, Carl
    Palo Alto California 94304-1100 (US)
  • MONTGOMERY, Glen Eric
    Palo Alto California 94304-1100 (US)
  • DICARLO, Jeffrey
    Palo Alto California 94304-1100 (US)

(74)Representative: HGF Limited 
Fountain Precinct Balm Green
Sheffield S1 2JA
Sheffield S1 2JA (GB)


(56)References cited: : 
US-A1- 2006 221 047
US-A1- 2007 210 722
US-A1- 2008 062 070
US-A1- 2007 115 685
US-A1- 2007 291 198
US-A1- 2008 197 274
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] The present invention relates generally to imaging devices and light sources, such as light emitting diodes (LEDs), and more particularly to a light source having a stable known luminance (brightness) which is independent of changes in ambient temperature for use in calibrating light sensors such as are in digital cameras and other imaging or processing devices.

    [0002] Precision light sources have a wide variety of applications including calibrating digital cameras or light meters during the manufacturing process. To be useful for such applications the light sources need to have a constant luminosity, i.e., the intensity over some unit area needs to be constant over time and with changes in ambient conditions such as temperature. Most LEDs have good illumination characteristics and are often used as precision light sources due also in part to their size, cost to manufacture, spectral stability, and capability to emit light of different wavelengths. Yet, as is true of similar devices and light sources in general, the luminosity of LEDs varies with both temperature and age. When a current is initially applied, there is an immediate internal heating of the device causing a rapid change in luminosity. Even if allowed to "warm up" to reach an operating thermal state of equilibrium, the temperature of the device, and thus the luminosity, varies with changes in ambient temperature. In addition leaving the devices on for an extended period to maintain a constant temperature reduces the useful lifetime and can be costly. To overcome temperature variations, one could measure the temperature of the LEDs and make an appropriate correction of the drive current, such as is described in US Patent 6,127,784, This technique also may be costly when there are multiple LEDs being used (e.g., >100), and in addition measurement of temperature is not necessarily sufficient to accurately infer light output. Furthermore even if kept at a constant temperate, the luminosity will vary with aging of the devices. Another technique may be to measure the on-resistance (or voltage drop) at each light source to infer the temperature, and therefore to infer a corresponding light output. And yet another technique would be to maintain the light source at a fixed or constant temperature to insure there is a constant light output. Since there is significant self heating such temperature regulation would work best if the devices were cooled, rather than heated, which is generally more costly than heating systems and still this does not compensate for aging drifts in luminance or for the cost of multiple light sources.

    [0003] While the following discussion focuses primarily on an economical long lasting solution to these problems, the invention has utility for many other types of applications than a calibrated light source having a constant luminance level for setting the sensitivity of digital cameras. For example our invention could be used for stabilizing the output of one or more light projectors in an image projection system.

    [0004] Further limitations and disadvantages of conventional and traditional approaches will become apparent to one skilled in the art, through comparison of such devices with a representative embodiment of the present invention as set forth in the remainder of the present application with reference to the drawings.

    [0005] US 2006/221047 A1 discloses a liquid crystal display device which is capable of shortening the time required to stabilise a brightness and chromaticity output with respect to changes in temperature. This device comprises a light sensor temperature compensation means for compensating for fluctuations in the output of the light detection means due to temperature changes, where the output of the light detection means is used by a feedback control means to control the electric power supplied to the LED light source.

    [0006] US 2008/197274 A1 discloses a photodetector which can be quickly heated to the temperature at which it is maximally responsive. This avoids thermal gradients across the detector so that the whole detector region has equivalent responsivity.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] For a better understanding of the invention as well as further features thereof, reference is made to the following description which is to be read in conjunction with the accompanying drawings wherein:

    FIG. 1 is a schematic diagram showing a first preferred embodiment of the light source and control apparatus in accordance with the present invention.

    FIG. 2 is a flowchart illustrating exemplary operations for implementing the preferred embodiment of the present invention.

    FIG. 3 is a perspective top view of one embodiment of the light source incorporating the present invention.


    DETAILED DESCRIPTION



    [0008] The claims define the matter for which protection is sought.

    [0009] Reference will now be made in detail to a representative embodiment of the present invention shown in the accompanying drawings, wherein like reference numerals refer to like elements throughout. Furthermore, in the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one of ordinary skill in the art that the present invention can be practiced without these specific details

    [0010] The present invention provides, among other things, a system design that regulates the flow of current to one or more light sources, preferably LEDs, in response to the detected light output as measured by a temperature controlled photodiode. FIG. 1 depicts precision lighting apparatus 100 comprising a light source 103, an optical light diffuser 101, a photodetector 102, a temperature regulated heater 104, and a controller circuit 105. Light source 103 is depicted as an incandescent lamp, but in the preferred embodiment is an array of multiple LEDs mounted on a printed circuit board. As shown in U.S. Application Serial No. 11/054,209, filed on February 8, 2005, entitled "Imaging Device Analysis Systems and Imaging Device Analysis Methods" (hereinafter the '209 application), the LEDs maybe configured in a simple closely-packed array of light emitting devices configured to emit light of the same wavelength and intensity. Optical light diffuser 101 may comprise a simple frosted glass plate or a translucent polycarbonate plastic lens both of which have a fairly high transmission efficiency, are wavelength independent, and are designed to eliminate hotspots in the radiated light 108 where an array of individual LEDs is employed as light source 103. The objective is to present a substantially uniform light intensity across the face of diffuser 101 that remains constant over time and temperature. Other configurations of optical diffuser 101 may be utilized to output light 108 as a uniform wavefront. A portion of the radiated light 107 gets reflected or scattered back from diffuser 101 and gets picked up by photodetector 102. In the exemplary embodiment shown in the '209 application photodetector 102 senses the intensity of the reflected light and generates an output signal 111 which is proportional to the detected light falling on the device. Suitable photodetectors would include photodiodes, phototransistors or CDS cells. The generated output signal 111 from photodetector 102 is applied to controller circuit 105 which adjusts the drive current, via a plurality of individual circuits 112, of light source 103 in response to the intensity of the reflected light 107. As the measured intensity of light begins to drop, controller 10S makes corresponding changes in the drive current to maintain a constant luminance as measured by photodetector 102. Since reflected light 107 represents a combined light output from many individuals light sources 103, each LED contributes substantially equally to the overall diffused light output By measuring a combined light output, the failure or partial failure of a single device only drops the light output by 1/n where n is the number of individual light sources there are. But since the reflected light 107 is representative of the composite output, a proportionate change can be made to the other individual devices to increase the total luminance by 1/n.

    [0011] The luminance characteristics of LEDs are known to drop 50% or more for a approximate change in ambient temperature of 3S°C. Because photodetectors are know to exhibit similar changes in output voltage for any change in ambient temperate, photodetector 102 is temperature-stabilized to insulate it from similar temperature swings and to insure that the compensation applied by controller 105 accurately adjusts for any change in luminance as measured by photodetector 102. A heater circuit and temperature sensor device 104 shown in FIG. 1 is a simple heater regulated by a thermistor or similar device to keep the surrounding temperature of
    photodetector 102 tightly controlled. By setting the heater temperature to be slightly above the highest ambient temperature to be expected, a simple heater is all that is needed to maintain a constant operating temperature of photodetector 102. In the physical housing shown in the '209 application or as depicted in FIG. 3, all that is needed is a power transistor mounted beneath the circuit board 123 where photodetector 102 is mounted to maintain the desired temperature. Other physical surroundings might require an oven enclosure to maintain the temperature of photodetector 102 to remain constant. A thermistor, a thermocouple, or a temperature sensing integrated circuit (shown only generally as block 104) for sensing the ambient temperature of photodetector 102 would work best if mounted directly adjacent the photodetector, since it is the temperature of photodetector 102 that is of interest and not some other temperature within the physical housing. Certainly other physical configurations and widely expected temperature swings in ambient conditions would require a more elaborate setup to maintain photodetector 102 at the desired fixed temperature. But given the preferred embodiment shown in the '209 application, we could easily maintain temperature swings at photodetector 102 under ±1°C to keep the radiated light output 108 at a desired fixed intensity. (In the preferred embodiment depicted in the '209 application and in the embodiment shown in FIG. 3, photodetector 102 is mounted in the center of an LED array. To prevent the photodetector from picking up light directly from adjacent LEDs, we have mounted an opaque tubular open-ended shroud 113 around photodetector 102 so that it detects only reflected light 107 from a plurality of individual LEDs 103 rather than direct light from LEDs 103. This is shown pictorially in FIG. 1 and FIG. 3 as light shield 113.)

    [0012] Another advantage of apparatus 100 is that it will maintain a stable fixed light output, not just with changes in ambient temperature, but also with changes in output luminance due to aging of the light sources themselves or due to a failure of one or more of the individual devices. Although LEDs typically have lifetimes that exceed 100,000 hours, they do eventually fail and need to be replaced. So as the output 108 begins to drop, for whatever reason, the output 111 of photodetector 102 tells the controller 105 that the luminance is dropping, as is indicated by a drop in reflected light 107, and the drive current 112 automatically increases the operating point of the LEDs 103 to maintain a constant luminance.

    [0013] And yet another advantage of this particular light emitting apparatus, by being able to indirectly sense the output light 108 with photodetector 102, it is possible to have multiple luminance settings. To achieve a desired luminance as measured by photodetector 102, the number of light emitting devices of source 103 can be varied between, for example, 20 for a low output setting, 40 for a medium setting, and 60 for a high setting. Such settings are possible by making appropriate adjustments within controller circuit 105. In the embodiment shown in FIG. 3, for a high output luminance setting all 20 of the LEDs would be powered. For a medium setting the 6 LEDs adjacent to photodetector 102 could be turned off, and for a minimum setting every other LED could be turned off. (Probably the controlling concept would be to try to maintain a uniform light front with as little variation at the diffuser as is possible, i.e., minimize any "hot spots.") In another embodiment controller 105 could be set up to output appropriate drive currents to the light emitting devices 103. This could either be done with a calibrating instrument or by simply scaling the drive currents from low, to medium, and to high. It simply depends upon the desired intensities one needs for a particular application.

    [0014] In the preferred embodiment controller 105 was a microcontroller following a PID algorithm to maintain temperature stability of the photodetector 102 and a different algorithm to control the drive currents 112. Certainly any number of commercially available microcontrollers could be used for such purposes, such as the Model PIC16F877 Microcontroller made by Microchips Inc., located at 218 Henry Avenue, St. Louis, MO 63011 USA.

    [0015] By setting preset limits on the amount of drive current 112 which may reasonably be expected to power light source 103, it is possible to set up alarms when these limits are exceeded whether + or -. This is schematically shown in FIG 1 as current sensors 110 with an alarm output line 120. Although this is shown as a device external to controller 105, most microcontrollers have such functionality built into the devices themselves. And alarm output line 120 could be a simple on/off driver connected to a visual alarm lamp or some other device. When output 120 switches on, this is an indication to the user that it is time to change out the light sources 103 or otherwise investigate why the current has exceeded a preset threshold.

    [0016] Figure 2 is a flowchart illustrating exemplary operations 200 for controlling the luminance of light source 103 in accordance with the preferred embodiment of this invention. At initial step 210 an initial drive current is applied to light source 103. Generated light is immediately detected at 220 by photodectector 102. At step 230 photodetector 102 detect the Luminance of the reflected light 107 and generates an output signal 111 proportional to the level of the detected light which is fedback to controller circuit 105 at step 240. At step 250 controller 105 adjusts the drive current 112 either up or down to light souce 103 until the luminance is adjusted to the predetermined setting.

    [0017] While aspects of the present invention have been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the representative embodiments of the present invention. For example although apparatus 100 has been characterized for use in calibrating light sensors such as are in digital cameras, it has applications in optical devices where a focused light beam is deflected in a scanning optical unit such as a laser printer or scanner. In addition, many modifications may be made to adapt a particular situation to the teachings of a representative embodiment of the present invention without departing from its scope. Therefore, it is intended that embodiments of the present invention not be limited to the particular embodiments disclosed herein, but that representative embodiments of the present invention include all embodiments falling within the scope of the appended claims.


    Claims

    1. Optical lighting apparatus having a constant luminance output, said apparatus comprising:

    a plurality of light-emitting diodes having a desired luminance output and configured in a compact array;

    a light diffuser (101) positioned to receive output of the light-emitting diodes;

    a photodetector (102) adapted to receive light energy reflected off (107) the light diffuser (101) and for generating an output signal (111) proportional to the amount of received incident light at the photodetector;

    an optical insulator comprising an opaque tubular shroud open at least at one end and mounted around the photodetector to block the photodetector from receiving light directly from the light-emitting diodes;

    a controller circuit (105) for variably controlling the drive current to the light- emitting diodes in response to the output signal from the photodetector;

    a temperature sensor (104) proximate to the photodetector for sensing an ambient temperature thereat; characterised by

    a heater (104) proximate to the photodetector, the heater having a temperature set above a highest expected value of the ambient temperature to maintain the temperature of the photodetector at a predetermined fixed setting thereby permitting the output luminance from the light-emitting devices to be constant and independent of changes in ambient temperature.


     
    2. Optical lighting apparatus as in claim 1, wherein the photodetector further comprises a photodiode positioned proximate the center of the LED array.
     
    3. Optical lighting apparatus as in claim 2, further comprising:
    a current sensor (110) for sensing the drive current to the plurality of LEDs and for generating an alarm signal (120) when the sensed drive current exceeds a predetermined current threshold.
     
    4. Optical lighting apparatus as in claim 1, wherein said temperature sensor further comprises a thermistor.
     
    5. Optical lighting apparatus as in claim 1, wherein said temperature sensor comprises a temperature sensing integrated circuit; optionally,
    wherein said photodetector is centrally positioned within the array of LEDs.
     
    6. Optical lighting apparatus as in claim 1, wherein the controller circuit for variably controlling the drive current to the light-emitting diodes in response to the output signal from the photodetector is to permit the calibration of the optical lighting apparatus.
     
    7. Optical lighting apparatus as in claim 6, wherein the controller circuit is also configured to have multiple drive current settings corresponding to stepped luminance settings of the light-emitting diodes.
     
    8. A method of regulating the drive current to a plurality of light emitting devices to maintain the luminance thereof at a constant level independent of changes in ambient temperature, said method comprising:
    controlling (210) the drive current to the plurality of light emitting devices (103) comprising a plurality of LEDs configured in a compact array to have an output light with a predetermined luminance:

    passing (220) the output light through an optical diffuser (101); and optically coupling a reflected portion (107) of the output light from the optical diffuser to a photodetector (102) while shielding (113) the photodetector from receiving the output light directly from the light emitting devices using a tubular shroud open at least at one end;

    measuring the ambient temperature at the photodetector;

    generating (230) a signal (111) at the photodetector proportional to the luminance of the reflected portion of output light received at the photodetector; and

    adjusting (250) the drive current to the plurality of light emitting sources so that the luminance of the output light remains at a predetermined fixed level in accordance with the photodetector signal; and characterised by
    applying heating (104) to heat the photodetector to a predetermined temperature, the heater having a temperature set above a highest expected value of the ambient temperature to maintain a constant temperature (230) of the photodetector.


     
    9. The method of claim 8, wherein the photodetector further comprises a photodiode positioned proximate the center of the LED array.
     
    10. The method of claim 8, further comprising:

    sensing the drive current to the plurality of light-emitting devices; and

    generating an alarm signal when the sensed drive current exceeds a predetermined threshold.


     


    Ansprüche

    1. Optische Beleuchtungsvorrichtung mit einer konstanten Leuchtdichteausgabe, wobei die Vorrichtung Folgendes umfasst:

    mehrere lichtemittierende Dioden mit einer gewünschten Leuchtdichteausgabe, die in einer kompakten Anordnung konfiguriert sind;

    einen Lichtdiffusor (101), der so positioniert ist, dass er eine Ausgabe der lichtemittierenden Dioden empfängt;

    einen Photodetektor (102), der so angepasst ist, dass er Lichtenergie empfängt, die von dem Lichtdiffusor (101) reflektiert wird (107), und ein Ausgabesignal (111) erzeugt, das proportional zur Menge des empfangenen einfallenden Lichts an dem Photodetektor ist;

    einen optischen Isolator, der eine undurchsichtige rohrförmige Ummantelung umfasst, die mindestens an einem Ende offen ist und um den Photodetektor herum montiert ist, um den Photodetektor daran zu hindern, Licht direkt von den lichtemittierenden Dioden zu empfangen;

    eine Steuerschaltung (105) zum variablen Steuern des Antriebsstroms zu den lichtemittierenden Dioden als Reaktion auf das Ausgabesignal des Photodetektors;

    einen Temperatursensor (104) in der Nähe des Photodetektors zum Erfassen einer Umgebungstemperatur an demselben; gekennzeichnet durch

    eine Heizung (104) in der Nähe des Photodetektors, wobei die Heizung eine Temperatur aufweist, die höher als ein höchster erwarteter Wert der Umgebungstemperatur eingestellt ist, um die Temperatur des Photodetektors auf einer vorbestimmten festen Einstellung zu halten, wodurch ermöglicht wird, dass die Ausgabeleuchtdichte der lichtemittierenden Vorrichtungen konstant und unabhängig von Änderungen der Umgebungstemperatur ist.


     
    2. Optische Beleuchtungsvorrichtung nach Anspruch 1, wobei der Photodetektor ferner eine Photodiode umfasst, die in der Nähe der Mitte der LED-Anordnung angeordnet ist.
     
    3. Optische Beleuchtungsvorrichtung nach Anspruch 2, ferner umfassend:
    einen Stromsensor (110) zum Erfassen des Antriebsstroms an die mehreren LEDs und zum Erzeugen eines Alarmsignals (120), wenn der erfasste Antriebsstrom einen vorbestimmten Stromschwellenwert überschreitet.
     
    4. Optische Beleuchtungsvorrichtung nach Anspruch 1, wobei der Temperatursensor ferner einen Thermistor umfasst.
     
    5. Optische Beleuchtungsvorrichtung nach Anspruch 1, wobei der Temperatursensor eine integrierte Temperaturfühlschaltung umfasst; optional,
    wobei der Photodetektor zentral innerhalb der Anordnung von LEDs positioniert ist.
     
    6. Optische Beleuchtungsvorrichtung nach Anspruch 1, wobei die Steuerschaltung zum variablen Steuern des Antriebsstroms zu den lichtemittierenden Dioden als Reaktion auf das Ausgabesignal des Photodetektors die Kalibrierung der optischen Beleuchtungsvorrichtung ermöglichen soll.
     
    7. Optische Beleuchtungsvorrichtung nach Anspruch 6, wobei die Steuerschaltung auch konfiguriert ist, um mehrere Ansteuerstromeinstellungen entsprechend den abgestuften Leuchtdichteeinstellungen der lichtemittierenden Dioden zu haben.
     
    8. Verfahren zum Regeln des Antriebsstroms zu mehreren lichtemittierenden Vorrichtungen, um deren Leuchtdichte unabhängig von Änderungen der Umgebungstemperatur auf einem konstanten Niveau zu halten, wobei das Verfahren Folgendes umfasst:
    Steuern (210) des Antriebsstroms zu den mehreren lichtemittierenden Vorrichtungen (103), die mehrere LEDs umfassen, die in einer kompakten Anordnung konfiguriert sind, um ein Ausgabelicht mit einer vorbestimmten Leuchtdichte zu haben:

    Durchleiten (220) des Ausgabelichts durch einen optischen Diffusor (101); und optisches Koppeln eines reflektierten Teils (107) des Ausgabelichts vom optischen Diffusor zu einem Photodetektor (102), während der Photodetektor unter Verwendung einer rohrförmigen Ummantelung, die mindestens an einem Ende offen ist, abgeschirmt (113) wird, um das Ausgabelicht nicht direkt von den lichtemittierenden Vorrichtungen zu empfangen;

    Messen der Umgebungstemperatur am Photodetektor;

    Erzeugen (230) eines Signals (111) am Photodetektor proportional zur Leuchtdichte des reflektierten Teils des am Photodetektor empfangenen Ausgabelichts; und

    Einstellen (250) des Antriebsstroms zu den mehreren lichtemittierenden Quellen, so dass die Leuchtdichte des Ausgabelichts gemäß dem Photodetektorsignal auf einem vorbestimmten festen Niveau bleibt; und gekennzeichnet durch

    Anwenden eines Heizens (104) zum Erwärmen des Photodetektors auf eine vorbestimmte Temperatur, wobei die Heizung eine Temperatur aufweist, die höher als ein höchster erwarteter Wert der Umgebungstemperatur eingestellt ist, um eine konstante Temperatur (230) des Photodetektors aufrechtzuerhalten.


     
    9. Verfahren nach Anspruch 8, wobei der Photodetektor ferner eine Photodiode umfasst, die in der Nähe der Mitte der LED-Anordnung angeordnet ist.
     
    10. Verfahren nach Anspruch 8, ferner umfassend:

    Erfassen des Antriebsstroms zu den mehreren lichtemittierenden Vorrichtungen; und

    Erzeugen eines Alarmsignals, wenn der erfasste Antriebsstrom einen vorbestimmten Schwellenwert überschreitet.


     


    Revendications

    1. Appareil d'éclairage optique ayant une sortie de luminance constante, ledit appareil comprenant :

    une pluralité de diodes électroluminescentes ayant une sortie de luminance souhaitée et configurées dans un réseau compact ;

    un diffuseur de lumière (101) positionné pour recevoir une sortie des diodes électroluminescentes ;

    un photodétecteur (102) adapté pour recevoir l'énergie lumineuse réfléchie (107) par le diffuseur de lumière (101) et pour générer un signal de sortie (111) proportionnel à la quantité de lumière incidente reçue au niveau du photodétecteur ;

    un isolateur optique comprenant une enveloppe tubulaire opaque ouverte au moins au niveau d'une extrémité et montée autour du photodétecteur pour empêcher le photodétecteur de recevoir la lumière directement à partir des diodes électroluminescentes ;

    un circuit de commande (105) pour commander de manière variable le courant d'attaque vers les diodes électroluminescentes en réponse au signal de sortie en provenance du photodétecteur ;

    un capteur de température (104) à proximité du photodétecteur pour détecter une température ambiante à cet endroit ; caractérisé par

    un dispositif de chauffage (104) à proximité du photodétecteur, le dispositif de chauffage ayant une température supérieure à une valeur attendue la plus élevée de la température ambiante pour maintenir la température du photodétecteur à un réglage fixe prédéterminé, permettant ainsi à la luminance de sortie provenant des dispositifs émetteurs de lumière d'être constante et indépendante des variations de la température ambiante.


     
    2. Appareil d'éclairage optique selon la revendication 1, dans lequel le photodétecteur comprend en outre une photodiode positionnée à proximité du centre du réseau de DEL.
     
    3. Appareil d'éclairage optique selon la revendication 2, comprenant en outre :
    un capteur de courant (110) pour détecter le courant d'attaque sur la pluralité de DEL et pour générer un signal d'alarme (120) lorsque le courant d'attaque détecté dépasse un seuil de courant prédéterminé.
     
    4. Appareil d'éclairage optique selon la revendication 1, dans lequel ledit capteur de température comprend en outre un thermistor.
     
    5. Appareil d'éclairage optique selon la revendication 1, dans lequel ledit capteur de température comprend un circuit intégré de détection de température ;
    ledit photodétecteur étant éventuellement positionné de manière centrale à l'intérieur du réseau de DEL.
     
    6. Appareil d'éclairage optique selon la revendication 1, dans lequel le circuit de commande pour commander de manière variable le courant d'attaque vers les diodes électroluminescentes en réponse au signal de sortie provenant du photodétecteur doit permettre l'étalonnage de l'appareil d'éclairage optique.
     
    7. Appareil d'éclairage optique selon la revendication 6, dans lequel le circuit de commande est également configuré pour avoir de multiples réglages de courant d'attaque correspondant aux réglages de luminance échelonnés des diodes électroluminescentes.
     
    8. Procédé de régulation du courant d'attaque vers une pluralité de dispositifs émetteurs de lumière pour maintenir la luminance de ceux-ci à un niveau constant indépendamment des variations de la température ambiante, ledit procédé comprenant :
    la commande (210) du courant d'attaque vers la pluralité de dispositifs émetteurs de lumière (103) comprenant une pluralité de DEL configurées dans un réseau compact pour avoir une lumière de sortie avec une luminance prédéterminée :

    le passage (220) de la lumière de sortie à travers un diffuseur optique (101) ; et le couplage optique d'une partie réfléchie (107) de la lumière de sortie provenant du diffuseur optique à un photodétecteur (102) tout en protégeant (113) le photodétecteur de la réception de la lumière de sortie directement en provenance des dispositifs émetteurs de lumière à l'aide d'une enveloppe tubulaire ouverte au moins au niveau d'une extrémité ;

    la mesure de la température ambiante au niveau du photodétecteur ;

    la génération (230) d'un signal (111) au niveau du photodétecteur proportionnel à la luminance de la partie réfléchie de la lumière de sortie reçue au niveau du photodétecteur ; et

    le réglage (250) du courant de commande vers la pluralité de sources émettrices de lumière de sorte que la luminance de la lumière de sortie reste à un niveau fixe prédéterminé conformément au signal de photodétecteur ; et caractérisé par l'application d'un chauffage (104) pour chauffer le photodétecteur à une température prédéterminée, le dispositif de chauffage ayant une température réglée supérieure à une valeur attendue la plus élevée de la température ambiante afin de maintenir une température constante (230) du photodétecteur.


     
    9. Procédé selon la revendication 8, dans lequel le photodétecteur comprend en outre une photodiode positionnée à proximité du centre du réseau de DEL.
     
    10. Procédé selon la revendication 8, comprenant en outre :

    la détection du courant d'attaque sur la pluralité de dispositifs émetteurs de lumière ; et

    la génération d'un signal d'alarme lorsque le courant d'attaque détecté dépasse un seuil prédéterminé.


     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description