(19)
(11)EP 0 341 282 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.05.1994 Bulletin 1994/19

(21)Application number: 88909966.9

(22)Date of filing:  24.11.1988
(51)International Patent Classification (IPC)5B04C 5/06
(86)International application number:
PCT/AU8800/456
(87)International publication number:
WO 8904/726 (01.06.1989 Gazette  1989/12)

(54)

CYCLONE SEPARATOR

TRENNSCHLEUDER

SEPARATEUR A CYCLONE


(84)Designated Contracting States:
DE FR GB IT NL

(30)Priority: 24.11.1987 AU 5571/87

(43)Date of publication of application:
15.11.1989 Bulletin 1989/46

(73)Proprietor: CONOCO SPECIALTY PRODUCTS INC.
Houston, TX 77252 (US)

(72)Inventors:
  • KALNINS, Charles, Michael
    Malvern, VIC 3144 (AU)
  • TUCKETT, Phillip, Charles
    Berwick, VIC 3806 (AU)
  • Hansen, Soren Reimer Zerlang
    Dandenong, VIC 3175 (AU)

(74)Representative: Jackson, Peter Arthur et al
GILL JENNINGS & EVERY Broadgate House 7 Eldon Street
London EC2M 7LH
London EC2M 7LH (GB)


(56)References cited: : 
AU-C- 232 966
DE-B- 1 081 424
GB-B- 723 464
GB-B- 920 230
US-A- 2 936 043
AU-C- 5 983 760
FR-A- 892 950
GB-B- 723 520
US-A- 2 667 944
  
  • SOVIET INVENTIONS ILLUSTRATED, week 8822, 2nd June 1988, section J, abstractno. 88-153287/22, Derwent Publications Ltd, London, GB& SU-A-13 47 983 (BELO HALURGY RES.) 30-10-1987
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] This invention relates to a cyclone separator.

[0002] Cyclone separators conventionally have inlets at the side thereof for the material to be separated whereby to introduce the material into the cyclone separator with a tangential component of motion. Cyclone separators constructed in accordance with this principle are described in US-A-4,237,006, AU-A-84713/79 and International applications WO-A-83/03063 and WO-A-8503242. These separators have particular application in the separation of less dense from more dense components in a liquid mixture, particularly in the separation of oil from oily water mixtures.

[0003] It is in many cases inconvenient to provide side inlets and it is an object of the invention to provide a construction which permits an axially positioned inlet.

[0004] DE-A-1081424 discloses a cyclone separator for separating solid particles from gases or liquids comprising a separating chamber which tapers from a larger diameter end to a smaller diameter end and having overflow and underflow outlets for the liquid or gas and the solid particles, respectively, wherein the inlet means is in the form of an axially extending duct which opens into the separating chamber at said larger diameter end thereof and is provided with flow directing means for axially directing flow into the separating chamber with a tangential component of motion and wherein the inlet means includes a cylindrical portion forming an outer boundary surface within the inlet duct and within which cylindrical portion is coaxially arranged a frusto conically shaped tapered portion for providing an inner boundary surface within said duct, said tapered portion having its larger diameter end at the end of the inlet duct nearest the separating chamber. In this arrangement the overflow outlet is defined by the whole area of the larger end of the frusto conical portion. The arrangement of DE-A-1081424 is not suitable for use in the separation of mixtures of liquids.

[0005] In one aspect, the invention provides a cyclone separator for separating two liquid components one of greater density and the other of lesser density, one from the other, when admitted in admixture to a separating chamber of the separator, the separating chamber being of generally tapered form, tapering from a larger diameter end to a smaller diameter end, and being in the form of an axially extending surface of revolution, the separating chamber having an overflow outlet for the less dense component, located at the larger diameter end, and an underflow outlet at the smaller diameter end, for outflow of the greater density component, and inlet means for inlet of the mixture into the separating chamber at a location at least towards said larger diameter end with a tangential component of motion, the inlet means being in the form of an axially extending inlet duct which opens into the separating chamber at said larger diameter end thereof, the inlet duct being provided with flow directing means for axially directing flow into the separating chamber with said tangential component of motion, said inlet means further including a cylindrical portion forming an outer boundary surface within said inlet duct and within which cylindrical portion is coaxially arranged a frusto-conically shaped tapered portion for providing an inner boundary surface within said duct, said tapered portion having its larger diameter end at the end at the end of the inlet duct nearest the separating chamber, said large diameter end of said tapered portion being closed except for a small diameter axial passage for providing fluid communication between the separating chamber and the overflow outlet.

[0006] The flow directing means may be in the form of one or more baffles, such as helically extending baffles, or may be in the form of vanes or the like fixed to a member which is in use rotated about the axis of the separator to effect inlet of the mixture. In any event the inlet duct may extend in surrounding coaxial relationship with the overflow outlet. The duct may be of annular form of substantially constant outer diameter along its length but having an inner diameter which increases in the direction of inlet flow to the separating chamber. It may also be of helical form.

[0007] The invention is further described by way of example only with reference to the accompanying drawings in which:

Figure 1 is a partly sectioned perspective view of a cyclone separator constructed in accordance with the invention;

Figure 2 is a cross-section substantially on the line 2-2 in Figure 1;

Figure 3 is an axial cross-section of an inlet duct forming part of the cyclone separator of Figure 1;

Figures 4, 5 and 6 are, respectively, diagrams showing alternative forms of cyclone separator constructed in accordance with the invention;

Figure 7 is a cross-section approximately on the line 7-7 in Figure 5; and

Figure 8 is a fragmentary sectional perspective view of the inlet to the cyclone separator of Figure 5.



[0008] Referring firstly to Figures 1 to 3, the cyclone separator shown therein has a separating chamber 25 which has its surface defined as an axially extending surface of revolution in turn defined by the inner surface of an outer casing 37. The separating chamber is of generally tapered form, tapering from a larger diameter end 10a to a smaller diameter end 10b. In this instance, the separating chamber 25 is shown as being formed in accordance with the teachings of the aforementioned United States patent 4,237,006, Australian patent application 84713/79 or International application PCT/AU83/00028. More particularly, the separating chamber 25 has a first portion 12 of diameter d₁ and length l₁ this being of generally constant diameter throughout its length, a tapered portion 12a of frusto-conical configuration which tapers from diameter d₁ to a lesser diameter d₂, a second, tapered, portion 14 of length l₂, diameter d₂ at its larger end and diameter d₃ at its smaller end, the second portion 14 leading to a third portion 16 of diameter d₃ having a substantially constant diameter throughout its length.

[0009] At its larger diameter end, portion 12 leads, in the direction away from portion 14, to an inlet duct 70, defined within a hollow casing 72 of cylindrical form, which casing constitutes a continuation of the casing 37 (where this defines portion 12 of the separator) and having the same diameter thereas. The inner surface of casing 72 defines the outer surface of the duct 70. The inner surface of the duct 70 is defined by the outer surface of a tapered body 80 having frusto-conical body portion 80a positioned within the casing 72 and arranged coaxially therewith, with its larger diameter end, having diameter da, at the end of duct 70 adjacent portion 12 of the separating chamber, and tapering in the direction away from the separating chamber to a diameter db. As shown, the body 80 further includes a cylindrical end portion 80b, coining body portion 80a, at its smaller diameter end, this likewise being coaxial with casing 72.

[0010] At its larger diameter end, the body 80 has a transverse face 80c, (Figures 2 and 3) which forms an end face of separating chamber 25, at the larger diameter end thereof. Body 80 also has therewithin an axial overflow outlet 34 in the form of a generally elongate cylindrical duct which opens to the separating chamber 25 via an overflow outlet opening 32 of diameter d₀ formed in face 80c. Between the body 80, at its larger diameter end, and the inner periphery of the separating chamber 12 immediately adjacent thereto, there is defined an annular inlet opening 29.

[0011] A baffle, in the form of a helical flight 90, extends for several turns around body 80 and is sealingly secured, at the inner edge thereof, to the outer periphery of the body 80 and, at its outer edge, to the inner periphery of the casing 72. Flight 90 terminates at a transverse edge 90a, at the larger diameter end of the body 80. As mentioned, the duct 70 is defined at its outer periphery by the inner surface or casing 72, and at its inner periphery by the outer surface of the body 80. In view of the interposition of the flight 90 between these components, the duct 70 further defines a helical inlet passage 75. Likewise, it will be observed that, because of the tapered body 80, the duct 70 which is of annular and generally helical form, decreases in cross-sectional area in the direction towards the separating chamber 25.

[0012] In use, liquid mixture to be separated is admitted into the duct 70 and, because of the presence of the flight 90, is caused to execute a helical motion, moving within the passage 75 to the annular inlet opening 29, at which it enters the separating chamber 25 with a component of motion in the axial direction of the separating chamber and with a, further, tangential component.

[0013] Aside from the arrangement of the inlet, the separator 10 operates in a similar fashion to the separators described in the aforementioned prior patent specifications. In particular, the mixture travels in helical fashion lengthwise along the separating chamber. The more dense component of the mixture continues this motion to eventually exit chamber 25 via an underflow outlet 23 at end 10b of the separator. The less dense component, however, forms an inner axial core which is driven in the opposite direction to flow to overflow outlet opening 32, passing thereinto and exiting from the separator via the overflow outlet 34.

[0014] The separator may be constructed in accordance with the following dimensional constraints:


, such as






, such as










   Where l₁, l₂, l₃, d₁, d₂, d₃ and d₀ have the meanings abovementioned, and Ai is the inlet area of the passage 75 at the cross-section where the flight 90 terminates, i.e., at the transverse plane containing edge 90a.

[0015] β, the half angle of the taper of the second portion 14, may be 20′ to 3°, such as 1°. Portion 12a is optional. If provided, it may have a half angle, α of 5° ≦ α ≦ 30° such as 10°.

[0016] In accordance with the teachings of International application PCT/AU83/00028, a further portion (not shown) may be added to the separating chamber 25 at the end 10b thereof, such as being of frusto-conical form, in order to improve operation of the separator. Furthermore, in accordance with the last-mentioned patent specification, the overflow outlet may be of two part form having a first portion 34a adjacent to and defining opening 32, this being of lesser diameter than a second portion 34b of the overflow outlet which is further from the separating chamber 25. The portions 34a, 34b may be interconnected by a tapered portion 34c. Such a construction is shown, for example, in Figure 3, the larger diameter portion 34b having a diameter designated d.

[0017] Figures 4 and 5 show arrangements similar to that in Figure 1 and like reference numerals denote like components in each of these Figures. Here, however, the separators have two helical flights 90 instead of the single such flight provided in Figures 1 to 3. In such a case, there are, formed in duct 70, two inlet passages 75 of helical form, each leading to a separate inlet opening to the separating chamber. In the above mentioned equations, the term Ai is intended to be taken to be a measure of the total inlet area, whether presented by one, two or more passages 75.

[0018] The arrangement of Figure 4 has two inlet openings 29a of "half annular" arcuate form defined at the location where flights 90 end, and between the outer periphery of body 80 and the inner periphery of casing 72a.

[0019] The arrangement of Figure 5, is designed for side entry of the inlet liquid rather than end entry as in the arrangements of Figures 1 to 4. More particularly, here, the casing 37 defining separating chamber 25 is made of the same diameter as the largest diameter da of the body 80 and joins the body at its largest diameter end. The casing 72 defining ducts 70 is however of larger diameter than the diameter da and is extended in the direction towards the underflow outlet of the separating chamber by a further hollow cylindrical end portion 72a which may as shown be of the same diameter as the remainder of casing 72. Casing portion 72a is thus adjacent and concentrically positioned in spaced relationship around an end portion 37a of casing 37 to define an annular space therebetween. The casing portions 37a, 72a are joined by an outwardly stepped wall portion 10c of the separator. The flights 90 are extended for one half of a convolution from body 80 towards the overflow outlet of the separating chamber, in the space between the casing portions 37a, 72a so that the passages 75 are likewise so extended. Inlet ports 95 are provided through the side wall of casing portion 37a to permit inflow of inlet liquid from respective passages 75 into separating chamber 25.

[0020] As shown in Figures 7 and 8, parts 97 of the side wall of casing portion 72a may be formed of gradually decreasing diameter, as the inlets 95 are approached, to form involute-like inlet duct portions leading to the inlets 95.

[0021] In Figure 6, the construction is again similar to those previously described. Here, the inlet duct 70 is defined within casing 72, as before, and the body 80 is again provided. However, the or each flight 90 is in this case not affixed to the casing 72, the flights being arranged to be rotatable axially of the duct 70. More particularly, they may, as shown, be formed as involute type blades 100 on the body 80, the body and blades being together rotatable about the axis of the separator. Thus, by providing suitable drive means (not shown) such as a motor drive to rotate the body and blades about the axis of the body, the inlet liquid flowing into separating chamber 25 via duct 70 may have a desired degree of tangential motion imparted thereto. Alternatively, the blades 100 may be formed on another body coaxially rotatable around body 80.


Claims

1. A cyclone separator for separating two liquid components one of greater density and the other of lesser density, one from the other, when admitted in admixture to a separating chamber of the separator, the separating chamber (25) being of generally tapered form, tapering from a larger diameter end (10a) to a smaller diameter end (10b), and being in the form of an axially extending surface of revolution, the separating chamber (25) having an overflow outlet (34) for the less dense component, located at the larger diameter end (10a), and an underflow outlet (33) at the smaller diameter end (10b), for outflow of the greater density component, and inlet means for inlet of the mixture into the separating chamber (25) at a location at least towards said larger diameter end (10a) with a tangential component of motion, the inlet means being in the form of an axially extending inlet duct (20) which opens into the separating chamber (25) at said larger diameter end (10a) thereof, the inlet duct (20) being provided with flow directing means (90) for axially directing flow into the separating chamber (25) with said tangential component of motion, said inlet means further including a cylindrical portion (72) forming an outer boundary surface within said inlet duct (70) and within which cylindrical portion (72) is coaxially arranged a frusto-conically shaped tapered portion (80) for providing an inner boundary surface within said duct (70), said tapered portion (80) having its larger diameter end at the end of the inlet duct (70) nearest the separating chamber (25), characterised in that said large diameter end of said tapered portion (80) being closed except for a small diameter axial passage (32) for providing fluid communication between the separating chamber (25) and the overflow outlet (34).
 
2. A cyclone separator as claimed in claim 1 wherein the flow directing means comprises a baffle (90), which may be helical and which is preferably one of a plurality of helical baffles.
 
3. A cyclone separator as claimed in claim 1 wherein the inlet duct (70) extends to one or more inlet opendings (29) in surrounding coaxial relationship with the overflow outlet.
 
4. A cyclone separator as claimed in claim 1 wherein a helical inlet passsage (75) is formed in said duct (70) by a helical flight (90) which is positioned in said duct (70) and forms said flow directing means.
 
5. A cyclone separator as claimed in claim 4 wherein said duct (70) is of substantially constant outer diameter along its length but has an inner frusto-conical wall diameter which increases in the direction of inlet flow to the separating chamber (25).
 
6. A cyclone separator as claimed in claim 4 or claim 5 wherein said inlet duct (70) opens to said separating chamber (25) at one or more locations radially spaced from the overflow outlet (34) and at an end wall of the separator in which the overflow outlet (34) opens to the separating chamber (25).
 
7. A cyclone separator as claimed in claim 4 or claim 5 wherein the inlet duct (70) opens to the separating chamber via side inlet openings (95) therein.
 
8. A cyclone separator as claimed in claim 1 wherein said flow directing means comprises an axially rotatable body (80) in the inlet duct (70) and provided with vanes (100).
 


Ansprüche

1. Trennschleuder, um damit zwei Flüssigkeitskomponenten, von denen eine eine höhere Dichte und die andere eine geringere Dichte aufweist, voneinander zu trennen, wenn diese in gemischter Form einer Trennkammer der Schleuder zugeführt werden, wobei die Trennkammer (25) eine im allgemeinen konisch ausgeführte Form aufweist, die von einem einen größeren Durchmesser aufweisenden Ende (10a) zu einem einen kleineren Durchmesser aufweisenden Ende (10b) konisch zuläuft und als eine sich axial erstreckende Drehoberfläche ausgebildet ist, die Trennkammer (25) mit einem für die weniger dichte Komponente vorgesehenen Überlaufaustritt (34), der an dem den größeren Durchmesser aufweisenden Ende (10a) angeordnet ist, und mit einem Unterlaufaustritt (33), der an dem den kleineren Durchmesser aufweisenden Ende (10b) vorgesehen ist, damit dort die dichtere Komponente austreten kann, sowie mit einem Eintrittsmittel ausgestattet ist, um so die Mischung an einer Stelle zumindest in Richtung auf das genannte, den größeren Durchmesser aufweisende Ende (10a) mit einer tangentialen Bewegungskomponente in die Trennkammer (25) einzuführen, wobei das Eintrittsmittel in Form eines sich axial erstreckenden Eintrittskanals (20) ausgebildet ist, der an dem genannten, den größeren Durchmesser aufweisenden Ende (10a) der Kammer in die Trennkammer (25) eintritt, der Eintrittskanal (20) mit einem Strömungsleitmittel (90) ausgestattet ist, um die Strömung mit der genannten tangentialen Bewegungskomponente axial in die Trennkammer (25) einzuleiten, wobei das genannte Eintrittsmittel weiterhin einen zylindrischen Abschnitt (72) umfaßt, der eine äußere Grenzoberfläche innerhalb des genannten Eintrittskanals (70) bildet, und innerhalb dieses zylindrischen Abschnittes (72) ein stumpfkegelig geformter, konisch zulaufender Abschnitt (80) koaxial angeordnet ist, um so eine innere Grenzoberfläche innerhalb des genannten Kanals (70) vorzusehen, wobei der genannte konisch zulaufende Abschnitt (80) sein den größeren Durchmesser aufweisendes Ende am Ende des Eintrittskanals (70) in nächster Nähe zur Trennkammer (25) besitzt, dadurch gekennzeichnet, daß das genannte, den großen Durchmesser aufweisende Ende des genannten konisch zulaufenden Abschnittes (80) mit Ausnahme eines einen kleinen Durchmesser aufweisenden axialen Durchganges (32), der für eine Flüssigkeitsverbindung zwischen der Trennkammer (25) und dem Überlaufaustritt (34) sorgt, geschlossen ist.
 
2. Trennschleuder nach Anspruch 1, wobei das Strömungsleitmittel ein Prallblech (90) umfaßt, das schneckenförmig ausgebildet sein kann und vorzugsweise ein Prallblech aus einer Mehrzahl von schneckenförmig ausgebildeten Prallblechen darstellt.
 
3. Trennschleuder nach Anspruch 1, wobei der Eintrittskanal (70) sich zu einer oder mehreren Eintrittsöffnungen (29) in einem umgebenden, koaxialen Verhältnis zum Überlaufaustritt erstreckt.
 
4. Trennschleuder nach Anspruch 1, wobei ein schneckenförmiger Eintrittsdurchgang (75) im genannten Kanal (70) in Form einer Schneckenwendel (90) ausgebildet ist, die im genannten Kanal (70) angeordnet ist und das genannte Strömungsleitmittel bildet.
 
5. Trennschleuder nach Anspruch 4, wobei der genannte Kanal (70) über seine Länge einen im wesentlichen konstanten Außendurchmesser, jedoch einen stumpfkegeligen Wandinnendurchmesser aufweist, der in Richtung der Eintrittsströmung zur Trennkammer (25) hin zunimmt.
 
6. Trennschleuder nach Anspruch 4 oder Anspruch 5, wobei der genannte Eintrittskanal (70) sich zur genannten Trennkammer (25) hin an einer oder mehreren Stellen, die radial mit Abstand zum Überlaufaustritt (34) angeordnet sind, sowie an einer Endwand der Schleuder öffnet, in der der Überlaufaustritt (34) sich zur Trennkammer (25) hin öffnet.
 
7. Trennschleuder nach Anspruch 4 oder Anspruch 5, wobei der Eintrittskanal (70) sich zur Trennkammer hin über darin ausgebildete Seiteneintrittsöffnungen (95) öffnet.
 
8. Trennschleuder nach Anspruch 1, wobei das genannte Strömungsleitmittel einen axial drehbaren Körper (80) umfaßt, der im Eintrittskanal (70) angeordnet und mit Schaufeln (100) ausgestattet ist.
 


Revendications

1. Un séparateur à cyclone pour séparer l'un de l'autre deux composants liquides, l'un de plus grande densité et l'autre de moindre densité, quand ils sont admis sous forme de mélange dans une chambre de séparation du séparateur, la chambre de séparation (25) étant de forme généralement conique, se rétrécissant depuis une extrémité de diamètre plus grand (10a) jusqu'à une extrémité de diamètre plus petit (10b), et étant en forme d'une surface de révolution s'étendant axialement, la chambre de séparation (25) ayant un orifice de débordement (34) pour le composant le moins dense, situé à l'extrémité de plus grand diamètre (10a) et un orifice d'écoulement (23) à l'extrémité de plus petit diamètre (10b), pour l'évacuation du composant ayant la plus grande densité, et des moyens d'entrée pour introduire le mélange dans la chambre de séparation (25) à un endroit situé au moins vers ladite extrémité de plus grand diamètre (10a) avec une composante tangentielle de mouvement, les moyens d'entrée ayant la forme d'un conduit d'entrée (70) s'étendant axialement qui s'ouvre dans la chambre de séparation (25) à ladite extrémité de plus grand diamètre (10a) de celle-ci, le conduit d'entrée (70) étant doté de moyens (90) de direction du courant pour diriger axialement le courant dans la chambre de séparation (25) avec ladite composante tangentielle de mouvement, lesdits moyens d'entrée comprenant en outre une partie cylindrique (72) formant une surface limite extérieure à l'intérieur dudit conduit d'entrée (70), partie cylindrique (72) à l'intérieur de laquelle est coaxialement disposée une partie conique de forme tronconique (80) pour créer une surface limite intérieure à l'intérieur dudit conduit (70), ladite partie conique (80) ayant son extrémité de diamètre le plus grand à l'extrémité du conduit d'entrée (70) la plus proche de la chambre de séparation (25), caractérisé en ce que ladite extrémité de diamètre le plus grand de ladite partie conique (80) est fermée sauf pour un passage axial de petit diamètre (32) pour prévoir une communication de liquide entre la chambre de séparation (25) et l'orifice de débordement (34).
 
2. Un séparateur à cyclone suivant la revendication 1, dans lequel les moyens de direction du courant comprennent une chicane (90), qui peut être hélicoïdale et qui de préférence fait partie d'une pluralité de chicanes hélicoïdales.
 
3. Un séparateur à cyclone suivant la revendication 1, dans lequel le conduit d'entrée (70) s'étend jusqu'à une ou plusieurs ouvertures d'entrée (29), en position coaxiale périphérique par rapport à l'orifice de débordement.
 
4. Un séparateur à cyclone suivant la revendication 1, dans lequel un passage d'entrée hélicoïdal (75) est formé dans ledit conduit (70) par une ailette hélicoïdale (90) qui est positionnée dans ledit conduit (70) et forme lesdits moyens de direction du courant.
 
5. Un séparateur à cyclone suivant la revendication 4, dans lequel ledit conduit (70) est de diamètre extérieur substantiellement constant suivant sa longueur mais a un diamètre de paroi intérieure tronconique qui augmente dans la direction du courant d'entrée vers la chambre de séparation (25).
 
6. Un séparateur à cyclone suivant la revendication 4 ou la revendication 5, dans lequel ledit conduit d'entrée (70) s'ouvre vers ladite chambre de séparation (25) à un ou plusieurs endroits radialement espacés depuis l'orifice de débordement (34) et à une paroi d'extrémité du séparateur dans laquelle l'orifice de débordement (34) s'ouvre vers la chambre de séparation (25).
 
7. Un séparateur à cyclone suivant la revendication 4 ou la revendication 5, dans lequel le conduit d'entrée (70) s'ouvre vers la chambre de séparation via des ouvertures d'entrée latérales (95) ménagées dans celle-ci.
 
8. Un séparateur à cyclone suivant la revendication 1, dans lequel lesdits moyens de direction du courant comprennent un corps axialement rotatif (80) dans le conduit d'entrée (70) et doté d'aubes (100).
 




Drawing