(19)
(11)EP 2 742 576 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.12.2017 Bulletin 2017/51

(21)Application number: 12846078.9

(22)Date of filing:  01.11.2012
(51)International Patent Classification (IPC): 
H02J 3/14(2006.01)
H02J 9/04(2006.01)
(86)International application number:
PCT/US2012/062967
(87)International publication number:
WO 2013/067120 (10.05.2013 Gazette  2013/19)

(54)

ADDING AND SHEDDING LOADS USING LOAD LEVELS TO DETERMINE TIMING

LASTENHINZUFÜGUNGS- UND ENTNAHMESYSTEM UNTER VERWENDUNG VON LASTEBENEN ZUR BESTIMMUNG EINES TIMINGS

AJOUT ET DÉLESTAGE DE CHARGES UTILISANT DES NIVEAUX DE CHARGE POUR DÉTERMINER UNE COMMANDE TEMPORELLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 04.11.2011 US 201113289131

(43)Date of publication of application:
18.06.2014 Bulletin 2014/25

(73)Proprietor: Kohler Co.
Kohler, WI 53044 (US)

(72)Inventors:
  • FRAMPTON, Isaac S.
    Strattanville, Pennsylvania 16258 (US)
  • BORNEMANN, Kenneth R.
    Cato, Wisconsin 54230 (US)
  • CHIU, Harrison C.
    Grafton, Wisconsin 53024 (US)

(74)Representative: Hoefer & Partner Patentanwälte mbB 
Pilgersheimer Straße 20
81543 München
81543 München (DE)


(56)References cited: : 
EP-A1- 1 739 806
US-A1- 2007 273 214
US-B2- 7 514 815
US-A1- 2005 216 131
US-A1- 2011 215 645
US-B2- 7 854 283
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] Embodiments pertain to a system and method for adding and shedding loads.

    BACKGROUND



    [0002] The process of prioritizing loads that are connected to a power supply that has limited capacity is typically referred as load shedding. As an example, power may be supplied by a standby generator where load shedding is required because the standby generator has a capacity that is less than the requirements of the entire attached load.

    [0003] Water heaters and air conditioners are among the commonly utilized devices that are powered loads by a power source (e.g., a generator). These loads may need to be shed when a residence is being supplied by a limited capacity generator. Existing load shedding systems typically prioritize each load and then determine if the limited capacity power source is able to supply the loads before adding each load. If the limited capacity power source becomes overloaded, then the load control system will remove one or more loads to allow the power source to continue supplying power to the more important connected loads.

    [0004] Utilizing a load shedding system may allow a smaller standby generator to be installed thereby decreasing the generator costs that are associated with powering a facility. In addition, load shedding may decrease costs by limiting the peak demand for power during certain times of the day because such systems often allow a power generation utility to keep a less efficient generation plant offline and then pass the savings on to the customer (i.e., the generator user).

    [0005] One of the drawbacks with existing load shedding systems is that although custom-designed and configured load shedding schemes work well under some conditions; many load shedding systems do not work well when operating a variety of loads under a variety of conditions.

    [0006] US 2005/0216131 A1 discloses a residential load power management system, in which a controller waits for a preset amount of time before shedding or adding another load from or to a load management system. When the controller sees a large current swing in demand, the load management system sheds the loads more quickly to prevent the generator from overloading.

    [0007] One of the biggest challenges for a load shedding system is a high- priority switching load. In one example scenario, a high-priority switching load may be deactivated which allows less important loads to be added. Therefore, once the high-priority switching load is eventually turned on, the power source becomes overloaded. The load shedding system must then shed several loads before the load that is actually causing the overload is removed. The additional time that is required to shed multiple loads increases the likelihood of the power source becoming overloaded for an undesirable period of time. Although many existing load shedding systems are customized in an attempt to minimize unintended power source dropouts, such systems are still often unable to adequately handle high-priority switching loads.

    [0008] Another drawback with conventional load shedding systems is that in some scenarios, all of the loads may not be drawing power from the generator during an overload condition. As an example, six loads may be activated by the system even though only two of the loads are actually drawing power. As a result, when an overload occurs after all these loads have been added, the system may have to take unnecessary time to shed as many as five loads before actual load on the power source decreases at all. This increase in time to shed the appropriate load could result in the power source going offline.

    [0009] Load shedding systems must also typically be carefully configured in order to work in each application because standard load shedding logic does not accurately match the load profile of a typical power source or a typical motor load. As a result, these existing systems are typically unable to start large motors that would otherwise typically lie within the starting capabilities of the generator. Configuring a typical load shedding system to permit starting a large motor will typically result in inadequate protection for the generator.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] 

    FIG. 1 illustrates an example load shedding system.

    FIG. 2 illustrates an example engine driven generator that may be used with the load shedding system shown in FIG. 1.

    FIG. 3 illustrates an example of how time T varies when a given load is added based on the generator load L and the available generator capacity at a point in time as compared to a conventional method of adding loads.

    FIGS. 4 and 5 illustrate an example of how time T varies for a given load being shed based on the correspond overload of a generator as compared to a conventional method of shedding loads.

    FIG. 6A shows conventional under-frequency load shedding techniques handling motor starting and overload conditions.

    FIG. 6B shows under-frequency load shedding techniques handling motor starting and overload conditions in accordance with some example embodiments.

    FIG. 7 illustrates decreasing the time to shed subsequent loads after a previous load shedding operation in accordance with some example embodiments.

    FIG. 8 is a block diagram that illustrates a diagrammatic representation of a machine in the example form of a computer system 400 within which a set of instructions for causing the machine to perform any one or more of the methodologies discussed herein may be executed.


    DETAILED DESCRIPTION



    [0011] The following description and the drawings sufficiently illustrate specific embodiments to enable those skilled in the art to practice them. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Portions and features of some embodiments may be included in, or substituted for, those of other embodiments. Embodiments set forth in the claims encompass all available equivalents of those claims.

    [0012] A method of adding and shedding loads L1, L2, L3, L4 that are connected to a generator 12 will now be described with reference to FIG. 1. The method includes determining whether a plurality of loads L1, L2, L3, L4 is being supplied with power by the generator 12 and then determining the total load that the generator 12 is supplying to the plurality of loads L1, L2, L3, L4.

    [0013] The method further includes determining whether to change a number of the loads in the plurality of loads L1, L2, L3, L4 based on the amount of load L that is being supplied by the generator 12. As shown in FIGS. 3-6, the method further includes determining an amount of time T in which to change the number of loads in the plurality of loads based on the amount of load L that is being supplied by the generator 12. Further, if the available load capacity, defined as the difference between the maximum loading threshold of the generator 12 and the load that the generator 12 is supplying, is below a predetermined ratio lower than 100% and greater than 0%, the amount of time T to increase the number of loads L1, L2,L3, L4 will increase as the available load capacity decreases. In some embodiments, determining whether a plurality of loads L1, L2, L3, L4 are being supplied with power by the generator 12 may include monitoring the position of an automatic transfer switch 13. It should be noted that the plurality of loads L1, L2, L3, L4 are being supplied with power by generator 12 when the automatic transfer switch 13 is in an emergency position.

    [0014] In alternative embodiments, determining whether a plurality of loads L1, L2, L3, L4 are being supplied with power by the generator 12 may include measuring a position of a throttle 17 that is part of the generator 12 (see e.g., FIG. 2). It should be noted that the generator 12 may be established as supplying power to the plurality of loads L1, L2, L3, L4 when the throttle 17 position is in a position other than a "no load" position.

    [0015] In still other embodiments, determining whether a plurality of loads L1, L2, L3, L4 are being supplied with power by the generator 12 may include monitoring the generator load L. As examples, monitoring the generator load L may be done by (i) measuring the generator 12 operating frequency; (ii) measuring the generator 12 operating voltage; and/or (iii) measuring the generator 12 current.

    [0016] In addition, determining the total load L that the generator 12 is supplying to the plurality of loads L1, L2, L3, L4 may include (i) measuring the generator operating frequency; (ii) measuring the generator operating voltage; and/or (iii) measuring the generator current.

    [0017] In some embodiments, determining the total load L that the generator 12 is supplying to the plurality of loads L1, L2, L3, L4 includes determining the output torque of a prime mover (i.e., an engine) of the generator 12. The output torque may be calculated by (i) measuring fuel injection time duration 18 within the generator 12; (ii) measuring the intake manifold 16 pressure within the generator 12; and/or (iii) measuring a position of a throttle 17 within the generator 12. It should be noted the output torque may be calculated for spark-ignited and compression-ignited engines as well as other types of prime movers.

    INCREASING THE NUMBER OF LOADS



    [0018] In some embodiments, determining an amount of time T in which to change the number of loads in the plurality of loads L1, L2, L3, L4 may be based on the amount of load L that is being supplied by the generator 12 includes increasing the number of loads based on an available load capacity of the generator 12.

    [0019] As used herein, the available load capacity of the generator 12 is the difference between the maximum loading threshold of the generator 12 and a load the generator 12 is supplying at a particular point in time. As examples, the maximum loading threshold of the generator may be adjustable by a user via a user interface 20 (see FIG. 1), and/or may be based on a rating determined by a manufacturer of the generator 12. As examples, the user interface 20 may be part of a load control module 14, automatic transfer switch 13, generator controller 15 or a stand-alone device.

    [0020] FIG. 3 illustrates an example of how time T varies when a given load is added based on the generator load L and the available generator capacity at a point in time as compared to a conventional method of adding loads. The amount of time T to add a load is varied based on the available generator capacity. As the available generator capacity increases, the time T to add a load decreases.

    [0021] Therefore, the method allows generator loads to be added more quickly when there is substantial available generator capacity and more slowly when there is limited available generator capacity. This time adjustment provides (i) improved protection to the generator as the generator approaches maximum capacity; and (ii) power load as quickly as possible when there is minimal generator loading (as compared to conventional methods).

    DECREASING THE NUMBER OF LOADS



    [0022] In some embodiments, determining an amount of time T in which to change the number of loads in the plurality of loads L1, L2, L3, L4 may be based on the amount of load L that is being supplied by the generator 12 includes decreasing the number of loads based on an overload of the generator 12.

    [0023] As used herein, the overload of the generator 12 is a difference between a generator load at a particular point in time and a maximum loading threshold of the generator. As examples, the maximum loading threshold of the generator may be adjustable by a user interface 20 (see FIG. 1), and/or may be based on a rating determined by a manufacturer of the generator 12.

    [0024] FIGS. 4 and 5 illustrate an example of how time T varies for a given load being shed based on the corresponding overload of the generator 12 as compared to a conventional method of shedding loads. The amount of time T to shed a load is varied based on the overload of the generator 12. As the overload increases, the time T to shed a load decreases.

    [0025] Therefore, the method allows generator loads to be shed more quickly when there is substantial generator overload and more slowly when generator 12 is not as heavily overloaded. This time adjustment (i) provides improved protection to the generator 12 when there is substantial generator overload by shedding loads more quickly (see e.g., FIG. 4); and (ii) permits motor starting (see e.g., FIG. 5) (as compared to conventional methods).

    [0026] As shown in FIG. 6B, determining an amount of time in which to change the number of loads in the plurality of loads based on the amount of load that is being supplied by the generator includes decreasing the number of loads based on generator operating frequency. In some embodiments, the amount of time to decrease the number of loads will decrease as the generator operating frequency decreases.

    [0027] As shown in FIG. 6A, conventional under-frequency load shedding techniques shed load after the generator has remained below a fixed threshold for a specified period of time. This type of operating parameter results in poor power quality being supplied to loads and could also result in unintended shedding during motor starting, especially when using heavily loaded large AC motors.

    [0028] Comparing FIGS. 6A and 6B demonstrates how the methods described herein may improve on conventional under frequency load shedding techniques. FIG. 6A illustrates conventional under frequency load shedding techniques for a given motor starting load and a given overload while FIG. 6B illustrates the under frequency load shedding techniques described herein for the same motor starting load and the same overload.

    [0029] It should be noted that while FIGS 3, 4, 5 and 6 illustrate linear time/load curves, other embodiments are contemplated where these curves may be nonlinear. The shape of these curves will depend on a variety of design considerations.

    [0030] FIGS. 1 and 7 illustrate a method of adding and shedding loads that are connected to a generator in accordance with another example embodiment. The method includes determining whether a plurality of loads L1, L2, L3, L4 is being supplied with power by the generator 12 and determining the load L that the generator is supplying to the plurality of loads L1, L2, L3, L4.

    [0031] The method further includes determining whether to change a number of the loads in the plurality of loads L1, L2, L3, L4 based on the amount of load that is being supplied by the generator 12 and changing the number of loads in the plurality of loads L1, L2, L3, L4. The method further includes determining an amount of time in which to further change the number of loads where the amount of time is determined by whether the number of loads increases or decreases during the previous change of the number of loads.

    [0032] In some embodiments, determining an amount of time in which to further change the number of loads in the plurality of loads L1, L2, L3, L4 includes increasing the amount of time to decrease the number of loads when the previous change of the number of loads increased the number of loads.

    [0033] Other embodiments are contemplated where determining an amount of time in which to further change the number of loads in the plurality of loads includes decreasing the amount of time to decrease the number of loads when the previous change of the number of loads decreased the number of loads.

    [0034] It should be noted that embodiments are also contemplated where determining an amount of time in which to further change the number of loads in the plurality of loads L1, L2, L3, L4 includes decreasing the amount of time to decrease the number of loads when the previous change of the number of loads decreased the number of loads.

    [0035] In still other embodiments, determining an amount of time in which to further change the number of loads in the plurality of loads L1, L2, L3, L4 includes increasing the amount of time to increase the number of loads when the previous change of the number of loads decreased the number of loads.

    [0036] FIG. 7 illustrates decreasing the time to shed subsequent loads after a previous load shedding operation. In the example scenario that is illustrated in FIG. 7, three of six loads are not demanding power from the generator which results in no decrease to the generator load when these loads are shed. The subsequent decreases in the time to shed each load allows these loads to be shed before there is significant degradation to the quality of power being supplied to these loads.

    [0037] The methods described herein may permit load control operation that work well when there a variety of loads that operate under a variety of conditions. In addition, the methods may be able to more adequately handle high-priority switching loads. The methods may also reduce the time to shed multiple loads more quickly until the actual load on the power source decreases. This decrease in time to shed the appropriate load may allow the power source to remain online.

    Example Machine Architecture



    [0038] FIG. 8 is a block diagram that illustrates a diagrammatic representation of a machine in the example form of a computer system 400 within which a set of instructions for causing the machine to perform any one or more of the methodologies discussed herein may be executed. In some embodiments, the computer system 400 may operate in the capacity of a server or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.

    [0039] The computer system 400 may be a server computer, a client computer, a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a Web appliance, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while only a single machine is illustrated, the term "machine" shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.

    [0040] The example computer system 400 may include a processor 460 (e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both), a main memory 470 and a static memory 480, all of which communicate with each other via a bus 408. The computer system 400 may further include a video display unit 410 (e.g., liquid crystal displays (LCD) or cathode ray tube (CRT)). The computer system 400 also may include an alphanumeric input device 420 (e.g., a keyboard), a cursor control device 430 (e.g., a mouse), a disk drive unit 440, a signal generation device 450 (e.g., a speaker), and a network interface device 490.

    [0041] The disk drive unit 440 may include a machine-readable medium 422 on which is stored one or more sets of instructions (e.g., software 424) embodying any one or more of the methodologies or functions described herein. The software 424 may also reside, completely or at least partially, within the main memory 470 and/or within the processor 460 during execution thereof by the computer system 400, the main memory 470 and the processor 460 also constituting machine-readable media. It should be noted that the software 424 may further be transmitted or received over a network (e.g., network 380 in FIG. 3) via the network interface device 490.

    [0042] While the machine-readable medium 422 is shown in an example embodiment to be a single medium, the term "machine-readable medium" should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term "machine-readable medium" shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of example embodiments described herein. The term "machine-readable medium" shall accordingly be taken to include, but not be limited to, solid-state memories and optical and magnetic media.

    [0043] Thus, a computerized method and system are described herein. Although the present invention has been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.


    Claims

    1. A method of adding and shedding loads (L1-L4) that are connected to a generator (12), the method comprising:

    determining whether a plurality of loads (L1-L4) is being supplied with power by the generator (12);

    determining the load that the generator (12) is supplying to the plurality of loads (L1-L4);

    determining whether to change a number of the loads (L1-L4) in the plurality of loads (L1-L4) based on the amount of load that is being supplied by the generator (12); and

    determining an amount of time (T) in which to change the number of loads (L1-L4) in the plurality of loads (L1-L4) based on the amount of load that is being supplied by the generator (12), characterized in that, if the available load capacity of the generator (12) is below a predetermined ratio lower than 100% and greater than 0%, the amount of time (T) to increase the number of loads (L1-L4) will increase as the available load capacity decreases,
    wherein the available load capacity of the generator (12) is a difference between a maximum loading threshold of the generator (12) and the load that the generator (12) is supplying at the particular point in time.


     
    2. The method of claim 1, wherein determining whether a plurality of loads (L1-L4) are being supplied with power by the generator (12) includes monitoring the position of an automatic transfer switch (13).
     
    3. The method of claim 1, wherein determining whether a plurality of loads (L1-L4) are being supplied with power by the generator (12) includes monitoring the generator load.
     
    4. The method of claim 3, wherein monitoring the generator load includes measuring the generator operating frequency.
     
    5. The method of claim 3, wherein monitoring the generator load includes monitoring the torque of a prime mover within the generator (12), and wherein monitoring the torque of a prime mover within the generator (12) includes

    - measuring fuel injection time (T) duration (18) within the generator (12) and/or

    - measuring the intake manifold (16) pressure within the generator (12) and/or

    - measuring a position of a throttle (17) within the generator (12).


     
    6. The method of claim 1, wherein determining the load that the generator (12) is supplying to the plurality of loads (L1-L4) includes

    - measuring the current that the generator (12) is supplying to the plurality of loads (L1-L4) and/or

    - measuring the generator operating frequency and/or

    - measuring the generator operating voltage.


     
    7. The method of claim 1, wherein the maximum loading threshold of the generator (12) is adjustable by a user.
     
    8. The method of claim 1, wherein the maximum loading threshold of the generator (12) is based on a rating provided by a manufacturer of the generator (12).
     
    9. The method of claim 1 , wherein determining an amount of time (T) in which to change the number of loads (L1-L4) in the plurality of loads (L1-L4) based on the amount of load that is being supplied by the generator (12) includes decreasing the number of loads (L1-L4) based on an overload of the generator (12).
     
    10. The method of claim 9, wherein the overload of the generator (12) is a difference between a generator load at a particular point in time (T) and a maximum loading threshold of the generator (12).
     
    11. The method of claim 10, wherein the maximum loading threshold of the generator (12) is adjustable by a user.
     
    12. The method of claim 10, wherein the maximum loading threshold of the generator (12) is based on a rating provided by a manufacturer of the generator (12).
     


    Ansprüche

    1. Verfahren zum Hinzufügen und Entfernen von Lasten (L1-L4), die mit einem Generator (12) verbunden sind, wobei das Verfahren umfasst:

    Ermitteln, ob eine Vielzahl von Lasten (L1-L4) durch den Generator (12); mit Energie versorgt wird;

    Ermitteln der Last, mit welcher der Generator (12) die Vielzahl von Lasten (L1-L4) versorgt;

    Ermitteln basierend auf der vom Generator (12) versorgten Lastgröße, ob eine Anzahl der Lasten (L1-L4) in der Vielzahl von Lasten (L1-L4) zu ändern ist; und

    Ermitteln einer Zeitspanne (T) basierend auf der vom Generator (12) versorgten Lastgröße, in der die Anzahl von Lasten (L1-L4) der Vielzahl von Lasten (L1-L4) zu ändern ist, dadurch gekennzeichnet, dass

    wenn die verfügbare Lastkapazität des Generators (12) unterhalb eines vorgegebenen Verhältnisses von kleiner als 100 % und größer als 0 % liegt, die Zeitspanne (T) zum Erhöhen der Anzahl von Lasten (L1-L4) zunehmen wird, wenn die verfügbare Lastkapazität abnimmt,

    wobei die verfügbare Lastkapazität des Generators (12) eine Differenz zwischen einer maximalen Lastschwelle des Generators (12) und der vom Generator (12) zum bestimmten Zeitpunkt versorgten Last ist.


     
    2. Verfahren nach Anspruch 1, wobei das Ermitteln, ob eine Vielzahl von Lasten (L1-L4) vom Generator (12) mit Energie versorgt wird, das Überwachen der Position eines automatischen Transferschalters (13) umfasst.
     
    3. Verfahren nach Anspruch 1, wobei das Ermitteln, ob eine Vielzahl von Lasten (L1-L4) vom Generator (12) mit Energie versorgt wird, das Überwachen der Generatorlast umfasst.
     
    4. Verfahren nach Anspruch 3, wobei das Überwachen der Generatorlast das Messen der Generator-Betriebsfrequenz umfasst.
     
    5. Verfahren nach Anspruch 3, wobei das Überwachen der Generatorlast das Überwachen des Drehmoments eines Primärantriebs im Innern des Generators (12) umfasst, und wobei das Überwachen des Drehmoments eines Primärantriebs im Innern des Generators (12) umfasst:

    - Messen einer Dauer (18) einer Kraftstoffeinspritzzeit (T) im Innern des Generators (12) und/oder

    - Messen des Drucks eines Ansaugkrümmers (16) im Innern des Generators (12) und/oder

    - Messen einer Position einer Drossel (17) im Innern des Generators (12).


     
    6. Verfahren nach Anspruch 1, wobei das Ermitteln der Last, mit welcher der Generator (12) die Vielzahl von Lasten (L1-L4) versorgt, umfasst:

    - Messen des Stroms, mit dem der Generator (12) die Vielzahl von Lasten (L1-L4) versorgt, und/oder

    - Messen der Generator-Betriebsfrequenz und/oder

    - Messen der Generator-Betriebsspannung umfasst.


     
    7. Verfahren nach Anspruch 1, wobei die maximale Lastschwelle des Generators (12) durch einen Benutzer einstellbar ist.
     
    8. Verfahren nach Anspruch 1, wobei die maximale Lastschwelle des Generators (12) auf einem von einem Hersteller des Generators (12) bereitgestellten Nennwert basiert.
     
    9. Verfahren nach Anspruch 1, wobei das Ermitteln einer Zeitspanne (T), in der die Anzahl von Lasten (L1-L4) der Vielzahl von Lasten (L1-L4) basierend auf der vom Generator (12) versorgten Lastgröße zu ändern ist, das Reduzieren der Anzahl von Lasten (L1-L4) basierend auf einer Überlastung des Generators (12) umfasst.
     
    10. Verfahren nach Anspruch 9, wobei die Überlastung des Generators (12) eine Differenz zwischen einer Generatorlast zu einem bestimmten Zeitpunkt (T) und einer maximalen Lastschwelle des Generators (12) ist.
     
    11. Verfahren nach Anspruch 10, wobei die maximale Lastschwelle des Generators (12) durch einen Benutzer einstellbar ist.
     
    12. Verfahren nach Anspruch 10, wobei die maximale Lastschwelle des Generators (12) auf einem von einem Hersteller des Generators (12) bereitgestellten Nennwert basiert.
     


    Revendications

    1. Procédé d'addition et de délestage de charges (L1-L4) qui sont reliées à un générateur (12), le procédé comprenant le fait :

    de déterminer si une pluralité de charges (L1-L4) est alimentée en énergie par le générateur (12) ;

    de déterminer la charge que le générateur (12) fournit à la pluralité de charges (L1-L4) ;

    de déterminer s'il faut modifier un nombre de charges (L1-L4) dans la pluralité de charges (L1-L4) sur la base de la quantité de charge qui est fournie par le générateur (12) ; et

    de déterminer une durée (T) pendant laquelle il faut modifier le nombre de charges (L1-L4) dans la pluralité de charges (L1-L4) sur la base de la quantité de charge qui est fournie par le générateur (12), caractérisé en ce que, si la capacité de charge disponible du générateur (12) est inférieure à un rapport prédéterminé inférieur à 100% et supérieur à 0%, la durée (T) pour augmenter le nombre de charges (L1-L4) augmentera à mesure que la capacité de charge disponible diminue,

    dans lequel la capacité de charge disponible du générateur (12) est une différence entre un seuil de charge maximal du générateur (12) et la charge que le générateur (12) fournit au moment particulier.


     
    2. Procédé de la revendication 1, dans lequel le fait de déterminer si une pluralité de charges (L1-L4) est alimentée en énergie par le générateur (12) comporte la surveillance de la position d'un commutateur de transfert automatique (13).
     
    3. Procédé de la revendication 1, dans lequel le fait de déterminer si une pluralité de charges (L1-L4) est alimentée en énergie par le générateur (12) comporte la surveillance de la charge de générateur.
     
    4. Procédé de la revendication 3, dans lequel la surveillance de la charge de générateur comporte la mesure de la fréquence de fonctionnement de générateur.
     
    5. Procédé de la revendication 3, dans lequel la surveillance de la charge de générateur comporte la surveillance du couple d'un moteur principal dans le générateur (12), et dans lequel la surveillance du couple d'un moteur principal dans le générateur (12) comporte le fait

    - de mesurer la durée (18) d'injection de carburant (T) dans le générateur (12) et/ou

    - de mesurer la pression du collecteur d'admission (16) dans le générateur (12) et/ou

    - de mesurer une position d'un papillon des gaz (17) dans le générateur (12).


     
    6. Procédé de la revendication 1, dans lequel la détermination de la charge que le générateur (12) fournit à la pluralité de charges (L1-L4) comporte le fait

    - de mesurer le courant que le générateur (12) fournit à la pluralité de charges (L1-L4) et/ou

    - de mesurer la fréquence de fonctionnement de générateur et/ou

    - de mesurer la tension de fonctionnement de générateur.


     
    7. Procédé de la revendication 1, dans lequel le seuil de charge maximal du générateur (12) peut être réglé par un utilisateur.
     
    8. Procédé de la revendication 1, dans lequel le seuil de charge maximal du générateur (12) est basé sur des caractéristiques nominales fournies par un fabricant du générateur (12).
     
    9. Procédé de la revendication 1, dans lequel la détermination d'une durée (T) pendant laquelle il faut modifier le nombre de charges (L1-L4) dans la pluralité de charges (L1-L4) sur la base de la quantité de charge qui est fournie par le générateur (12) comporte la diminution du nombre de charges (L1-L4) sur la base d'une surcharge du générateur (12).
     
    10. Procédé de la revendication 9, dans lequel la surcharge du générateur (12) est une différence entre une charge de générateur à un moment particulier (T) et un seuil de charge maximal du générateur (12).
     
    11. Procédé de la revendication 10, dans lequel le seuil de charge maximal du générateur (12) peut être réglé par un utilisateur.
     
    12. Procédé de la revendication 10, dans lequel le seuil de charge maximal du générateur (12) est basé sur des caractéristiques nominales fournies par un fabricant du générateur (12).
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description