(19)
(11)EP 2 021 671 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.07.2017 Bulletin 2017/27

(21)Application number: 07732723.7

(22)Date of filing:  08.05.2007
(51)International Patent Classification (IPC): 
F16L 11/15(2006.01)
B29D 23/18(2006.01)
F16L 11/20(2006.01)
(86)International application number:
PCT/GB2007/001695
(87)International publication number:
WO 2007/129096 (15.11.2007 Gazette  2007/46)

(54)

IMPROVEMENTS RELATING TO HOSE

SCHLÄUCHE BETREFFENDE VERBESSERUNGEN

AMÉLIORATIONS APPORTÉES À UN TUYAU


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(30)Priority: 08.05.2006 GB 0609081
08.05.2006 GB 0609083

(43)Date of publication of application:
11.02.2009 Bulletin 2009/07

(73)Proprietor: BHP Billiton Innovation Pty Ltd
Melbourne, Victoria 3000 (AU)

(72)Inventors:
  • WITZ, Joel Aron
    Surrey RH5 5DS (GB)
  • COX, David
    Hertfordshire SG14 ILE (GB)
  • HALL, Gerard Anthony
    Flintshire CH7 3QA (GB)
  • SMITH, Richard
    Dorset DT11 8JY (GB)

(74)Representative: South, Nicholas Geoffrey et al
A.A. Thornton & Co. 10 Old Bailey
London EC4M 7NG
London EC4M 7NG (GB)


(56)References cited: : 
DE-A1- 2 705 361
US-A- 3 287 194
US-A- 3 240 643
US-A1- 2004 256 016
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates to hose, and more particularly relates to long length hose, and to a method of and apparatus for making long length hose. The invention is especially concerned with hose which can be used in cryogenic conditions.

    [0002] Typical applications for hose involve the pumping of fluids from a fluid reservoir under pressure. Examples include supplying of domestic heating oil or LPG to a boiler; transporting produced oilfield liquids and/or gases from a fixed or floating production platform to the cargo hold of a ship, or from a ship cargo hold to a land-based storage unit; delivering of fuel to racing cars, especially during refuelling in formula 1; and conveying corrosive fluids, such as sulphuric acid.

    [0003] It is well known to use hose for the transport of fluids, such as liquefied gases, at low temperature. Such hose is commonly used to transport liquefied gases such as liquefied natural gas (LNG) and liquefied propane gas (LPG).

    [0004] Many applications of hose require the hose to be supported along its length. This especially applies to the transport of the produced liquids and/or gases mentioned above. Without additional support, conventional hose is often incapable of supporting its own weight, or the weight of the fluid contained therein.

    [0005] Three main types of hose exist that are used for large bore applications for transferring fluids at elevated pressure (e.g. at least 2barg). These are:
    1. 1. Rubber (rubber wraps vulcanised to form the hose body).
    2. 2. Bellows (convoluted steel tube).
    3. 3. Composite (films and fabrics between two helical wires).


    [0006] The present invention is directed to bellows hoses. Rubber hoses differ from composite and bellows hose in that they do not have a steel component on the inner surface.

    [0007] Rubber hoses are typically manufactured by wrapping numerous layers of rubber materials and some steel and fabric layers around a mandrel coated with a release agent. Some Rubber Hoses use an extruded rubber inner liner on a mandrel as the innermost layer and then wrap after that. Other rubber hoses include an interlocked carcass inside the liner, for collapse resistance. The complete structure is then vulcanised thus bonding the rubber wraps together. The complete hose assembly, including the end fittings which are also on the mandrel and are wrapped into the hose body structure, is removed from the mandrel by pulling and rotating. The hose and mandrel are supported by a series of rollers during this extraction process. Rubber hoses are typically made in lengths of up to 12m and bores of up to at least 1.2m.

    [0008] In essence, the traditional method of manufacture for the bellows and composite hose is the same as that of a rubber hose. A bellows hose is formed in sections supported on steel mandrel and if insulating or protective layers are required these will be wrapped around the bellows tube. A composite hose is traditionally formed by a steel wire being wound helically onto a steel mandrel followed by a number of film and fabric layers. This is then formed into the hose body by the application of a second helical wire.

    [0009] Both bellows and composite hoses are widely available in bores of up to 200mm and in lengths of up to about 30m. However it is difficult to manufacture and extract a large bore hose, greater than 400mm, of either of these types in a reasonable length, greater than 10m, using the traditional manufacturing techniques. This is not the case with rubber hoses as they do not have an inner steel component.

    [0010] Both bellows and composite hoses are currently manufactured on steel mandrels, which for small diameters works well and is the industry standard; but as the diameter increases the effect of friction is increased dramatically. The surface area of contact between the hose and the mandrel increases linearly with diameter but the weight of the mandrel increases approximately with the square of the diameter. The product of these two factors is the friction between the hose and mandrel as during extraction the weight of the mandrel is taken through the hose.

    [0011] Other factors affecting the ease of extraction include:
    • Galling between the steel mandrel and the steel wire.
    • The coefficient of friction between the two materials.
    • The weight of the hose.
    • The use of supporting rollers used to control mandrel deflection.


    [0012] Attempts to manufacture hoses using the traditional techniques have resulted in hoses that have the required bore but are too short, or have the required bore and length but have been damaged during extraction. It has also been the case that the mandrel has become damaged during extraction and so in an industrial setting this process would be impractical and uneconomic.

    [0013] Bellows hose is described in many prior art documents, including, for example, US2004112454 and US2004146676. As discussed above, bellow hose is characterised by an inner metallic inner structure which is difficult to remove from the mandrel during the manufacturing process. As a result there is a practical limit on the size of hose which can be produced in the prior art, while at the same time retaining the ability to operate in hostile environments, such as in conditions of low and high temperature; and in marine applications. Flexible tubing is also described in US3538728, US5893681 and SU396271.

    [0014] GB2303574, DE2948416, JP08336845, JP08011138 and JP03075132 disclose a method of making hose or tubing, but they do not disclose the manufacture of bellows hose.

    [0015] DE2705361 discloses a floatable, double-walled, flexible hose conduit having an intermediary space between the two metal spiral or corrugated walls which produces buoyancy. US2004/256016 discloses a vibration absorbing hose having a main corrugated portion and cylindrical end portions, the hose having a multi-layered construction of a tubular inner rubber layer, a pressure resistant reinforcement layer and an outer rubber cover layer. US3240643 discloses a flexible insulated duct for conveying gaseous fluids.

    [0016] Bellows hose is exclusively manufactured on a metallic mandrel; the mandrel may consist exclusively of the stainless steel or may be clad with stainless steel. In 2005, a carbon steel mandrel might typically cost about £25,000 and in its working lifetime it would be capable of being used to manufacture about 25-30 individual hoses. However, there is a problem with carbon steel mandrels, as the metallic inner member of the hose is often made of stainless steel. When such hose is manufactured using a carbon steel mandrel, part of the carbon steel can be transferred to the surface of the stainless steel inner member; this causes a site for corrosion of the inner member, which can lead to rapid failure in extreme environments. For this reason, the mandrel used in the manufacture of bellows hose and composite hose usually has to be made of stainless steel. A stainless steel hose costs three to four times as much as a carbon steel mandrel.

    [0017] We have now found an improved way of manufacturing hose, which makes it possible to manufacture useful hose in lengths and diameters that have not previously been attainable. Thus, the invention encompasses a method of manufacturing hose, an apparatus for manufacturing hose, and hose per se.

    [0018] According to one aspect of the invention, there is provided a hose as claimed in claim 1.

    [0019] It will be appreciated that the hose portion extends continuously between the end fittings. Thus, the hose according to the invention is distinct from prior art hose comprising shorter lengths of hose which are attached together in sequence by attaching the end fittings together.

    [0020] In a preferred embodiment, the length of the hose portion is at least 31m, more preferably at least 32m. The hose portion is desirably at least 35m in length. The length of the hose portion may be much longer than 30m, depending on the requirements. Thus, the hose portion may have a length of up to 50m or even up to 60m. The length of the hose portion will typically lie within the ranges discussed above, subject to the minimum of at least 30m.

    [0021] The inner diameter of the hose portion is at least 400mm. In accordance with preferred embodiments of the invention, the hose portion inner diameter may be at least 450mm, at least 500mm, or at least 550mm. It is unlikely to be desirable for the hose portion diameter to exceed 750mm, and in accordance with the invention the hose diameter would not exceed 600mm.

    [0022] The inner diameter of the hose portion according to the invention corresponds to the outer diameter of the non-metallic mandrel on which it was formed. The length of the hose portion corresponds to the distance between the end fittings immediately after manufacture of the hose. It should also be noted, that owing to the nature of the materials and the manufacturing process, the hose dimensions would usually be subject to a tolerance of about +/- 3%.

    [0023] It is important to understand that the present invention provides a working bellows hose having a length and/or diameter which is greater than that which has been possible in accordance with the prior art. There may be examples in the prior art of hose which has a diameter and/or length within the ranges described above, but such hoses are not working hoses, i.e., they would not be able to operate under their normal operating pressure without leaking.

    [0024] The hose according to the invention may have a high or low working temperature, including a cryogenic working temperature.

    [0025] When the hose is intended for use at low temperatures, the working temperature of the hose may be from 0°C down to -200°C or -220°C. Typically the working temperature is -20°C or below, -40°C or below, -60°C or below, or -80°C or below. For cryogenic applications, the working temperature will typically be from -100°C to -170°C, -200°C or -220°C. A working temperature range from -100°C to -220°C is suitable for most cryogenic applications, including the transportation of LNG, liquid oxygen (bp - 183°C) or liquid nitrogen (bp -196°C).

    [0026] In general, the working pressure of the hose is in the range from about 500 kPa gauge, or 1,000kPa gauge, up to about 2,000 kPa gauge, or possibly up to about 2,500 kPa gauge. These pressures relate to the operating pressure of the hose, not the burst pressure (which must be several times greater).

    [0027] The working volumetric flow rate depends upon the fluid medium, the pressure and the inner diameter. Working flowrates from 1,000 m3/h up to 12,000 m3/h are typical.

    [0028] A preferred working temperature and pressure would be from -100°C to -200°C at a pressure from 500kPa gauge, preferably 1,000kPa gauge, up to 2,000kPa gauge or 2,500kPa gauge.

    [0029] The hose according to the invention can also be provided for use with corrosive materials, such as strong acids.

    [0030] The convoluted or corrugated sections may be sinusoidal, U-shaped or shaped like the Greek letter omega, Ω. The convolutions or corrugations may be circumferential arranged along the length of each section, or may be arranged in a spiral along the length of each section. In general, only the sinusoidal convolutions are arranged in a spiral.

    [0031] A sufficient number of convoluted or corrugated sections will be provided (e.g., 3, 4, 5, etc.) to create a hose of the desired length.

    [0032] In an embodiment, the hose includes a second layer comprising a plurality of convoluted or corrugated sections arranged around the first layer of convoluted or corrugated sections.

    [0033] The hose preferably includes at least one reinforcing layer, and at least one protective layer, which is typically the outer layer. Additional protective and/or reinforcing layers may be provided. Typically, the protective layer comprises an armoured layer is provided as the outer layer of the hose.

    [0034] The first and/or second convoluted or corrugated layers may be made of metal, preferably stainless steel.

    [0035] The hose described above can be manufactured by a method and apparatus, as described further below, which makes it possible to make hose of longer length and diameter than has previously been possible.

    [0036] According to another aspect of the invention there is provided a method of manufacturing the hose described above, the method being as claimed in claim 2.

    [0037] The end fittings are preferably applied before removing the hose from the mandrel, although they may in some circumstances be applied after removing the hose from the mandrel.

    [0038] It will be appreciated that third, fourth, fifth, etc., convoluted or corrugated sections may be slid over the mandrel to create a hose portion of the desired length.

    [0039] The second convoluted or corrugated layer can be formed, in the same way as the first layer, after the underlying part of the first convoluted or corrugated layer has been formed.

    [0040] Preferably the mandrel is formed of a paper based material, a wood based material or a plastics polymer based material, such as high density polyethylene, or mixtures thereof. In one particularly advantageous embodiment, the mandrel is cardboard, i.e. a board made of paper pulp.

    [0041] In the manufacture of bellows hose, it is particularly important to ensure that the mandrel has sufficient bending stiffness to keep it straight enough that adjacent sections can be brought into substantial alignment around substantially the entire circumference of the ends thereof. The ends are usually secured to one another by welding, and if there is not substantial alignment around substantially the entire circumference, the ends will not be properly secured to one another, and there will be an increased risk of failure during use of the hose. To achieve this, in one advantageous embodiment, the mandrel is formed of a material having a ratio of Young's Modulus (E) to density (p) in the range 0.1 to 10 GPa.m3/Mg (i.e. giga Pascal x metre3/megagram). Preferably the ratio of E/p is greater than 0.3 GPa.m3/Mg, more preferably greater than 0.5 GPa.m3/Mg, and most preferably greater than 0.8 GPa.m3/Mg. Preferably the ratio of E/p is less than 10 GPa.m3/Mg, more preferably less than 5 GPa.m3/Mg, and most preferably less than 3 GPa.m3/Mg. Thus, it will be appreciated that the most preferred range of E/p is from 0.8 to 3 GPa.m3/Mg.

    [0042] The values of E/p for cardboard and high density polyethylene, which are two materials particularly preferred for the mandrel, are about 1.2 and 1.0 GPa.m3/Mg respectively. The value of E/p for the prior art mandrel material, stainless steel, is about 20 GPa.m3/Mg.

    [0043] In some circumstances, it may be desirable to use composite materials, i.e., fibres disposed within a matrix, as the mandrel. Composite materials have a ratio of E/p close to stainless steel, but the density is much lower. Thus, in an alternative embodiment, the material of the mandrel has an E/p in the range 20 to 22 GPa.m3/Mg and a density in the range 1.0 to 3.0 Mg/m3. Typically, the composite material comprises carbon, glass or polymeric fibres disposed within a suitable polymeric matrix.

    [0044] It will, of course be appreciated that, while the mandrel is made of a non-metallic material, it is perfectly possible for the mandrel to include metallic or ceramic fillers. Thus the invention encompasses the use of a cardboard mandrel with a metallic or ceramic filler. The bulk of the mandrel, however, remains non-metallic.

    [0045] The mandrel may be provided in one continuous length, or it may be provided in a plurality of mandrel sections of shorter length, which are assembled on site to form the completed mandrel. The purpose of this is to facilitate transport of the mandrel.

    [0046] Typically the mandrel is of substantially cylindrical shape.

    [0047] The length of the mandrel will typically be approximately 1000 to 2000 mm longer than the length of the hose portion that it is desired to make on the mandrel. The outer diameter of the mandrel will typically be substantially identical to the inner diameter of the hose portion that it is desired to make on the mandrel.

    [0048] Advantageously, the mandrel is hollow, so that a drive shaft may be disposed longitudinally within the mandrel. In addition, a plug is preferably disposed in at least one end of the mandrel, the arrangement being such that the plug is fixedly secured to the mandrel, whereby rotation of the plug causes rotation of the mandrel. Preferably one of said plugs is disposed in each end of the mandrel. When the mandrel is hollow, the thickness of the mandrel (i.e. the difference between its inner and outer diameter) would typically be about 10 mm to 25mm.

    [0049] As discussed above, the non-metallic mandrel should be made of a material which is strong enough that the mandrel can properly support the hose during construction thereof. Furthermore, except for any coating that may be provided on the inner or outer surface of the mandrel, the entire mandrel is preferably made of the same non-metallic material.

    [0050] The drive shaft is preferably secured to the or each plug, and desirably has a projecting end which can be connected to a drive motor, whereby rotation of the drive shaft causes rotation of the or each plug and thereby rotation of the mandrel. It is a preferred feature of the invention that the mandrel is rotated while part or all of the inner and/or outer structures are arranged in place on the mandrel. Preferably the drive motor is provided with a gearbox.

    [0051] In an alternative, the drive shaft may not be present, and the rotation of the mandrel may be driven by rotating one plug or both plugs (if present) using the drive motor.

    [0052] In one preferred embodiment, the mandrel is a sacrificial mandrel, in order to aid removal of the hose from the mandrel. In this embodiment, the hose is removed from the mandrel by sacrificing the mandrel, and removing it from within the hose; any plugs and drive shaft can be removed before sacrificing the mandrel. The mandrel may be sacrificed by, for example, providing it with a pre-weakened area, which can be stressed in order to cause sacrifice of the mandrel; or providing it with a perforation, along which the mandrel can be torn apart; or providing it with a zipper structure, whereby dragging the zipper along the length of the mandrel causes sacrifice of the mandrel. The precise means used to make the mandrel a sacrificial mandrel is conventional, and other conventional techniques not described above could be used instead. It will be noted that sacrifice of the mandrel causes it to be destroyed, which means that it cannot be reused. This is still very economical, as the mandrel according to the invention can be made of an inexpensive recyclable material.

    [0053] Another technique for removing the mandrel, when the mandrel is made from a material which can be weakened by contact with an appropriately selected fluid, is to wet the mandrel in order to weaken it with the fluid, then to remove the weakened mandrel. One way to wet mandrel is to dip the entire hose and mandrel structure in a tank of the fluid. It is preferred that the fluid is water, but other fluids, such as weak acetic acid or an alcoholic solution may instead be used.

    [0054] In another preferred embodiment, the mandrel is removed by unscrewing it from the hose. The can desirably be achieved by applying a torque to the drive shaft, while holding the hose against rotation. This technique is particularly suitable when the hose inner structure includes a helical member, as the helical member can create a slight indentation in the mandrel, which aids unscrewing the mandrel from the hose.

    [0055] It should be noted that rotation of the mandrel is only likely to be beneficial in cases where the convolutions of the bellows are arranged in a spiral. For circumferential convolutions, there is unlikely to be any benefit in providing for rotation of the mandrel, either during construction of the hose, or during removal of the hose from the mandrel.

    [0056] In an embodiment the mandrel may be pre-coated, prior to assembly of the hose, in order to assist with removal of the completed hose from the mandrel. The precoat may serve to reduce the friction between the mandrel and the completed hose.

    [0057] During construction of the hose, short sections of the bellows may be pulled over the mandrel, then welded together. The welding of the bellows (which may be, eg, 1-2 mm thick) may cause burning of the mandrel, therefore, to prevent this, it is desirable to provide the mandrel with a heat shield and/or a flame retardant coating on the outer surface thereof.

    [0058] According to another aspect of the invention there is provided apparatus for manufacturing hose of the type described above, the apparatus being as claimed in claim 15.

    [0059] The mandrel preferably has the same construction as the mandrel described above in relation to the method according to the invention.

    [0060] Preferably, the drive shaft projects outwardly from the plugs and mandrel at each end of the mandrel.

    [0061] In a preferred embodiment, the apparatus further comprises a drive motor arranged to rotate the drive shaft.

    [0062] In the prior art, the manufacture of bellows hose is exclusively carried out using carbon steel or, more usually, stainless steel mandrels, and it has not been contemplated that any other materials would be suitable. We have unexpectedly found that other materials are suitable, and that they have many advantages over the prior art. Thus, in 2005, a suitable cardboard mandrel can be obtained at a cost of around £150, compared with at least £25,000 for a carbon steel mandrel, and at least £75,000 for a stainless steel mandrel. Although the mandrel according to the invention would not normally be used more than once, there is still a considerable saving.

    [0063] Furthermore, the non-metallic mandrels according to the invention can be removed from the completed hose much more easily than the prior art steel mandrels.

    [0064] The non-metallic mandrels according to the invention are much lighter than the steel mandrels used in the prior art. This means that they are easier to manipulate and transport. It also means that the non-metallic mandrels do not require the same level of support that is required for steel mandrels. This eases the manufacturing process for the hose.

    [0065] One particularly important advantage of the mandrel according to the invention is that it is practical to make them longer and/or of greater diameter than the prior art steel mandrels. Thus, as described above, it has not been previously possible to make to make a working bellows or composite hose at lengths above approximately 25m to 30m, or at diameters above about 200mm to 300mm. A working hose is one which can be used in its normal operating conditions without leaking.

    [0066] Thus, it has not previously been possible to make working bellows hose, having any significant diameter, in lengths greater than 25m to 30m.

    [0067] Reference is now made to the accompanying drawings, in which:

    Figure 1 is a schematic cross-sectional view of a bellows hose according to the invention;

    Figure 2 is a cross sectional end view of one of the corrugated layers used in the bellows hose shown in Figure 1;

    Figures 3A, 3B, 3C and 3D show four applications of hose according to the present invention;

    Figure 4 is a perspective view of an apparatus for use in manufacturing hose, according to the invention; and

    Figure 5 is a cross-sectional view of the apparatus shown in Figure 4.



    [0068] In Figure 1 a bellows hose in accordance with the invention is generally designated 210.

    [0069] The hose 210 comprises an inner tubular corrugated layer 212 and an outer tubular corrugated layer 214, each of which is made up of a plurality of corrugated sections 212a and 214a arranged end to end, and secured to one another. Each layer 212 and 214 is provided with sinusoidal (or U-shaped or Ω shaped) corrugations. An insulation layer 216 is provided between the bellows 212 and 214. Furthermore, the space between the bellows 212 and 214 is placed in a vacuum, to further improve the insulation. An armoured layer 218 is provided around the outer bellows 214, to improve the insulation further. A pumping port 220 is provided for evacuating air from between the layers 212 and 214 in order to create the vacuum. The hose 210 also includes end fittings 222 at each end of the bellows hose (in Figure 1, only one end fitting 222 is shown).

    [0070] Figures 3A to 3D show three applications for the hose 10. In each of Figures 3A to 3C a floating production, storage and offloading vessel (FPSO) 102 is linked to a LNG carrier 104 by means of a hose 10 according to the invention. The hose 10 carries LNG from a storage tank of the FPSO 102 to a storage tank of the LNG carrier 104. In Figure 3A, the hose 10 lies above the sea level 106. In Figure 3B, the hose 10 is submerged below the sea level 106. In Figure 3C, the hose 10 floats near the surface of the sea. In each case the hose 10 carries the LNG without any intermediate support. In Figure 3D the LNG carrier is linked to a land-based storage facility 108 via the hose 10.

    [0071] The hose 10 may be used for many other applications apart from the applications shown in Figures 3A to 3D. The hose may be used in cryogenic and non-cryogenic conditions.

    [0072] Figures 4 and 5 show apparatus 300 according to the invention. The apparatus 300 can be used in the method according to the invention for making the hose according to the invention.

    [0073] The apparatus 300 comprises a mandrel 302 which has a length and diameter corresponding the desired length and diameter of the hose 10 and 200. The outer diameter of the mandrel 302 corresponds to the inner diameter of the hose 10 or 200. The length of the mandrel 302 is typically about 1-2m longer than the length of the hose 10 or 200. The mandrel 300 has a substantially circular cross sectional shape, although other shapes may in some circumstances be desirable.

    [0074] A torque transmitting plug 304 is secured to each end of the mandrel 300, and a drive shaft 306 extends along the length of the mandrel between the plugs 304, and extends outwardly being the ends of the mandrel 302. A drive motor 308, which may be an electric motor, is provided to drive rotation of the drive shaft 306. It will be appreciated that the drive shaft 306 can transmit torque to the plugs 304, which in turn can transmit torque to the mandrel 302 to rotate the mandrel 302. Typically the mandrel will be rotated at a rate of 10-60 rpm.

    [0075] The application of the hose 210 to the mandrel 300 causes large bending forces to be directed against the mandrel, caused by the weight of the hose 210 along the length of the mandrel 300. Thus, it is important that the mandrel 300 has sufficient bending stiffness that the hose portion can be formed on the mandrel without causing any substantial bending of the mandrel along the longitudinal axis thereof. This is important, because if the mandrel bends, the corrugated or convoluted sections of the hose portion cannot be brought into proper alignment, and cannot be properly secured - this will cause the hose to be more likely to fail during use. One way to select a mandrel of the appropriate bending stiffness is to select an material having an appropriate ratio of Young's Modulus (E) to density (p), as described above, but other techniques may be apparent to the skilled person.

    [0076] The manufacture of hose using the apparatus 300 will now be described with reference to the bellows hose 210. Initially, the apparatus 300 is set in place, and the drive motor 308 is operated to rotate the mandrel 302 at the required rate.

    [0077] As a first step, one of the corrugated sections 212a is pulled over the mandrel 302. As noted above, the outer diameter of the mandrel 302 corresponds to the desired internal diameter of the hose 210. A second of the corrugated sections 212a is pulled over the mandrel and into engagement with the first section 212a. The ends of each section 212a are of substantially circular cross section, as depicted in Figure 2. The mandrel 302 has sufficient bending stiffness that it can support the sections 212a in such a way that substantially the entire circumferential periphery 212b (see Figure 2) at the abutting ends of the sections 212a are in engagement with one another, so that the ends can be properly secured together, e.g., by welding. Additional sections 212a can be pulled over the mandrel 302 and welded to the rest of the corrugated layer 212 until the desired length has been achieved.

    [0078] The insulating layer 216 is then wrapped around the inner corrugated layer 212, and the outer corrugated sections 214a are pulled over the insulating layer 216, and may be secured together in the same way as was done for the inner layer 212.

    [0079] The armoured layer is then pulled over the outer bellows 212. The air between the bellows 212 and 214 is then evacuated using via the pumping port 220. The end fittings 222 are then applied to the ends of the hose 210.

    [0080] When the end fittings 222 are in place, the hose 210 may be removed from the mandrel 302 by any desired means. In one embodiment, the mandrel 302 may simply be destroyed, for example by tearing. In another embodiment, the drive motor 308 is operated to rotate the mandrel 302 to cause the mandrel 302 to unscrew from the hose 210.

    [0081] After the hose 210 has been removed from the mandrel 302, the mandrel 302 may be discarded. The plugs 304, the drive shaft 306 and the drive motor 308 may be retained for use with another mandrel 302.

    [0082] It will be appreciated that the invention described above may be modified within the scope of the claims.


    Claims

    1. A hose (210) comprising a mandrel-formed tubular hose portion extending continuously between two end fittings (222), wherein the tubular hose portion comprises:

    an inner tubular corrugated or convoluted layer (212) comprising a plurality of corrugated or convoluted steel sections (212a) secured end to end in a parallel axial manner such as by welding;

    an outer tubular corrugated or convoluted steel layer (214) arranged around the inner tubular corrugated or convoluted layer;

    an insulating layer (216) between the inner and outer tubular corrugated or convoluted layers wherein a vacuum is provided in the space between the inner and outer tubular corrugated or convoluted layers and,

    at least one protective and/or reinforcing layer (218) disposed around the corrugated or convoluted layers, wherein the internal diameter of the hose portion is from 400mm to 600mm and the length of the hose portion is from 30m to 50m such that the hose is capable of operating at temperatures from -100°C to -220°C and at pressures from 500 kPa to 2,500 kPa without leaking.


     
    2. A method of manufacturing a bellows convoluted steel hose (210) as claimed in claim 1, said method comprising:

    sliding a first tubular corrugated or convoluted steel bellows section (212a) along a non-metallic mandrel (302) that has an outer diameter of at least 400 mm and a length of at least 30 m,

    sliding a second tubular corrugated or convoluted steel bellows section (212a) along the mandrel such that one end of the second tubular corrugated or convoluted section engages one end of the first tubular corrugated or convoluted section,

    securing the ends of the tubular corrugated or convoluted sections to form the inner tubular corrugated or convoluted layer (212),

    arranging the outer tubular corrugated or convoluted steel layer (214) around the inner tubular corrugated or convoluted layer (212);

    providing the insulating layer (216) between the inner and outer tubular corrugated or convoluted layers (212, 214) and providing a vacuum in the space between the inner and outer tubular corrugated or convoluted layers;

    applying at least one protective and/or reinforcing layer (218) over the tubular corrugated or convoluted sections,

    applying a respective end fitting (222) to each end of the hose portion, and

    removing the hose from the mandrel.


     
    3. A method according to claim 2, wherein the mandrel (302) has sufficient bending stiffness to keep it straight enough that at least one end of a corrugated or convoluted section (212a) of the hose portion can be brought into substantial alignment around substantially the entire circumference of an adjacent end of a corrugated or convoluted section prior to securing the corrugated or convoluted sections together.
     
    4. A method according to claim 2 or 3, wherein the mandrel is formed of a paper based material, a wood based material or a plastics polymer based material, or mixtures thereof.
     
    5. A method according to claim 4, wherein the mandrel is cardboard.
     
    6. A method according to any one of claims 2 to 5, wherein the mandrel is formed of a material having a ratio of Young's Modulus (E) to density (p) in the range 0.3 to 10 GPa.m3/Mg (i.e. giga Pascal x metre3/megagram).
     
    7. A method according to any one of claims 2 to 5, wherein the mandrel is formed of a material having a ratio of Young's Modulus (E) to density (p) in the range 0.8 to 3 GPa.m3/Mg (i.e. giga Pascal x metre3/megagram).
     
    8. A method according to claim 2 or 3, wherein the mandrel is made of a composite material having a ratio of Young's Modulus (E) to density (p) in the range 20 to 22 GPa.m3/Mg and a density in the range 1.0 to 3.0 Mg/m3.
     
    9. A method according to any one of claims 2 to 8, wherein the mandrel is of substantially cylindrical shape.
     
    10. A method according to any one of claims 2 to 9, wherein the mandrel is hollow, so that a drive shaft (306) may be disposed longitudinally within the mandrel.
     
    11. A method according to claim 10, wherein a plug (304) is disposed in at least one end of the mandrel (302), the arrangement being such that the plug is fixedly secured to the mandrel, whereby rotation of the plug causes rotation of the mandrel.
     
    12. A method according to claim 11 wherein the drive shaft (306) is secured to the or each plug (304) and has a projecting end which can be connected to a drive motor (308), whereby rotation of the drive shaft causes rotation of the plug and thereby rotation of the mandrel.
     
    13. A method according to any one of claims 2 to 12, wherein the mandrel is a sacrificial mandrel, in order to aid removal of the hose from the mandrel.
     
    14. A method according to any one of claims 2 to 13, wherein the mandrel is pre-coated, prior to assembly of the hose, in order to assist with removal of the completed hose from the mandrel.
     
    15. Apparatus (300) for manufacturing a bellows convoluted steel hose (210) of the type claimed in claim 1, wherein said apparatus comprises a hollow substantially cylindrical non-metallic mandrel (302) that has an outer diameter of at least 400 mm and a length of at least 30 m, around which the hose may be arranged, a plug (304) disposed at each end of the mandrel, the plugs being fixed to the mandrel, whereby torque applied to the plugs is transmitted to the mandrel to rotate the mandrel about the longitudinal axis of the mandrel, and a drive shaft (306) extending longitudinally along the interior of the mandrel, the drive shaft being connected to the plugs, whereby torque applied to the drive shaft is transmitted to the plugs to rotate the plugs, the drive shaft projecting outwardly from the plugs and mandrel at least at one end of the mandrel.
     
    16. Apparatus according to claim 15, wherein the mandrel has sufficient bending stiffness to keep it straight enough that at least one end of a corrugated or convoluted section (212a) of the hose portion can be brought into substantial alignment around substantially the entire circumference of an adjacent end of a corrugated or convoluted section prior to securing the corrugated or convoluted sections together.
     
    17. Apparatus according to claim 15 or 16 wherein the mandrel is formed of a paper based material, a wood based material or a plastics polymer based material, or mixtures thereof.
     
    18. Apparatus according to claim 17, wherein the mandrel is cardboard.
     
    19. Apparatus according to any one of claims 15 to 18, wherein the mandrel is formed of a material having a ratio of Young's Modulus (E) to density (p) in the range 0.3 to 10 GPa.m3/Mg (i.e. giga Pascal x metre3/megagram).
     
    20. Apparatus according to any one of claims 15 to 18, wherein the mandrel is formed of a material having a ratio of Young's Modulus (E) to density (p) in the range 0.8 to 3 GPa.m3/Mg (i.e. giga Pascal x metre3/megagram).
     
    21. Apparatus according to claim 15 or 16, wherein the mandrel is made of a composite material having a ratio of Young's Modulus (E) to density (p) in the range 20 to 22 GPa.m3/Mg and a density in the range 1.0 to 3.0 Mg/m3.
     
    22. Apparatus according to any one of claims 15 to 21, wherein the drive shaft (306) projects outwardly from the plugs (304) and mandrel (302) at each end of the mandrel.
     
    23. Apparatus according to any one of claims 15 to 22, further comprising a drive motor (308) arranged to rotate the drive shaft (306).
     


    Ansprüche

    1. Schlauch (210), umfassend einen Dorn-gebildeten röhrenförmigen Schlauchabschnitt, der sich kontinuierlich zwischen zwei Endstücken (222) erstreckt, worin der röhrenförmige Schlauchabschnitt Folgendes umfasst:

    eine innere röhrenförmige gewellte oder gefaltete Schicht (212), die eine Vielzahl von gewellten oder gefalteten Stahlabschnitten (212a) umfasst, die endseitig in einer parallelen axialen Weise befestigt sind, wie beispielsweise durch Schweißen;

    eine äußere röhrenförmige gewellte oder gefaltete Stahlschicht (214), die um die innere röhrenförmige gewellte oder gefaltete Schicht angeordnet ist;

    eine Isolierschicht (216) zwischen der inneren und der äußeren röhrenförmige gewellten oder gefalteten Schicht, worin ein Vakuum im Raum zwischen den inneren und äußeren röhrenförmige gewellten oder gefalteten Schichten vorgesehen ist, und

    mindestens eine Schutz- und/oder Verstärkungsschicht (218), die um die gewellten oder gefalteten Schichten herum angeordnet ist, worin der Innendurchmesser des Schlauchabschnitts 400 mm bis 600 mm beträgt und die Länge des Schlauchabschnitts 30 m bis 50 m beträgt, sodass der Schlauch bei Temperaturen von -100°C bis - 220°C und bei Drücken von 500 kPa bis 2.500 kPa ohne undicht zu werden, eingesetzt werden kann.


     
    2. Verfahren zur Herstellung von Faltenbalg-Stahlschläuchen (210) nach Anspruch 1, das Verfahren umfassend:

    das Gleiten eines ersten röhrenförmigen gewellten oder gefalteten Stahlbalgabschnitts (212a) entlang eines nichtmetallischen Biegedorns (302), der einen Außendurchmesser von mindestens 400 mm und eine Länge von mindestens 30 m aufweist,

    das Gleiten eines zweiten röhrenförmigen gewellten oder gefalteten Stahlbalgabschnitts (212a) entlang des Biegedorn, sodass ein Ende des zweiten röhrenförmigen gewellten oder gefalteten Abschnitts mit einem Ende des ersten röhrenförmigen gewellten oder gefalteten Abschnitts in Eingriff steht,

    das Befestigen der Enden der röhrenförmigen gewellten oder gefalteten Abschnitte, um die innere röhrenförmige gewellte oder gefaltete Schicht (212) zu bilden,

    das Anordnen der äußeren röhrenförmigen gewellten oder gefalteten Stahlschicht (214) um die innere röhrenförmige gewellte oder gefaltete Schicht (212);

    das Bereitstellen der Isolierschicht (216) zwischen den inneren und äußeren röhrenförmigen gewellten oder gefalteten Schichten (212, 214) und Bereitstellen eines Vakuums im Raum zwischen den inneren und äußeren röhrenförmigen gewellten oder gefalteten Schichten;

    das Aufbringen mindestens einer Schutz- und/oder Verstärkungsschicht (218) über die röhrenförmigen gewellten oder gefalteten Abschnitte,

    das Aufbringen eines jeweiligen Endstücks (222) auf jedes Ende des Schlauchabschnitts, und

    das Entfernen des Schlauches vom Biegedorn.


     
    3. Verfahren nach Anspruch 2, worin der Biegedorn (302) eine ausreichende Biegesteifigkeit aufweist, um ihn gerade genug zu halten, dass mindestens ein Ende eines gewellten oder gefalteten Abschnitts (212a) im Wesentlichen über den gesamten Umfang eines benachbarten Endes eines gewellten oder gefalteten Abschnitts gebracht werden kann, bevor die gewellten oder gefalteten Abschnitte aneinander befestigt werden.
     
    4. Verfahren nach Anspruch 2 oder 3, worin der Biegedorn aus einem Material auf Papierbasis, einem Holzwerkstoff oder einem Material auf Kunststoffbasis oder Mischungen davon gebildet ist.
     
    5. Verfahren nach Anspruch 4, worin der Biegedorn aus Pappe besteht.
     
    6. Verfahren nach irgendeinem der Ansprüche 2 bis 5, worin der Biegedorn aus einem Material mit einer Steifigkeit (E-Modul) im Verhältnis zu einer Dichte (p) im Bereich von 0,3 bis 10 GPa.m3/Mg (d. h. Giga Pascal x Meter3/ Megagramm) besteht.
     
    7. Verfahren nach irgendeinem der Ansprüche 2 bis 5, worin der Biegedorn aus einem Material mit einer Steifigkeit (E-Modul) im Verhältnis zu einer Dichte (p) im Bereich von 0,8 bis 3 GPa.m3/Mg (d. h. Giga Pascal x Meter3/ Megagramm) besteht.
     
    8. Verfahren nach irgendeinem der Ansprüche 2 oder 3, worin der Biegedorn aus einem Verbundwerkstoff mit einer Steifigkeit (E-Modul) im Verhältnis zu einer Dichte (p) im Bereich von 20 bis 22 GPa.m3/Mg und einer Dichte im Bereich von 1,0 bis 3,0 Mg/m3gebildet ist.
     
    9. Verfahren nach irgendeinem der Ansprüche 2 bis 8, worin der Biegedorn eine im Wesentlichen zylindrische Form aufweist.
     
    10. Verfahren nach irgendeinem der Ansprüche 2 bis 9, worin der Biegedorn hohl ist, sodass eine Antriebswelle (306) in Längsrichtung innerhalb des Biegedorns angeordnet sein kann.
     
    11. Verfahren nach Anspruch 10, worin ein Stecker (304) in mindestens einem Ende des Biegedorns (302) angeordnet ist, wobei die Anordnung so ist, dass der Stecker fest zum Biegedorn gesichert ist, wodurch eine Drehung des Steckers eine Drehung des Biegedorns bewirkt.
     
    12. Verfahren nach Anspruch 11, worin die Antriebswelle (306) an dem oder jedem Stecker (304) gesichert ist und ein vorspringendes Ende aufweist, das mit einem Antriebsmotor (308) verbindbar ist, wodurch eine Drehung der Antriebswelle eine Drehung des Steckers und damit eine Drehung des Biegedorns bewirkt.
     
    13. Verfahren nach irgendeinem der Ansprüche 2 bis 12, worin der Biegedorn ein Opferdorn ist, um das Entfernen des Schlauches aus dem Dorn zu erleichtern.
     
    14. Verfahren nach irgendeinem der Ansprüche 2 bis 13, worin der Biegedorn vor der Montage des Schlauches vorbeschichtet ist, um beim Entfernen des fertiggestellten Schlauches aus dem Biegedorn zu erleichtern.
     
    15. Vorrichtung (300) zur Herstellung eines Faltenbalg-Stahlschlauchs (210) des Typs nach Anspruch 1, worin die besagte Vorrichtung einen hohlen, im Wesentlichen zylindrischen nichtmetallischen Biegedorn (302) mit einem Außendurchmesser von mindestens 400 mm und einer Länge von mindestens 30 m aufweist, um die der Schlauch angeordnet sein kann, einen Stecker (304), der an jedem Ende des Biegedorns angeordnet ist, wobei die Stecker am Biegedorn befestigt sind, wodurch das auf die Stecker aufgebrachte Drehmoment auf den Biegedorn übertragen wird, um den Biegedorn um die Längsachse des Biegedorns zu drehen, und eine Antriebswelle (306), die sich in Längsrichtung entlang des Inneren des Biegedorns erstreckt, wobei die Antriebswelle mit den Steckern verbunden ist, wodurch das auf die Antriebswelle aufgebrachte Drehmoment auf die Stecker übertragen wird, um die Stecker zu drehen, wobei die Antriebswelle von den Steckern und 20Dorn zumindest an einem Ende des Biegedorns nach außen vorsteht.
     
    16. Vorrichtung nach Anspruch 15, worin der Biegedorn eine ausreichende Biegesteifigkeit aufweist, um ihn gerade genug zu halten, dass mindestens ein Ende eines gewellten oder gefalteten Abschnitts (212a) im Wesentlichen über den gesamten Umfang eines benachbarten Endes eines gewellten oder gefalteten Abschnitts gebracht werden kann, bevor die gewellten oder gefalteten Abschnitte aneinander befestigt werden.
     
    17. Vorrichtung nach den Ansprüchen 15 oder 16, worin der Biegedorn aus einem Material auf Papierbasis, einem Holzwerkstoff oder einem Material auf Kunststoffbasis oder Mischungen davon gebildet ist.
     
    18. Vorrichtung nach Anspruch 17, worin der Biegedorn aus Pappe besteht.
     
    19. Vorrichtung nach irgendeinem der Ansprüche 15 bis 18, worin der Biegedorn aus einem Material mit einer Steifigkeit (E-Modul) im Verhältnis zu einer Dichte (p) im Bereich von 0,3 bis 10 GPa.m3/Mg (d. h. Giga Pascal x Meter3/ Megagramm) besteht.
     
    20. Vorrichtung nach irgendeinem der Ansprüche 15 bis 18, worin der Biegedorn aus einem Material mit einer Steifigkeit (E-Modul) im Verhältnis zu einer Dichte (p) im Bereich von 0,8 bis 3 GPa.m3/Mg (d. h. Giga Pascal x Meter3/ Megagramm) besteht.
     
    21. Vorrichtung nach irgendeinem der Ansprüche 15 oder 16, worin der Biegedorn aus einem Verbundwerkstoff mit einer Steifigkeit (E-Modul) im Verhältnis zu einer Dichte (p) im Bereich von 20 bis 22 GPa.m3/Mg und einer Dichte im Bereich von 1,0 bis 3,0 Mg/m3 besteht.
     
    22. Vorrichtung nach irgendeinem der Ansprüche 15 bis 21, worin die Antriebswelle (306) von den Steckern (304) und dem Biegedorn (302) an jedem Ende des Biegedorns nach außen vorsteht.
     
    23. Vorrichtung nach irgendeinem der Ansprüche 15 bis 22, ferner umfassend einen Antriebsmotor (308), der angeordnet ist, um die Antriebswelle (306) zu drehen.
     


    Revendications

    1. Tuyau (210) comprenant une partie de tuyau tubulaire formée par un mandrin s'étendant de manière continue entre deux embouts (222), dans lequel la partie du tuyau tubulaire comprend :

    une couche interne tubulaire spiralée ou vrillée (212) comprenant une pluralité de sections en acier ondulées ou contournées (212a) fixées bout à bout d'une manière parallèle et axiale comme par une soudure ;

    une couche externe tubulaire d'acier ondulée ou contournée (214) disposée autour de la couche interne tubulaire ondulée ou contournée ;

    une couche isolante (216) entre les couches interne et externe tubulaires ondulées ou contournées dans laquelle on applique un vide dans l'espace entre les couches interne et externe tubulaires ondulées ou contournées, et

    au moins une couche protectrice et/ou de renforcement (218) disposée autour des couches ondulées ou contournées, où le diamètre interne de la partie de tuyau est de 400 mm à 600 mm et la longueur de la partie de tuyau est de 30 m à 50 m de sorte que le tuyau est apte à fonctionner sans fuite à des températures allant de -100 °C à -220 °C et à des pressions allant de 500 kPa à 2 500 kPa.


     
    2. Procédé de fabrication d'un tuyau en acier contourné à soufflets (210) selon la revendication 1, ledit procédé comprenant :

    le glissement d'une première section de soufflets en acier tubulaire ondulée ou contournée (212a) le long d'un mandrin non métallique (302) qui a un diamètre externe d'au moins 400 mm et une longueur d'au moins 30 m,

    la mise en place par glissement d'une deuxième section de soufflets en acier tubulaire ondulée ou contournée (212a) le long du mandrin de sorte qu'une extrémité de la deuxième section tubulaire ondulée ou contournée s'engage avec une extrémité de la première section tubulaire ondulée ou contournée,

    la fixation des extrémités des sections tubulaires ondulées ou contournées pour former la couche interne tubulaire ondulée ou contournée (212),

    l'arrangement de la couche externe tubulaire d'acier ondulée ou contournée (214) autour de la couche interne tubulaire ondulée ou contournée (212) ;

    la mise en place de la couche isolante (216) entre les couches interne et externe tubulaires ondulées ou contournées (212, 214) et la mise en place d'un vide dans l'espace entre les couches interne et externe tubulaires ondulées ou contournées ;

    l'application d'au moins une couche protectrice et/ou de renforcement (218) sur les sections tubulaires ondulées ou contournées,

    l'application d'un embout correspondant (222) à chaque extrémité de la partie du tuyau, et

    le retrait du tuyau du mandrin.


     
    3. Procédé selon la revendication 2, dans lequel le mandrin (302) a une rigidité en flexion suffisante pour le maintenir suffisamment droit de sorte qu'au moins une extrémité d'une section ondulée ou contournée (212a) de la partie de tuyau puisse être amenée en alignement substantiel sensiblement autour de la circonférence entière d'une extrémité adjacente d'une section ondulée ou contournée avant de fixer ensemble les sections ondulées ou contournées.
     
    4. Procédé selon la revendication 2 ou 3, dans lequel le mandrin est formé d'un matériau à base de papier, d'un matériau à base de bois ou d'un matériau à base de polymères plastiques, ou de mélanges de ceux-ci.
     
    5. Procédé selon la revendication 4, dans lequel le mandrin est en carton.
     
    6. Procédé selon l'une quelconque des revendications 2 à 5, dans lequel le mandrin est formé d'un matériau ayant un rapport du module de Young (E) à la densité (p) dans la gamme de 0,3 à 10 GPa.m3/Mg (c'est-à-dire giga Pascal x mètre3/mégagramme).
     
    7. Procédé selon l'une quelconque des revendications 2 à 5, dans lequel le mandrin est formé d'un matériau ayant un rapport du module de Young (E) à la densité (p) dans la gamme de 0,8 à 3 GPa.m3/Mg (c'est-à-dire giga Pascal x mètre3/mégagramme).
     
    8. Procédé selon la revendication 2 ou 3, dans lequel le mandrin est fabriqué à partir d'un matériau composite ayant un rapport du module de Young (E) à la densité (p) dans la gamme de 20 à 22 GPa.m3/Mg et une densité dans la gamme de 1,0 à 3,0 Mg/m3.
     
    9. Procédé selon l'une quelconque des revendications 2 à 8, dans lequel le mandrin a une forme substantiellement cylindrique.
     
    10. Procédé selon l'une quelconque des revendications 2 à 9, dans lequel le mandrin est creux, de sorte qu'un arbre de transmission (306) puisse être agencé longitudinalement dans le mandrin.
     
    11. Procédé selon la revendication 10, dans lequel un bouchon (304) est agencé dans au moins une extrémité du mandrin (302), la disposition étant telle que le bouchon est fixé solidement au mandrin, ce par quoi une rotation du bouchon provoque une rotation du mandrin.
     
    12. Procédé selon la revendication 11, dans lequel l'arbre de transmission (306) est fixé au ou à chaque bouchon (304) et a une extrémité en saillie laquelle peut être connectée à un moteur d'entrainement (308), la rotation de l'arbre de transmission provoquant ainsi la rotation du bouchon et par conséquent la rotation du mandrin.
     
    13. Procédé selon l'une quelconque des revendications 2 à 12, dans lequel le mandrin est un mandrin sacrificiel, pour aider au retrait du tuyau du mandrin.
     
    14. Procédé selon l'une quelconque des revendications 2 à 13, dans lequel le mandrin est pré enduit, avant l'assemblage du tuyau, pour contribuer au retrait du tuyau complet du mandrin.
     
    15. Appareil (300) pour la fabrication d'un tuyau en acier ondulé à soufflets (210) du type revendiqué selon la revendication 1, où ledit appareil comprend un mandrin substantiellement non métallique creux et cylindrique (302) qui a un diamètre externe d'au moins 400 mm et une longueur d'au moins 30 m, autour duquel le tuyau peut être disposé, un bouchon (304) disposé à chaque extrémité du mandrin, les bouchons étant fixés au mandrin, ce par quoi un couple appliqué aux bouchons est transmis au mandrin pour faire pivoter le mandrin autour de l'axe longitudinal du mandrin, et un arbre de transmission (306) s'étendant longitudinalement le long de l'intérieur du mandrin, l'arbre de transmission étant connecté aux bouchons, ce par quoi un couple appliqué à l'arbre de transmission est transmis aux bouchons pour faire pivoter les bouchons, l'arbre de transmission faisant saillie vers l'extérieur depuis les bouchons et le mandrin au moins au niveau d'une extrémité du mandrin.
     
    16. Appareil selon la revendication 15, dans lequel le mandrin a une rigidité en flexion suffisante pour le maintenir suffisamment droit de sorte qu'au moins une extrémité d'une section ondulée ou contournée (212a) de la partie du tuyau peut être amenée en alignement substantiel sensiblement autour de la circonférence entière d'une extrémité adjacente d'une section ondulée ou contournée avant de fixer ensemble les sections ondulées ou contournées.
     
    17. Appareil selon la revendication 15 ou 16, dans lequel le mandrin est formé d'un matériau à base de papier, d'un matériau à base de bois ou d'un matériau à base de polymères plastiques, ou de mélanges de ceux-ci.
     
    18. Appareil selon la revendication 17, dans lequel le mandrin est en carton.
     
    19. Appareil selon l'une quelconque des revendications 15 à 18, dans lequel le mandrin est formé d'un matériau ayant un rapport du module de Young (E) à la densité (p) dans la gamme de 0,3 à 10 GPa.m3/Mg (c'est-à-dire giga Pascal x mètre3/mégagramme).
     
    20. Appareil selon l'une quelconque des revendications 15 à 18, dans lequel le mandrin est formé d'un matériau ayant un rapport du module de Young (E) à la densité (p) dans la gamme de 0,8 à 3 GPa.m3/Mg (c'est-à-dire giga Pascal x mètre3/mégagramme).
     
    21. Appareil selon la revendication 15 ou 16, dans lequel le mandrin est fabriqué à partir d'un matériau composite ayant un rapport du module de Young (E) à la densité (p) dans la gamme de 20 à 22 GPa.m3/Mg et une densité dans la gamme de 1,0 à 3,0 Mg/m3.
     
    22. Appareil selon l'une quelconque des revendications 15 à 21, dans lequel l'arbre de transmission (306) fait saillie vers l'extérieur depuis les bouchons (304) et le mandrin (302) à chaque extrémité du mandrin.
     
    23. Appareil selon l'une quelconque des revendications 15 à 22, comprenant en outre un moteur d'entrainement (308) disposé pour faire pivoter l'arbre de transmission (306).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description