(19)
(11)EP 2 611 021 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
28.04.2021 Bulletin 2021/17

(21)Application number: 10856387.5

(22)Date of filing:  23.08.2010
(51)International Patent Classification (IPC): 
H02M 7/487(2007.01)
H02J 3/24(2006.01)
H02M 7/5395(2006.01)
H02J 3/38(2006.01)
(86)International application number:
PCT/JP2010/064191
(87)International publication number:
WO 2012/025978 (01.03.2012 Gazette  2012/09)

(54)

ELECTRICITY CONVERSION DEVICE

ELEKTRIZITÄTSUMWANDLUNGSVORRICHTUNG

DISPOSITIF DE CONVERSION D'ÉLECTRICITÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(43)Date of publication of application:
03.07.2013 Bulletin 2013/27

(73)Proprietor: Toshiba Mitsubishi-Electric Industrial Systems Corporation
Tokyo 104-0031 (JP)

(72)Inventors:
  • FUJII, Yosuke
    Tokyo 108-0073 (JP)
  • IKAWA, Eiichi
    Tokyo 108-0073 (JP)
  • AMBOH, Tatsuaki
    Tokyo 108-0073 (JP)

(74)Representative: Zech, Stefan Markus et al
Meissner Bolte Patentanwälte Rechtsanwälte Partnerschaft mbB Postfach 86 06 24
81633 München
81633 München (DE)


(56)References cited: : 
EP-A1- 2 107 672
WO-A1-2010/013322
JP-A- 2002 247 862
JP-A- 2006 304 530
EP-A2- 0 512 531
WO-A1-2010/044164
JP-A- 2006 304 530
JP-A- 2008 193 779
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a power conversion apparatus that produces alternating-current power from direct-current power and to a power conversion apparatus that produces direct-current power from alternating-current power, such as a photovoltaic power generation system, a fuel-cell power generation system, or a secondary-cell energy storage system.

    Background Art



    [0002] In a photovoltaic power generation system, a power conversion apparatus generally converts direct-current power generated by photovoltaic cells into alternating-current power and supplies the alternating-current power to a linked system such as a power system, a distribution system, and a load. Since the characteristics of the photovoltaic cells vary, depending on insolation or temperature conditions, a maximum power point tracking method has been employed to constantly obtain the maximum power. For example, as disclosed in patent document 5, the voltage or current of a photovoltaic cell is controlled to the optimum point at which the voltage or current varies, depending on insolation or temperature conditions.

    [0003] As for a circuit configuration of a power conversion apparatus, use of a multilevel conversion circuit, such as a three-level inverter as shown in patent documents 1, 3 and 4, suppresses harmonic currents in an input and an output and realizes the miniaturization of filters provided at the input and output and an improvement in the efficiency of the apparatus.

    [0004] Furthermore, patent document 2 has described the comparison between conduction losses and switching (SW) losses in a three-level inverter and a two-level inverter.

    Prior Art Document


    Patent Document



    [0005] 

    Patent Document 1: Jpn. Pat. Appln. KOKAI Publication No. 2002-218762

    Patent Document 2: WO2010/013322A1

    Patent Document 3: Jpn. Pat. Appln. KOKAI Publication No. 2002-247862

    Patent Document 4: Jpn. Pat. Appln. KOKAI Publication No. 2006-304530

    Patent Document 5: Jpn. Pat. Appln. KOKAI Publication No. 8-13756:

    Patent Document 6: EP 2 107 672 A1

    Patent Document 7: EP 0 512 531 A2


    Summary of the Invention


    Technical Problem to Solve in the Invention



    [0006] In patent documents 1, 3, 4, although use of a three-level inverter (neutral clamp, AC switch) circuit has achieved the miniaturization of filters and the reduction of the total loss, it is presumed that the inverter circuit should be optimally designed under conditions that the direct-current voltage is constant and the output is constant. Neither variable direct-current voltage nor variable power has been particularly referred to. The configuration of a three-level inverter (including other levels) leads to an increase in the number of elements used and to an increase in the conduction loss, causing demerits at the time of a low direct-current voltage (or a high output) when the effect of an SW loss ripple is small. No concrete solution to the demerits has been provided.

    [0007] It is an object of the present invention to provide a power conversion apparatus which is operated under conditions that a direct-current voltage is variable, an alternating-current output is variable, or both a direct-current voltage and an alternating-current output are variable and achieves a smaller loss and an improved efficiency even if the direct-current voltage or the alternating-current output varies.

    Solution to Problem



    [0008] The objective technical problem is solved by the invention as defined in claim 1. Further preferred embodiments of the invention have been defined by the dependent claims.

    [0009] An example for understanding the invention provides a power conversion apparatus comprising: first and second direct-current power supplies to which direct-current energy from photovoltaic cells is input and which are connected in series; and a power converter that converts direct-current power from each of the power supplies into alternating-current power and supplies the alternating-current power to an alternating-current power system, the power converter being so configured that at least two valve devices constituted of semiconductor elements are connected in series to constitute one arm, at least three units of this arm are connected in parallel, an alternating-current switch constituted of a series connection of at least two valve devices each constituted of a semiconductor element and a diode connected in inverse parallel with the semiconductor element is connected between a connection point of the valve devices and a connection point of the direct-current power supplies in each arm, and each of the alternating-current switches is turned on or off, thereby enabling the power converter to perform three-level operation or two-level operation, the power conversion apparatus further comprising: a comparison circuit which compares direct current from the photovoltaic cells based on the amount of insolation with rated current and outputs an operation determination output when a difference has occurred between the direct current and the rated current; a determination circuit which, when having received an determination instruction, outputs a two-level operation switching instruction if the direct current from the photovoltaic cells is greater than or equal to 50% of the rated current; and a switching circuit which, when having received a two-level operation switching instruction from the determination circuit, turns off the alternating-current switch and turns on the valve devices in the arm sequentially, thereby bringing the power converter into a two-level operation state.

    Advantageous Effects of Invention



    [0010] According to the present invention, it is possible to provide a power conversion apparatus which is operated under conditions that a direct-current voltage is variable, an alternating-current output is variable, or both a direct-current voltage and an alternating-current output are variable and which selects a most suitable operating method (two-level/three-level), thereby achieving a smaller loss and an improved efficiency even if the direct-current voltage or the alternating-current output varies.

    Brief Description of Drawings



    [0011] 

    FIG. 1 schematically shows a main circuit of a power conversion apparatus according to the invention;

    FIG. 2 is a diagram to explain a first example of a PWM switching circuit of FIG. 1;

    FIG. 3 is a diagram to explain an operation of FIG. 2;

    FIG. 4 is a flowchart to explain a first example of a determination circuit of FIG. 2;

    FIG. 5A is a diagram to explain a first example of a comparison circuit of FIG. 2;

    FIG. 5B is a diagram to explain a second example of the comparison circuit of FIG. 2;

    FIG. 5C is a diagram to explain a third example of the comparison circuit of FIG. 2;

    FIG. 6 is a flowchart to explain a not claimed example of the determination circuit of FIG. 2;

    FIG. 7 is a flowchart to explain a third example of a determination circuit of FIG. 2;

    FIG. 8A is a diagram to explain a second example of the PWM switching circuit of FIG. 1;

    FIG. 8B is a diagram to explain a third example of the PWM switching circuit of FIG. 1;

    FIG. 9A is a diagram to explain a second example of a neutral AC switch of FIG. 1;

    FIG. 9B is a diagram to explain a third example of the neutral AC switch of FIG. 1; and

    FIG. 9C is a diagram to explain a fourth example of the neutral AC switch of FIG. 1.


    Mode for Carrying Out the Invention



    [0012] FIG. 1 is a main circuit diagram of a power conversion apparatus of the invention. The power conversion apparatus is so configured that direct-current power of a direct-current power supply, such as photovoltaic cells 1, is converted into alternating-current power by a power converter, such as a three-phase inverter 2, and the converted alternating-current power is stepped up by a transformer 3 and supplied to an alternating-current power system 7 via a capacitor 4, a reactor 5, and a switch 6.

    [0013] The inverter 2 is so configured that six units of a valve device SW constituted of a semiconductor element, such as an IGBT element, and a diode connected in inverse parallel with the element are bridge-connected in such a manner that SW1-SW4, SW5-SW8, and SW9-SW12 each constitute a three-phase arm and that a circuit of a series connection of capacitors Vd/2, Vd/2 is connected in parallel with the photovoltaic cells 1 side, the input side of the three-phase arms, and that six units of a valve device SW constituted of, for example, an IGBT element and a diode connected in inverse parallel with the element are connected to the middle point of the capacitors in such a manner that series-connected valve device groups SW2-SW3, SW6-SW7, SW10-SW11 each are connected to the middle point. The valve device groups constitute a neutral AC switch system.

    [0014] In FIG. 1, for example, valve devices SW2 and SW3, SW6 and SW7, and SW10 and SW11 are turned off, making the inverter equivalent to a general two-level inverter. In addition, switching between SW1 to SW4, SW5 to SW8, and SW9 to SW12 arbitrarily enables the inverter to function as a three-level inverter.

    [0015] According to the present invention, a comparison circuit 9, a determination circuit 11, and a PMW switching circuit 12 described later are newly added to the above configuration.

    [0016] In a first example of the comparison circuit 9, a direct current detector 10 detects direct current flowing from the photovoltaic cells 1 to the inverter 2 as a determination element. The detected current is input to one input terminal of the comparison circuit 9. The comparison circuit 9 compares the detected current with a switching reference value input to the other input terminal of the comparison circuit 9.

    [0017] Here, a switching reference value can be found by storing previous data in a database or the like and changing another element with some element fixed, or by using calculation results or simulations.

    [0018] The determination circuit 11 takes in the comparison result from the comparison circuit 9, makes a determination of S1 as shown in FIG. 4 as a first example, that is, determines on a determination element related to a loss in the power converter, for example, determines whether direct current detected by the direct current detector 10 is greater than or equal to the switching reference value (or direct current is less than the switching reference value) and, if having determined that the direct current is greater than or equal to the switching reference value, determines on two-level operation in S2 and, if having the direct current is less than the switching reference value, determines on three-level operation in S3.

    [0019] As a first example as shown in FIG. 2, the PMW switching circuit 12 comprises two comparators 13, 14 and a three-terminal input AND gate 15, and inverters 16, 17. A sine wave (signal wave) is input to the positive input terminals of the comparators 13, 14 and a carrier wave (modulation wave) is input to the negative input terminals of the comparators 13, 14. Two input terminals of the AND gate 15 are connected via the inverters 16, 17 to the output terminals of the comparators 13, 14. A switching signal is input to one input terminal of the AND gate 15. A signal from the output terminal of the AND gate 15 is supplied to valve devices SW2 and SW3. The output of the comparator 13 is supplied to valve device SW1. The output of the comparator 14 is supplied to valve device SW4.

    [0020] FIG. 3 shows the switching signals of FIG. 2 and the output signals of FIG. 2.

    [0021] The aforementioned PMW switching circuit 12 corresponds to one arm (one phase) of the main circuit. Other two arms (two phases) of the main circuit are configured in the same manner.

    [0022] Operational advantages of the aforementioned embodiment will be explained. Direct current, output current of the photovoltaic cells 1, is detected by the current detector 10. The detected current is input to the comparison circuit 9, which compares the detected current with the reference value. If there is a difference between them, the determination circuit 11 determines whether a determination element shown in S1 is less or greater than the switching reference value and then determines at a cross-point in FIG. 5A whether two-level operation or three-level operation should be activated. The determination result of the determination circuit 11 is input to the PWM switching circuit 12. The PWM switching circuit 12 supplies on "1" or off "0" to valve devices SW1 to SW12 as shown in FIG. 3. When valve device groups SW2-SW3, SW6-SW7, SW10-SW11 constituting the neutral AC switch are on, three-level operation is activated. When valve device groups SW2-SW3, SW6-SW7, SW10-SW11 are off, two-level operation is activated.

    [0023] As a result, when the direct current is less than or equal to the switching reference value, three-level operation is activated. When the direct current is greater than the switching reference value, two-level operation is activated. Therefore, of three-level operation and two-level operation, the one with higher conversion efficiency is selected and activated for power conversion.

    [0024] Here, a loss in the power converter in two-level operation and three-level operation, specifically, a conduction loss and a switching loss (SW loss), will be explained. A conduction loss is a loss caused while the power converter is turning on (or causing) a valve device (to conduct). The conduction loss depends on the magnitude of conducting current (direct current) in the same valve device. When two-level operation is compared with three-level operation, two-level operation with the number of valve devices in one arm being smaller is preferred over three-level operation in terms of a conduction loss.

    [0025] A switching loss (SW loss) is a loss caused when the power converter turns on and off a valve device. The switching loss depends on the magnitude of a voltage (direct-current voltage) applied to the same valve device. When two-level operation is compared with three-level operation, three-level operation with the number of times each valve device performs switching being smaller is preferred over two-level operation.

    [0026] With the above embodiment, a power conversion apparatus with a lower loss and an improved efficiency can be provided by selecting a best operation system (two-level/three-level) even if a direct-current voltage or an alternating-current output varies in a power converter that is operated under conditions that the direct current is variable, the alternating-current power is variable, or both the direct current and the alternating-current output are variable.

    [0027] Next, a second embodiment of the invention will be explained. While the above embodiment, direct current detected by the direct current detector 10 has been used as a determination element of FIG. 4, direct-current power is used in place of this as shown in FIG. 5B. This is a case where direct-current power obtained on the basis of direct-current voltage detected by a direct-current voltage detector (not shown) and direct current detected by the direct current detector 10 of FIG. 1 is used as a determination element.

    [0028] A third embodiment of the invention will be explained. While the above embodiment, direct current detected by the direct current detector 10 has been used as a determination element of FIG. 4 , direct-current voltage detected by a direct-current voltage detector (not shown) is used in place of this as shown in FIG. 5C .

    [0029] In addition, an example for understanding the invention will be explained. While the above embodiment, direct current detected by the direct current detector 10 has been used as a determination element of FIG. 4 , an alternating-current power is used in place of this. In this case, detecting is performed by a current detector (not shown) that detects an alternating current in an inverter, a voltage detector (not shown) that detects an alternating-current voltage of the capacitor 4, a current detector (now shown) that detects current input to the power system 7, and the like. Alternating-current power is calculated from these detected values. What corresponds to a loss obtained by subtracting the calculated alternating-current power from direct-current power on the input side of the inverter is used as a determination element. In this case, too, the determination circuit 11 performs processing according to a flowchart as shown in FIG. 4 as in the above embodiment.

    [0030] FIG. 5B shows the relationship between direct-current power and a total loss in a two-level operation state and in a three-level operation state. FIG. 5C shows the relationship between direct-current voltage and a total loss in a two-level operation state and in a three-level operation state.

    [0031] Furthermore, an example for understanding the invention will be explained. While the above embodiment, direct current detected by the direct current detector 10 has been used as a determination element of FIG. 4 , instead of this, the direct current is used as a determination element 1 and the direct-current voltage is used as a determination element 2. The determination circuit 11 is configured to perform processing according to a flowchart in FIG. 6 . In S1 of FIG. 6 , if determination element 1 > switching reference value is satisfied, control proceeds to S4. In S4, if determination element 2 > switching reference value is satisfied, two-level operation (S2) is activated. In S4, if determination element 2 > switching reference value is not satisfied, three-level operation (S3) is activated. In S1, if determination element 1 > switching reference value is not satisfied, control proceeds to S5. In S5, if determination element 2 > switching reference value is satisfied, two-level operation (S6) is activated. In S5, determination element 2 > switching reference value is not satisfied, three-level operation (S7) is activated. Here, the reason why (or determination element 1 < switching reference value) has been written in S1 is that, if this expression is satisfied, control proceeds to S5 and, if the expression is not satisfied, control proceeds to S4. The reason why (or determination element 2 < switching reference value) has been written in S4 is that, if this expression is satisfied, control proceeds to S3 and, if the expression is not satisfied, control proceeds to S2. The reason why (or determination element 2 < switching reference value) has been written in S5 is that, if this expression is satisfied, control proceeds to S7 and, if the expression is not satisfied, control proceeds to S6.

    [0032] In addition, arbitrary two of direct current, direct-current voltage, direct-current power, and alternating-current power may be selected as determination element 1 and determination element 2.

    [0033] Next, a fourth embodiment of the invention will be explained with reference to a flowchart for a determination circuit 11 of FIG. 7. FIG. 7 shows a case of a power converter (power conditioner) in a photovoltaic cell system shown in FIG. 1. In S11, it is determined whether direct current of photovoltaic cells 1 based on the amount of insolation is greater than or equal to 50% of a rated current. In S11, if it has been determined that the direct current is greater than or equal to 50% of the rated current, two-level operation is determined to be activated. In addition, if it has been determined that the direct current is less than 50% of the rated current, three-level operation is determined to be activated.

    [0034] In this case, too, a conduction loss and a switching loss in a valve device are calculated, thereby switching between two-level operation and three-level operation. Aside from this, if it has been determined that the input power of the power converter (power conditioner) is greater than or equal to 50% of a rated power, two-level operation may be activated. In addition, if it has been determined that the input power is less than 50% of the rated power, three-level operation may be activated.

    [0035] FIGS. 8A and 8B each show a PWM switching circuit differing from that of FIG. 2. FIG. 8A shows an example of a two-level PWM switching circuit, which is constituted of a comparator 19 and an inverter 20. FIG. 8B shows an example of a three-level PWM switching circuit, which is constituted of comparators 13, 14, inverters 16, 17, and an AND gate 18. The functions of these are the same as in FIG. 2.

    [0036] Although the valve device group constituting the aforementioned neutral AC switch has been explained, taking an IGBT element emitter-common system as an example, the following may be used. FIG. 9A shows a collector common system where the collectors of two IGBT elements Q3x, Q4x are connected to each other. Diodes D3x, D4x may be connected in inverse parallel with IGBT elements Q3x, Q4x, respectively. In addition, terminal X1 to which the emitter of Q3x and the anode of D3x are connected may be connected to, for example, the neutral point of FIG. 1. Then, terminal X2 to which the emitter of Q4x and the anode of D4x are connected may be connected to, for example, the connection point of Sw1 and Sw4 of FIG. 1.

    [0037] FIG. 9B shows a reverse blocking system where the emitter of IGBT element Q3x is connected to the collector of IGB element Q4x and the emitter of IGBT element Q4x is connected to the collector of IGBT Q3x, in which diode D3x is further connected to the connection point of the emitter of IGBT element Q3x and the collector of IGBT element Q4x, and diode D4x is further connected to the connection point of the emitter of IGBT element Q4x and the collector of IGBT Q3x, thereby forming a modified reverse blocking system. In addition, terminal N1 to which the emitter of Q3x and the anode of D3x are connected may be connected to, for example, the neutral point of FIG. 1. Then, terminal X2 to which the emitter of Q4x and the anode of D4x are connected may be connected to, for example, the connection point of Sw1 and Sw4 of FIG. 1.

    [0038] In FIG. 9C, two IGBT elements Q5x, Q6x may be used. Then, terminal N1 to which the collector of Q5x and the emitter of Q6x are connected may be connected to, for example, the neutral point of FIG. 1 and terminal N2 to which the emitter of Q5x and the collector of Q6x are connected may be connected to, for example, the connection point of Sw1 and Sw4 in FIG. 1.

    [0039] While in the above embodiment, the power converter has been explained, taking an inverter as an example, the power converter is not limited to an inverter. For example, a converter may be used as the power converter. In this case, too, the invention may be embodied similarly.

    Reference Signs List



    [0040] 1 ... Photovoltaic cells, 2 ... Three-phase inverter, 3 ... Transformer, 4 ... Capacitor, 5 ... Reactor, 6 ... Switch, 7 ... Alternating-current power system, 9 ... Comparator, 10 ... Direct current detector, 11 ... Determination circuit, 12 ... PMW switching circuit, 13 ... Comparator, 14 ... Comparator, 15 ... AND gate, 16, 17 ... Inverters, 18 ... AND gate, 19 ... Comparator, 20 ... Inverter.


    Claims

    1. A power conversion apparatus comprising:

    first and second direct-current power supplies connected in series; and

    a power converter (2) configured to convert direct-current power from each of the power supplies into alternating-current power and to supply the alternating-current power to an alternating-current power system (7),

    the power converter(2) being so configured that at least two first valve devices (Sw1, Sw4) constituted of semiconductor elements are connected in series to constitute one arm, at least three units of this arm are connected in parallel, an alternating-current switch constituted of a series connection of at least two second valve devices (Sw3, Sw2), each of which second valve devices (Sw3, Sw2) is constituted of a semiconductor element and a diode connected in inverse parallel with the semiconductor element, and each of the alternating-current switches is turned on or off, thereby enabling the power converter to perform three-level operation or two- level operation,

    a comparison circuit (9) configured to compare a determination element related to a loss in the power converter with a switching reference value and to output a determination instruction when a difference has occurred between the determination element and the switching reference value, the switching reference being a value for switching the power converter to operate with higher conversion efficiency of the three-level operation and the two-level operation based on the determination element;

    a determination circuit (11) configured to determine whether the determination element is greater or less than the switching reference value when having received a determination instruction from the comparison circuit (9); and

    characterized in that:

    the alternating-current switch is connected between a connection point of the first valve devices and a connection point of the direct-current power supplies in each arm; and

    the power conversion apparatus further comprises:

    a switching circuit (12) configured to turn off, when having received a two-level operation switching instruction from the determination circuit, the alternating-current switch and to turn on the first valve devices in the arm sequentially, thereby bringing the power converter into a two-level operation state, wherein

    the determination circuit is configured to output a two-level operation switching instruction when the determination element is greater than or equal to the switching reference value and the determination element related to a loss in the power converter is at least one of direct current input to the power converter (2), direct current power from the direct-current power supplies, direct current from photovoltaic cells (1), and direct-current power from photovoltaic cells (1).


     
    2. The power conversion apparatus according to claim 1, wherein the determination element related to a loss in the power converter is direct current from photovoltaic cells (1), and wherein
    the first and second direct-current power supplies are powered by direct-current energy from photovoltaic cells (1),
    the direct current from the photovoltaic cells (1) is based on the amount of insolation and the switching reference value is rated current, and
    the determination circuit (11), when having received an determination instruction, outputs a two-level operation switching instruction if the direct current from the photovoltaic cells is greater than or equal to 50% of the rated current.
     
    3. The power conversion apparatus according to claim 1, wherein the determination element related to a loss in the power converter is direct-current power from photovoltaic cells (1), and wherein
    the first and second direct-current power supplies are powered by direct-current energy from photovoltaic cells (1),
    the direct-current power from the photovoltaic cells is based on the amount of insolation and the switching reference value is rated direct-current power, and
    the determination circuit (11), when having received a determination instruction. outputs a two-level operation switching instruction if the direct-current power from the photovoltaic cells is greater than or equal to 50% of the rated power.
     


    Ansprüche

    1. Energieumwandlungsvorrichtung, umfassend:

    eine erste und eine zweite Gleichstromenergieversorgung, die in Reihe geschaltet sind; und

    einen Energiewandler (2), der dazu ausgelegt ist, Gleichstromenergie aus jeder der Energieversorgungen in Wechselstromenergie umzuwandeln und die Wechselstromenergie einem Wechselstromenergiesystem (7) zuzuführen,

    wobei der Energiewandler (2) so ausgelegt ist, dass mindestens zwei erste Ventileinrichtungen (Sw1, Sw4), die aus Halbleiterelementen gebildet sind, in Reihe geschaltet werden, um einen Zweig zu bilden, wobei mindestens drei Einheiten dieses Zweigs parallelgeschaltet sind, ein Wechselstromschalter, der aus einer Reihenschaltung mindestens zweier zweiter Ventileinrichtungen (Sw3, Sw2) gebildet ist, wobei jede der zweiten Ventileinrichtungen (Sw3, Sw2) aus einem Halbleiterelement und einer Diode gebildet ist, die antiparallel mit dem Halbleiterelement geschaltet ist, und jeder der Wechselstromschalter ein- oder ausgeschaltet wird, wodurch ermöglicht wird, dass der Energiewandler einen Dreistufenbetrieb oder einen Zweistufenbetrieb durchführt,

    eine Vergleichsschaltung (9), die dazu ausgelegt ist, ein Bestimmungselement, das sich auf einen Verlust im Energiewandler bezieht, mit einem Schaltreferenzwert zu vergleichen und eine Bestimmungsanweisung auszugeben, wenn eine Differenz zwischen dem Bestimmungselement und dem Schaltreferenzwert aufgetreten ist, wobei es sich bei dem Schaltreferenzwert um einen Wert zum Umschalten des Energiewandlers handelt, um mit einer höheren Umwandlungseffizienz des Dreistufenbetriebs und des Zweistufenbetriebs auf Grundlage des Bestimmungselements zu arbeiten;

    eine Bestimmungsschaltung (11), die dazu ausgelegt ist, zu bestimmen, ob das Bestimmungselement größer oder kleiner als der Schaltreferenzwert ist, wenn sie eine Bestimmungsanweisung von der Vergleichsschaltung (9) her erhalten hat; und

    dadurch gekennzeichnet, dass:

    der Wechselstromschalter zwischen einem Anschlusspunkt der ersten Ventileinrichtungen und einem Anschlusspunkt der Gleichstromenergieversorgungen in jedem Zweig angeschlossen ist; und

    die Energieumwandlungsvorrichtung darüber hinaus umfasst:

    einen Schaltkreis (12), der dazu ausgelegt ist, wenn er eine Zweistufenbetriebsumschaltanweisung von der Bestimmungsschaltung her erhalten hat, den Wechselstromschalter auszuschalten und die ersten Ventileinrichtungen in dem Zweig sequenziell einzuschalten, wodurch der Energiewandler in einen Zweistufenbetriebszustand gebracht wird, wobei

    die Bestimmungsschaltung dazu ausgelegt ist, eine Zweistufenbetriebsumschaltanweisung auszugeben, wenn das Bestimmungselement größer als oder gleich dem Schaltreferenzwert ist, und das Bestimmungselement, das sich auf einen Verlust im Energiewandler bezieht, ein in den Energiewandler (2) eingegebener Gleichstrom, eine Gleichstromenergie aus den Gleichstromenergieversorgungen, ein Gleichstrom aus Photovoltaikzellen (1) und/oder eine Gleichstromenergie aus Photovoltaikzellen (1) ist.


     
    2. Energieumwandlungsvorrichtung nach Anspruch 1, wobei das Bestimmungselement, das sich auf einen Verlust im Energiewandler bezieht, ein Gleichstrom aus Photovoltaikzellen (1) ist, und wobei
    die erste und zweite Gleichstromenergieversorgung durch Gleichstromenergie aus Photovoltaikzellen (1) angetrieben werden,
    der Gleichstrom aus den Photovoltaikzellen (1) auf dem Isolationsbetrag beruht und der Schaltreferenzwert ein Nennstrom ist, und
    die Bestimmungsschaltung (11), wenn sie eine Bestimmungsanweisung erhalten hat, eine Zweistufenbetriebsumschaltanweisung ausgibt, wenn der Gleichstrom aus den Photovoltaikzellen größer als oder gleich 50 % des Nennstroms ist.
     
    3. Energieumwandlungsvorrichtung nach Anspruch 1, wobei das Bestimmungselement, das sich auf einen Verlust im Energiewandler bezieht, eine Gleichstromenergie aus Photovoltaikzellen (1) ist, und wobei
    die erste und zweite Gleichstromenergieversorgung durch eine Gleichstromenergie aus Photovoltaikzellen (1) angetrieben werden,
    die Gleichstromenergie aus den Photovoltaikzellen auf dem Isolationsbetrag beruht und der Schaltreferenzwert Gleichstromnennenergie ist, und
    die Bestimmungsschaltung (11), wenn sie eine Bestimmungsanweisung erhalten hat, eine Zweistufenbetriebsumschaltanweisung ausgibt, wenn die Gleichstromenergie aus den Photovoltaikzellen größer als oder gleich 50 % der Nennenergie ist.
     


    Revendications

    1. Appareil de conversion de puissance comprenant :

    des première et deuxième alimentations électriques de courant continu connectées en série ; et

    un convertisseur de puissance (2) configuré pour convertir la puissance de courant continu provenant de chacune des alimentations électriques en puissance de courant alternatif et pour distribuer la puissance de courant alternatif à un système de puissance de courant alternatif (7),

    le convertisseur de puissance (2) étant configuré de sorte qu'au moins deux premiers dispositifs de valve (Sw1, Sw4) constitués d'éléments semi-conducteurs sont connectés en série pour constituer un bras, au moins trois unités de ce bras étant connectées en parallèle, un commutateur de courant alternatif constitué d'une connexion en série d'au moins deux deuxièmes dispositifs de valve (Sw3, Sw2), chacun desdits deuxièmes dispositifs de valve (Sw3, Sw2) étant constitué d'un élément semi-conducteur et d'une diode connectée en parallèle inverse à l'élément semi-conducteur, et chacun des commutateurs de courant alternatif est activé ou désactivé, de façon à permettre au convertisseur de puissance d'effectuer un fonctionnement à trois niveaux ou un fonctionnement à deux niveaux,

    un circuit de comparaison (9) configuré pour comparer un élément de détermination lié à une perte dans le convertisseur de puissance à une valeur de référence de commutation et pour délivrer en sortie une instruction de détermination lorsqu'une différence est survenue entre l'élément de détermination et la valeur de référence de commutation, la référence de commutation étant une valeur pour commuter le convertisseur de puissance de façon à fonctionner avec une efficacité de conversion plus élevée du fonctionnement à trois niveaux et du fonctionnement à deux niveaux sur la base de l'élément de détermination ;

    un circuit de détermination (11) configuré pour déterminer si l'élément de détermination est supérieur ou inférieur à la valeur de référence de commutation lorsqu'il a reçu une instruction de détermination depuis le circuit de comparaison (9) ; et

    caractérisé en ce que :

    le commutateur de courant alternatif est connecté entre un point de connexion des premiers dispositifs de valve et un point de connexion des alimentations électriques de courant continu dans chaque bras ; et

    l'appareil de conversion de puissance comprend en outre :

    un circuit de commutation (12) configuré pour désactiver, lorsqu'il a reçu une instruction de commutation de fonctionnement à deux niveaux depuis le circuit de détermination, le commutateur de courant alternatif et pour activer les premiers dispositifs de valve dans le bras séquentiellement, de façon à amener le convertisseur de puissance dans un état de fonctionnement à deux niveaux, dans lequel

    le circuit de détermination est configuré pour délivrer en sortie une instruction de commutation de fonctionnement à deux niveaux lorsque l'élément de détermination est supérieur ou égal à la valeur de référence de commutation et l'élément de détermination lié à une perte dans le convertisseur de puissance est au moins l'un parmi une entrée de courant continu vers le convertisseur de puissance (2), une puissance de courant continu provenant des alimentations électriques de courant continu, un courant continu provenant de cellules photovoltaïques (1), et une puissance de courant continu provenant de cellules photovoltaïques (1).


     
    2. Appareil de conversion de puissance selon la revendication 1, dans lequel l'élément de détermination lié à une perte dans le convertisseur de puissance est un courant continu provenant de cellules photovoltaïques (1), et dans lequel
    les première et deuxième alimentations électriques de courant continu sont alimentées par l'énergie de courant continu provenant de cellules photovoltaïques (1),
    le courant continu provenant des cellules photovoltaïques (1) est basé sur la quantité d'isolation et la valeur de référence de commutation est le courant nominal, et
    le circuit de détermination (11), lorsqu'il a reçu une instruction de détermination, délivre en sortie une instruction de commutation de fonctionnement à deux niveaux si le courant continu provenant des cellules photovoltaïques est supérieur ou égal à 50 % du courant nominal.
     
    3. Appareil de conversion de puissance selon la revendication 1, dans lequel l'élément de détermination lié à une perte dans le convertisseur de puissance est une puissance de courant continu provenant de cellules photovoltaïques (1), et dans lequel
    les première et deuxième alimentations électriques de courant continu sont alimentées par une énergie de courant continu provenant de cellules photovoltaïques (1),
    la puissance de courant continu provenant des cellules photovoltaïques est basée sur la quantité d'isolation et la valeur de référence de commutation est une puissance de courant continu nominale, et
    le circuit de détermination (11), lorsqu'il a reçu une instruction de détermination, délivre en sortie une instruction de commutation de fonctionnement à deux niveaux si la puissance de courant continu provenant des cellules photovoltaïques est supérieure ou égale à 50 % de la puissance nominale.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description