(19)
(11)EP 2 499 296 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.07.2017 Bulletin 2017/27

(21)Application number: 10829304.4

(22)Date of filing:  09.11.2010
(51)International Patent Classification (IPC): 
D21C 11/00(2006.01)
(86)International application number:
PCT/US2010/056076
(87)International publication number:
WO 2011/057293 (12.05.2011 Gazette  2011/19)

(54)

LIQUID RECOVERY AND PURIFICATION IN BIOMASS PRETREATMENT PROCESS

FLÜSSIGKEITSGEWINNUNG UND -REINIGUNG IN EINEM BIOMASSE-VORBEHANDLUNGSVERFAHREN

RÉCUPÉRATION ET PURIFICATION DE LIQUIDE DANS UN PROCÉDÉ DE PRÉTRAITEMENT DE BIOMASSE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.11.2009 US 259537 P

(43)Date of publication of application:
19.09.2012 Bulletin 2012/38

(73)Proprietor: The University of Toledo
Toledo, OH 43606 (US)

(72)Inventors:
  • LIPSCOMB, Glenn
    Perrysburg Ohio 43551 (US)
  • VARANASI, Sasidhar
    Toledo Ohio 43614 (US)

(74)Representative: Santarelli 
49, avenue des Champs-Elysées
75008 Paris
75008 Paris (FR)


(56)References cited: : 
EP-A1- 2 336 196
US-A- 4 631 129
US-A1- 2009 023 187
WO-A1-2004/046456
US-A- 5 964 923
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    SUMMARY OF THE INVENTION



    [0001] The invention includes a process for recovering the liquids used in pretreatment of biomass for production of biofuels and other biomass based products. Liquid recovery and purification minimizes waste production and enhances process profitability.

    DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS



    [0002] Disclosed herein is a process for recovering and purifying the liquids used for biomass pretreatment. Specifically the invention relates to the methods for recovering and purifying ionic liquids used for biomass pretreatment from water of claims 1 and 2. Pretreatment is critical to increasing rates of saccharification before sugar conversion to bioproducts.

    [0003] A wide range of materials have been utilized for pretreatment including acids (e.g., sulfuric acid), ammonia, carbon dioxide, organic solvents, and ionic liquids. Pretreatment opens the complex, recalcitrant structure of ligno-cellulosic materials by removing the lignin and hemicellulose layers that surround the crystalline cellulosic core. Pretreatment also opens the crystalline cellulose structure. After pretreatment, enzymatic saccharification occurs at dramatically higher rates which reduces processing times and equipment sizes.

    [0004] To meet the targets for bioethanol production, large quantities of biomass must be processed. This will require large volumes of pretreatment chemicals. Process economics require special attention to the recovery and disposal of these materials. Ideally, pretreatment chemicals would be recovered, purified, and recycled thereby avoiding waste disposal. Additionally, water is used as a solvent throughout the process. Water usage is greater than pretreatment chemical usage so processes that permit water recycle are equally desirable.

    [0005] Ionic liquids (ILs) offer a rapid, efficient solvent for pretreating biomass for saccharification. Exemplary ILs may be found, for example, in U.S. Patent Application Publication No. 20090011473 to Varanasi et al. The ILs may be categorized based on the structure of the cations or anions. Many of these ILs are effective in biomass pretreatment.

    [0006] Recovery and recycle of pretreatment chemicals and water will require processes that can remove insoluble particulate matter and separate liquid mixtures of neutral species with a wide range of polarities. Membrane separation processes may be used effectively for these separations and in combination offer the potential for recycle of water and pretreatment chemicals. The proposed process incorporating membrane technology is described next.

    Particulate Removal



    [0007] Membrane filtration may be used to remove particulate matter ranging in size from microns to nanometers. Microfiltration, ultrafiltration, and nanofiltration processes remove progressively smaller material. A combination of these processes may be used to remove suspended particulate matter from spent processes streams prior to further purification and recycle.

    [0008] Alternatively, electrodialysis processes permit removal of particulate matter from ionic pretreatment chemicals such as ILs. The ionic species pass through a series of cation and anion exchange membranes under the influence of an applied electric potential. In comparison to membrane filtration, electrodialysis may allow recovery of a greater percentage of the pretreatment chemical as we have demonstrated.

    Liquid Separations



    [0009] The pretreatment chemicals commonly are mixed with other solvents in the pretreatment process. Water is used primarily as the solvent during the pretreatment process but other fluids may be used including low molecular weight alcohols.

    [0010] Thermal processes that separate fluids based on differences in equilibrium vapor pressure are used widely in the chemical process industry. Distillation effectively separates species with large differences in vapor pressure. However, it is less effective for mixtures of species with small difference in boiling points, form azeotropes, or show highly non-ideal solution behavior.

    [0011] For these mixtures membrane separation processes based on differences in chemical potential offer unique advantages. The membrane selectively permeates one of the species to increases its concentration in the permeate. Membrane processes are not limited by equilibrium behavior and can be driven by using a sweep that increases the chemical potential driving force for transport across the membrane. Membrane modules are designed to provide efficient contacting between the feed and sweep.

    [0012] Reverse osmosis may be used to concentrate pretreatment chemicals by selectively permeating water or other solvents. For example, reverse osmosis membranes possess a pore and chemical structure that inhibit the transport of IL ions relative to the solvent. However, our initial work indicates reverse osmosis membranes are not sufficiently selective to the solvent to permit high levels of IL recovery.

    [0013] Membrane dehydration is an alternative for the recovery of pretreatment chemicals. In membrane dehydration processes, a sweep contacts a liquid feed across a membrane. The membrane permits selective transport of one component of the liquid mixture to the sweep.

    [0014] Membrane dehydration is an attractive process for the recovery of IL from mixtures with water or other process solvents since ILs are non-volatile and cannot be removed by vaporization into the sweep. Experiments using aqueous IL mixtures confirm this.

    [0015] Data obtained for water removal using an Osmonics RO AG membrane with a liquid feed of 30 ml/min and an air sweep feed rate of 15 L/min at a Temperature of 40°C are given in Table 1. The data are presented as water removal rate as a function of IL concentration.
    Table 1
    IL ConcentrationWater Flux
    (%) (kg/hr/m2)
    22.84 0.142
    26.07 0.138
    33.07 0.122
    36.7 0.126
    38.97 0.119
    47.36 0.086
    51.72 0.081
    56.54 0.065
    57.74 0.041
    62.1 0.043
    67.54 0.032
    70.64 0.022
    73.33 0.011
    77 0.009
    80.9 0.000


    [0016] The water flux dropped to near zero at an IL concentration of ∼81%. This limitation arises from the use of compressed air that was not dehumidified. The presence of water vapor in the air sweep inhibits water transport across the membrane.

    [0017] To remove water vapor a commercial air dehydration membrane was inserted in the line between the compressed air supply and the membrane module used for IL dehydration. Measured water removal rates as a function of IL concentration are reported in Table 2 for the same operating conditions as used to obtain the data in Table 1. However, the data in Table 2 was obtained using an Osmonics RO AK membrane instead of an AG membrane.
    Table 2
    IL Weight ConcentrationWater Flux
    (%) (kg/hr/m2)
    64.30 0.052
    73.01 0.030
    75.50 0.015
    81.60 0.008
    83.50 0.006
    85.90 0.000


    [0018] Dehydration of the compressed air feed increases the maximum achievable IL concentration to ∼86%.

    [0019] To further concentrate the IL, the compressed air flow rate through the air dehydration module was reduced. Reducing the flow rate decreases the water concentration of the dried air leaving the module. Data obtained for an air flow rate of 6 L/min are given in Table 3. All other experimental conditions are the same as for the data in Table 2.
    Table 3
    IL Weight ConcentrationWater Flux
    (%) (kg/hr/m2)
    75.46 0.018
    80.18 0.013
    83.22 0.005
    85.20 0.004
    87.70 0.000


    [0020] The maximum IL concentration increased slightly to ∼88%.

    [0021] For the viscous IL-water mixtures used, the water concentration in the liquid adjacent to the membrane may decrease significantly due to concentration polarization. Increasing the liquid flow rate reduces concentration polarization and increases the water concentration at the membrane surface that drives transport across the membrane.

    [0022] Table 4 indicates how water removal rates depend on IL concentration when the liquid flow rate is increased to 60 ml/min; all other experiment conditions are identical to those used to obtain the data in Table 2.
    Table 4
    IL Weight ConcentrationWater Flux
    (%) (kg/hr/m2)
    88.92 0.0044
    93.70 0.0043
    94.68 0.0041
    96.42 0.0031
    96.86 0.0000


    [0023] Increasing the liquid flow rate increases the maximum IL concentration to ∼97%. Optimization of liquid and gas flow rates may increase water fluxes further. No evidence for IL permeation across the dehydration membranes was found upon examination of the membranes after the dehydration experiments.

    [0024] Any non-condensable gas may be used as this sweep. For example, helium, nitrogen, and argon may be used. The choice of sweep will depend on process economics.

    [0025] Membranes for the processes described here may be produced in flat sheet, tubular, or hollow fiber shapes. The membranes may be formed from organic or inorganic materials that provide the required separation characteristics and are stable in the chemical and thermal environment of the process. Incorporation of the membranes in spiral wound or hollow fiber modules permits effective contacting with process streams.


    Claims

    1. A method for recovering and purifying ionic liquids used for biomass pretreatment from water, comprising the steps of:

    a. Removing particulate matter from a spent process stream of the biomass pretreatment process by membrane filtration; and

    b. Separating ionic liquids present in the spent process stream of a biomass pretreatment process from water by membrane dehydration.


     
    2. A method for recovering and purifying ionic liquids used for biomass pretreatment from water, comprising the steps of:

    a. Removing particulate matter from a spent process stream of the biomass pretreatment process by electrodyalisis; and

    b. Separating ionic liquids present in the spent process stream of a biomass pretreatment process from water by membrane dehydration.


     
    3. The method according to claim 1, wherein said membrane filtration comprises microfiltration, ultrafiltration, or nanofiltration, or any combination of any two or all three of these processes.
     
    4. The method according to any one of claims 1 to 3, wherein said membrane dehydration is carried out with a noncondensable gas.
     
    5. The method according to claim 4, wherein said non-condensable gas comprises helium, nitrogen, or argon.
     
    6. The method according to any one of claims 1 and 3, wherein a membrane used to carry out said membrane filtration is a flat sheet, tubular, or a hollow fiber shape.
     
    7. The method according to claim 2, wherein a membrane used to carry out said electrodialysis is a flat sheet, tubular, or a hollow fiber shape.
     


    Ansprüche

    1. Verfahren zur Rückgewinnung und Reinigung von ionischen Flüssigkeiten, die für die Biomassevorbehandlung verwendet werden, von Wasser, umfassend die folgenden Schritte:

    a. Entfernen von teilchenförmiger Substanz aus einem verbrauchten Prozessstrom eines Biomasse-Vorbehandlungsprozesses durch Membran-Filtration; und

    b. Abtrennen von ionischen Flüssigkeiten, die in dem verbrauchten Prozessstrom eines Biomasse-Vorbehandlungsprozesses vorhanden sind, durch Membran-Entwässerung.


     
    2. Verfahren zur Rückgewinnung und Reinigung von ionischen Flüssigkeiten, die für die Biomassevorbehandlung verwendet werden, von Wasser, umfassend die folgenden Schritte:

    a. Entfernen von teilchenförmiger Substanz aus einem verbrauchten Prozessstrom eines Biomasse-Vorbehandlungsprozesses durch Elektrodialyse; und

    b. Abtrennen von ionischen Flüssigkeiten, die in dem verbrauchten Prozessstrom eines Biomasse-Vorbehandlungsprozesses vorhanden sind, durch Membran- Entwässerung.


     
    3. Verfahren nach Anspruch 1, wobei die Membranfiltration Mikrofiltration, Ultrafiltration oder Nanofiltration oder eine beliebige Kombination von zwei oder allen drei dieser Verfahren umfasst.
     
    4. Verfahren nach irgendeinem der Ansprüche 1 bis 3, wobei die Membran- Entwässerung mit einem nicht kondensierbaren Gas durchgeführt wird.
     
    5. Verfahren nach Anspruch 4, wobei das nicht kondensierbare Gas Helium, Stickstoff oder Argon umfasst.
     
    6. Verfahren nach irgendeinem der Ansprüche 1 und 3, wobei eine Membran, die verwendet wird, um die Membranfiltration durchzuführen, die Form einer flachen blattförmigen, rohrförmigen oder einer hohlen Faser aufweist.
     
    7. Verfahren nach Anspruch 2, wobei eine Membran, die verwendet wird, um die Elektrodialyse durchzuführen, die Form einer flachen blattförmigen, rohrförmigen oder einer hohlen Faser aufweist.
     


    Revendications

    1. Procédé de récupération et de purification de liquides ioniques usés pour le prétraitement de la biomasse à partir d'eau, comprenant les étapes :

    a. retirer la matière particulaire d'un flux de procédé usé du procédé de prétraitement de la biomasse par filtration membranaire ; et

    b. séparer les liquides ioniques, présents dans le flux de procédé usé d'un procédé de prétraitement de la biomasse, de l'eau par déshydratation membranaire.


     
    2. Procédé de récupération et de purification de liquides ioniques usés pour le prétraitement de la biomasse à partir d'eau, comprenant les étapes :

    a. retirer la matière particulaire d'un flux de procédé usé du procédé de prétraitement de la biomasse par électrodialyse ; et

    b. séparer les liquides ioniques, présents dans le flux de procédé usé d'un procédé de prétraitement de la biomasse, de l'eau par déshydratation membranaire.


     
    3. Procédé selon la revendication 1, dans lequel ladite filtration membranaire comprend la microfiltration, l'ultrafiltration ou la nanofiltration, ou toute combinaison de l'un des deux ou de tous les trois de ces procédés.
     
    4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel ladite déshydratation membranaire est réalisée grâce à un gaz non condensable.
     
    5. Procédé selon la revendication 4, dans lequel ledit gaz non condensable comprend de l'hélium, de l'azote ou de l'argon.
     
    6. Procédé selon l'une quelconque des revendications 1 et 3, dans lequel une membrane utilisée pour réaliser ladite filtration membranaire a une forme de feuille plate, de tube, ou de fibre creuse.
     
    7. Procédé selon la revendication 2, dans lequel une membrane utilisée pour réaliser ladite électrodialyse a une forme de feuille plate, de tube, ou de fibre creuse.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description