(19)
(11)EP 1 132 754 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
12.08.2015 Bulletin 2015/33

(21)Application number: 01302074.8

(22)Date of filing:  07.03.2001
(51)International Patent Classification (IPC): 
G01T 1/00(2006.01)
G01T 1/20(2006.01)

(54)

Scintillator for X-ray detector

Szintillator für Röntgendetektor

Scintillateur pour détecteur de rayons X


(84)Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

(30)Priority: 07.03.2000 US 519704

(43)Date of publication of application:
12.09.2001 Bulletin 2001/37

(73)Proprietor: Koninklijke Philips N.V.
5656 AE Eindhoven (NL)

(72)Inventors:
  • Mattson, Rodney A.
    Mentor, Ohio 44060 (US)
  • Shapiro, Olga
    Haifa 32096 (IL)

(74)Representative: Damen, Daniel Martijn et al
Philips Intellectual Property & Standards P.O. Box 220
5600 AE Eindhoven
5600 AE Eindhoven (NL)


(56)References cited: : 
EP-A- 0 212 836
US-A- 5 831 269
US-A- 5 276 328
  
  • PATENT ABSTRACTS OF JAPAN vol. 016, no. 147 (P-1336), 13 April 1992 (1992-04-13) & JP 04 002989 A (TOSHIBA CORP), 7 January 1992 (1992-01-07)
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to x-ray detectors, and to the field of diagnostic imaging and radiation-to-electrical signal conversion arts. It finds particular application in conjunction with a two-dimensional detector for computerized tomographic scanners and will be described with particular attention thereto. It is to be appreciated, however, that the invention will also find application in conjunction with conventional x-ray diagnostic systems, fluoroscopic x-ray systems, and other radiation detection systems for medical and non-medical examinations.

[0002] A third generation CT scanner includes an x-ray tube which projects a fan-shaped beam of radiation across an examination region. An array of x-ray detectors is disposed across the examination region from the x-ray tube to receive radiation which has passed through the subject. The x-ray source and detectors rotate concurrently around the examination region to collect x-ray attenuation data along a multiplicity of paths.

[0003] The x-ray detectors have included scintillation materials which convert received x-rays into light. The scintillation crystals are optically coupled to photomultiplier tubes, photodiodes, or CCD arrays. In single slice scanners, the x-ray beam was collimated into a thin fan beam and the detector included a linear array of detector elements. For faster data acquisition, detectors using two-dimensional arrays have also been utilized. A variety of scintillators have been utilized. Common scintillators include doped cesium iodide (CsI(T1)), cadmium tungstate (CdWO4), bismuth germanate (Bi4Ge3O2, also known as BGO), and various ceramic scintillators such as Gd2O2S(Pr),(YGd)2O3(Eu) or Gd3Ga5O12(Cr). Cesium iodide scintillators tend to have a relatively long after-glow which interferes with high-speed data collection. Bismuth germanate tends to have a relatively low light output with a less than optimal spectral match to most photodiodes. Cadmium tungstate has a higher output than bismuth germanate, but still higher outputs and better spectral matches to the photodiodes would be advantageous. Ceramic scintillators tend to absorb the emitted fluorescent light so that the optical quantum detection efficiency is low. Thicker layers give disappointingly low light output. Thinner layers do not absorb a very high proportion of the incident x-rays, so that they result in low x-ray quantum detection efficiency and expose the patient to high x-ray dosage.

[0004] EP 0212836 A1 discloses a radiation imaging apparatus and method e.g. for computed tomography x-ray imaging employing a radiation detector which enhances the detector output due to lower energy components of the incident radiation. One embodiment includes first and second layers of crystalline scintillation material mutually aligned in a path of x-rays to be detected, to receive the x-rays in sequence. The layer upstream in the x-ray path comprises a scintillation material having a relatively high efficiency for converting x-ray energy to light. The downstream layer comprises a scintillation material having a relatively lower efficiency for x-ray/light conversion. A photodiode is positioned to view both scintillation layers simultaneously and to respond to scintillations in either or both. Scintillation crystal material surfaces can be coated with reflective material to enhance the effects of their scintillations. The photodiode thus combines x-ray indicating scintillations from both crystals while in analog form. Another embodiment comprises a photodiode and an optically coupled scintillation crystal, with the photodiode upstream in the x-ray beam path relative to the crystal.

[0005] Another example of a radiation detector element is disclosed in US 5831269. This radiation detector element comprises a scintillalor laminate for converting X-ray energy incident on said radiation detector to visible light, the scintillator laminate comprising a ceramic scintillator layer and a single crystal scintillator layer and a photodetector. for converting the visible light from the scintillator laminate to electrical signals. The single crystal scintillator is interposed in the path of the light scintillations from the ceramic scintillator to the photodetector.

[0006] GB 1 529 215 A discloses a scintillator-photocathode assembly, wherein the rear face, and optionally the front face, of the scintillator is of a multi pyramidal form. A uniform or irregular lattice of trirectangular trihedrons may be provided.

[0007] In accordance with one aspect of the present invention, a radiographic examination system according to claim 1 is provided. An x-ray source projects x-rays across an examination region. An x-ray detector is disposed across the x-ray examination region from the x-ray source. The detector includes an array of opto-electrical elements, an array of light transmissive scintillators, and a layer of higher efficiency scintillator material. The array of light transmissive scintillators is disposed on and optically coupled to the array of opto-electrical elements such that each of the opto-electrical elements converts light received from a corresponding transmissive scintillator into an electrical output signal. The layer of higher efficiency scintillator material is optically coupled to the transmissive scintillator array. The output signals of both, the transmissive scintillator array and the higher efficiency scintillator layer, are combined and converted into electrical signals in the opto-electrical elements. A surface of the higher efficiency scintillator layer is etched opposite the transmissive scintillator array to induce scatter and inhibit total reflection of light.

[0008] In accordance with another aspect of the present invention, a method of radiographic diagnostic examination is provided according to claim 8. X-rays are propagated through a subject and a first portion of them is converted into first light signals by a first scintillator. Concurrently, a second portion of the x-rays which have propagated through the subject and the first scintillator are converted into second light signals. The first and second light signals are combined and converted into electrical signals. Scatter is induced and total reflection of light is inhibited through an etched surface of the higher efficiency layer that is arranged opposite the transmissive scintillator array.

[0009] One advantage of the present invention resides in the possibility of achieving high x-ray conversion efficiency.

[0010] Another advantage of the present invention is that it can promote more rapid data acquisition and faster scanning times.

[0011] Another advantage of the present invention resides in the improved spectral match between the scintillator and photodiodes.

[0012] Ways of carrying out the invention will now be described in detail, by way of example, with reference to the accompanying drawings, in which:

FIGURE 1 is a diagrammatic illustration of a computerized tomographic diagnostic system;

FIGURE 2 is an expanded view of a preferred two-dimensional detector,

FIGURE 3 is a plot of x-ray sensitivity with layers of zinc selenide on cadmium tungstate relative to cadmium tungstate taken alone;

FIGURE 4 is a side view of an embodiment of the detector system in accordance with the present invention;

FIGURE 5 is an expanded view of an example of the detector system of FIGURE 2;

FIGURE 6 is a sectional perspective view of an example of the detector system of FIGURE 2 with scatter shields;

FIGURE 6A is a sectional perspective view of another example with scatter shields;

FIGURE 6B is a sectional perspective view of yet another example with scatter shields;

FIGURE 7 is an expanded view of yet another example of the detector system of FIGURE 2; and

FIGURE 8 is a side sectional view of yet another example of the detector system of FIGURE 2.



[0013] A computerized tomographic scanner 10 radiographically examines and generates diagnostic images of a subject disposed on a patient support 12. More specifically, the subject on the support 12 is moved into an examination region 14. An x-ray tube 16 mounted on a rotating gantry projects a beam of radiation through the examination region 14. A collimator 18 collimates the beam of radiation in one dimension to match the size and shape of a two-dimensional x-ray detector 20 disposed on the rotating gantry across the examination region from the x-ray tube.

[0014] With reference to FIGURE 2, an array 22 of opto-electric transducers, preferably photodiodes, supports an array 24 of first optically transmissive scintillators or light pipe segments. More specifically, the segments of array 24 are preferably rectangular of substantially the same dimensions as the photodiodes of the array 22, preferably with dimensions of about 1-3 mm. The four sides each and every element of array 24 are painted or otherwise covered with a reflective coating while the top surface is left open to receive light and the bottom surface is left open to communicate light to the photodiode array.

[0015] A layer 26 of high conversion efficiency scintillator is optically coupled to the array 24. Optical coupling adhesives or greases, not shown, are preferably disposed between layer 26 and array 24 and between arrays 24 and 22. A reflective coating or layer 28 covers the scintillator layer 26 and its sides.

[0016] In the preferred embodiment, the layer 26 is doped zinc selenide ZnSe(Te), and the array 24 is cadmium tungstate. Cadmium tungstate is optically transparent and has a good radiation conversion efficiency. However, other light transmissive scintillators are also contemplated such as bismuth germanate, or the like. The height of the rectangular prisms of the transmissive array 24 is selected in accordance with the energy of the x-rays. Thicker prisms presenting a greater stopping power for higher energy x-rays may also be used. The preferred zinc selenide sheet 26 has a thickness of 0.5-1.2 mm, with about 1 mm being preferred. The zinc selenide is substantially more efficient than cadmium tungstate (in appropriate circumstances it may twice as efficient) and even more efficient than bismuth germanate at converting x-rays into light. However, zinc selenide absorbs some of the fluorescent light limiting the path length that light can travel through it. Due to the limited light transmission distances and the high indices of refraction, a continuous sheet of zinc selenide is advantageously placed over the array 24 without significant cross-talk to neighboring elements.

[0017] With reference to FIGURE 3, the improvement in x-ray conversion relative to an array of cadmium tungstate without an overlayer 26 varies with the thickness of the zinc selenide overlayer. As seen from FIGURE 3, the conversion efficiency is about 120% better at around 1 mm thickness for 100 kV x-rays and about 140% better for 80 kV x-rays without phantom. Although zinc selenide scintillator is preferred, other scintillators such as gadolinium oxy-sulfide are also an improvement over prior crystal combinations. In the gadolinium oxy-sulfide Gd2O2S(Pr) embodiment, the layer 26 is preferably 0.3-2.2 mm, more preferably 0.5 mm.

[0018] With reference again to FIGURE 1, the output from the opto-electrical conversion array 22 along with information on the angular position of the rotating gantry are communicated to a data memory 30. The data from the data memory is reconstructed by a reconstruction processor 32. Various known reconstruction techniques are contemplated including convolution and backprojection techniques, cone beam reconstruction techniques, ML-EM techniques, algebraic reconstruction techniques, and the like. Spiral and multi-slice scanning techniques are also contemplated, provided that the data memory 30 also receives electronic input indicating longitudinal position or motion of the subject on the patient support 12 relative to the gantry 10.

[0019] The volumetric image representation generated by the reconstruction processor is stored in a volumetric image memory 34. A video processor 36 withdraws selective portions of the image memory to create slice images, projection images, surface renderings, and the like and reformats them for display on a monitor 38, such as a video or LCD monitor.

[0020] With reference to FIGURE 4, in accordance the present invention, the cross-talk potential is reduced by laser etching, making pit marks or surface irregularities 42 along an upper surface of the layer 26. These marks tend to scatter light and inhibit total reflection of light from the top surface. Additional laser etched pit marks or analogous surface irregularities are made at various points along an upper surface of the layer 26 to further promote scatter of light generated in the layer 26 toward the array 24.

[0021] With reference to FIGURE 5, cross-talk can be further inhibited by dividing the layer 26 into a plurality of strips 26'. In the illustrated embodiment, the strips have the same width as the individual crystals of the array 24. Of course, each strip can span two rows of crystals or other integral numbers. It is also advantageous to coat each side of each strip with an optical reflector.

[0022] With reference to FIGURE 6, in another alternate embodiment, the layer 26 has grooves 44. First, the grooves inhibit cross-talk. Second, the grooves provide mounting slots for anti-scatter grid elements 46. The anti-scatter grid elements are preferably thin sheets of molybdenum or other high density and high atomic number materials which block x-rays and other radiation which is traveling in other than a path directly from the x-ray tube to the detector. The anti-scatter grid may be white, to reflect the light back into the elements. In this manner, x-rays that are scattered from structures in or around the patient are blocked from reaching the detector.

[0023] With reference to FIGURE 6A, the reflective layer 28 is thick enough to have the grooves 44, which provide mounting slots for the anti-scatter grid elements 46.

[0024] With reference to FIGURE 6B, the anti-scatter grid extends all the way down through the reflective coating layer 28 and layers 26 and 24.

[0025] With reference to FIGURE 7, cross-talk can be reduced still further by dividing the layer 26 into a multiplicity of individual elements 26" of the same cross-section as individual or small groups of the elements of array 24. Each element may advantageously be coated on all four sides with a white reflector.

[0026] Crystalline zinc selenide is amenable to being formed or sliced into layers about 1 mm in thickness. However, other ways of applying the zinc selenide layers are also contemplated. With reference to FIGURE 8, the zinc selenide material is pulverized, mixed with a transparent binder to form a paint 26"', and used to coat the top surface of each prism of the array 24. Again, the thickness of the coating 26"' is typically less than 1 mm. Reflective coatings 50 are applied to the side surfaces of each prism of array 24.

[0027] It is to be appreciated that the x-ray detectors described in this application are useable to detect x-rays in other applications. For example, when the x-ray source and detector do not move relative to each other, conventional shadowgraphic or projection x-rays are generated. In another embodiment, the x-ray source and detector are configured for relative motion along the longitudinal axis of the subject to generate larger shadowgraphic images. It will also be appreciated that subjects other than human patients can be examined. For example, manufactured items undergoing x-ray quality control can be moved through the scanner on a conveyor system. Analogously, luggage for aircrafts can be radiographically examined by being moved between the x-ray source and detectors described above on a conveyor system. Numerous other x-ray examination and evaluation techniques are also contemplated.


Claims

1. A radiographic examination system comprising: an x-ray source (16) for projecting x-rays across an examination region (14); an x-ray detector (20) disposed across the x-ray examination region from the x-ray source, the x-ray detector including: an array of opto-electrical elements (22), an array of light transmissive scintillators (24) disposed on and optically coupled to the array of opto-electrical elements such that each of the opto-electrical elements converts light received from a corresponding transmissive scintillator into an electrical output signal, and a layer of higher efficiency scintillator material (26) optically coupled to the transmissive scintillator array (24), wherein the output signals of both, the transmissive scintillator array (24) and the higher efficiency scintillator layer (26), are combined and converted into electrical signals in the opto-electrical elements (22),
characterized in that a surface of the higher efficiency scintillator layer (26) is etched opposite the transmissive scintillator array (24) to induce scatter and inhibit total reflection of light.
 
2. A radiographic examination system as claimed in claim 1, wherein the higher efficiency scintillator layer (26) is a scintillator material of limited opacity, higher x-ray conversion efficiency than the transmissive scintillators (24), and having a better optical match to a peak sensitivity spectrum of the opto-electrical transducers (22) than the transmissive scintillators.
 
3. A radiographic examination system as claimed in claim 1 or claim 2, wherein the transmissive scintillators include one of cadmium tungstate and bismuth germanate and the higher efficiency scintillator includes one of zinc selenide and gadolinium oxy-sulfide.
 
4. A radiographic examination system as claimed in any one of claims 1 to 3 wherein the higher efficiency scintillator layer (26) includes a series of parallel channels (44).
 
5. A radiographic examination system as claimed in claim 4, further including x-ray scatter grids (46) received and supported in the channels.
 
6. A radiographic examination system as claimed in any one of the preceding claims, wherein the higher efficiency scintillator layer includes particulate higher efficiency scintillator (26) dispersed in a light transmissive binder.
 
7. A radiographic examination system as claimed in any one of the preceding claims, further including: a processor (32) for converting the electrical signals from the opto-electric elements into an image representation; a monitor (38) for converting the image representation into a human-readable display.
 
8. A method of radiographic diagnostic examination comprising: propagating x-rays through a subject; with a layer of higher efficiency scintillator material (26), converting a first portion of the x-rays which have propagated through the subject into first light signals; a transmissive scintillator array (24), concurrently converting a second portion of the x-rays which have propagated through the subject and the layer of higher efficiency scintillator material into second light signals and combining the first and second light signals; and an array of opto-electrical elements (22) converting the first and second light signals into electrical signals,
characterized by the step of inducing scatter and inhibiting total reflection of light through an etched surface of the higher efficiency layer (26) opposite the transmissive scintillator array (24).
 
9. A method as claimed in claim 8, further including: reconstructing the electrical signals into an image representation; converting at least a portion of the image representation into a human-readable display.
 


Ansprüche

1. Radiographisches Untersuchungssystem, das Folgendes umfasst: eine Röntgenquelle (16) zum Projizieren von Röntgenstrahlen quer durch eine Untersuchungsregion (14); einen Röntgendetektor (20), der auf der anderen Seite der Untersuchungsregion gegenüber der Röntgenquelle angeordnet ist, wobei der Röntgendetektor Folgendes umfasst: ein Array aus optoelektrischen Elementen (22), ein Array aus lichtdurchlässigen Szintillatoren (24), die auf dem Array aus optoelektrischen Elementen angeordnet und optisch hiermit gekoppelt sind, so dass jedes der optoelektrischen Elemente von einem entsprechenden durchlässigen Szintillator empfangenes Licht in ein elektrisches Ausgangssignal umwandelt, und eine Schicht eines aus höhereffizientem Szintillatormaterial (26), die optisch mit dem durchlässigen Szintillatorarray (24) gekoppelt ist, wobei die Ausgangssignale von sowohl dem durchlässigen Szintillatorarray (24) als auch der höhereffizienten Szintillatorschicht (26) in den optoelektrischen Elementen (22) kombiniert und in elektrische Signale umgewandelt werden,
dadurch gekennzeichnet, dass eine Oberfläche der höhereffizienten Szintillatorschicht (26) gegenüber dem durchlässigen Szintillatorarray (24) geätzt ist, um Streuung zu induzieren und Totalreflexion des Lichts zu unterbinden.
 
2. Radiographisches Untersuchungssystem nach Anspruch 1, wobei die höhereffiziente Szintillatorschicht (26) ein Szintillatormaterial von begrenzter Opazität ist, eine höhere Röntgenstrahlungs-Umwandlungseffizienz aufweist als die durchlässigen Szintillatoren (24) und eine bessere optische Übereinstimmung mit dem maximalen Empfindlichkeitsspektrum der optoelektrischen Wandler (22) hat als die durchlässigen Szintillatoren.
 
3. Radiographisches Untersuchungssystem nach Anspruch 1 oder 2, wobei die durchlässigen Szintillatoren entweder Cadmiumwolframat oder Wismutgermanat umfassen und der höhereffiziente Szintillator entweder Zinkselenid oder Gadolinium-Oxysulfid umfasst.
 
4. Radiographisches Untersuchungssystem nach einem der Ansprüche 1 bis 3, wobei die höhereffiziente Szintillatorschicht (26) eine Reihe von parallelen Kanälen (44) umfasst.
 
5. Radiographisches Untersuchungssystem nach Anspruch 4, das weiterhin Röntgenstreustrahlenraster (46) umfasst, die in den Kanälen aufgenommen und gestützt werden.
 
6. Radiographisches Untersuchungssystem nach einem der vorhergehenden Ansprüche, wobei die höhereffiziente Szintillatorschicht höhereffiziente Partikel-Szintallatoren (26) umfasst, die in einem lichtdurchlässigen Bindemittel gestreut sind.
 
7. Radiographisches Untersuchungssystem nach einem der vorhergehenden Ansprüche, das weiterhin Folgendes umfasst: einen Prozessor (32) zum Umwandeln der elektrischen Signale von den optoelektrischen Elementen in eine Bilddarstellung; einen Monitor (38) zum Umwandeln der Bilddarstellung in eine von Menschen lesbare Anzeige.
 
8. Verfahren der radiographischen diagnostischen Untersuchung, das Folgendes umfasst: Senden von Röntgenstrahlung durch einen Patienten; mit einer Schicht aus höhereffizientem Szintillatormaterial (26) Umwandeln eines ersten Teils der Röntgenstrahlen, die sich durch den Patienten fortgepflanzt haben, in erste Lichtsignale, wobei ein durchlässiges Szintillatorarray (24) gleichzeitig einen zweiten Teil der Röntgenstrahlen, die sich durch den Patienten und die Schicht aus höhereffizientem Szintillatormaterial fortgepflanzt haben, in zweite Lichtsignale umwandelt und Kombinieren der ersten und der zweiten Signale; und ein Array aus optoelektrischen Elementen (22), das die ersten und zweiten Lichtsignale in elektrische Signale umwandelt;
gekennzeichnet durch den Schritt des Einführens von Streuung und Unterbindens von Totalreflexion des Lichts durch eine geätzte Oberfläche der höhereffizienten Schicht (26) gegenüber dem durchlässigen Szintillatorarray (24).
 
9. Verfahren nach Anspruch 8, das weiterhin Folgendes umfasst:

Rekonstruieren der elektrischen Signale in eine Bilddarstellung; Umwandeln von mindestens einem Teil der Bilddarstellung in eine von Menschen lesbare Anzeige.


 


Revendications

1. Système d'examen radiographique comprenant : une source de rayons X (16) pour projeter des rayons X à travers une région d'examen (14) ; un détecteur de rayons X (20) disposé en face de la source de rayons X, avec la région d'examen à rayons X entre ceux-ci, le détecteur de rayons X comprenant : un réseau d'éléments opto-électriques (22), un réseau de scintillateurs transmissifs de lumière (24) disposés sur et optiquement couplés au réseau d'éléments opto-électriques de sorte que chacun des éléments opto-électriques convertisse de la lumière reçue à partir d'un scintillateur transmissif de lumière en un signal de sortie électrique, et une couche de matériau scintillateur à rendement plus élevé (26) optiquement couplée au réseau de scintillateurs transmissifs (24), dans lequel les signaux de sortie du réseau de scintillateurs transmissifs (24) ainsi que de la couche de scintillateur à rendement plus élevé (26) sont combinés et convertis en signaux électriques dans les éléments opto-électriques (22),
caractérisé en ce qu'une surface de la couche de scintillateur à rendement plus élevé (26) est gravée en face du réseau de scintillateurs transmissifs (24) pour entraîner une dispersion et empêcher la réflexion totale de lumière.
 
2. Système d'examen radiographique selon la revendication 1, dans lequel la couche de scintillateur à rendement plus élevé (26) est un matériau scintillateur d'opacité limitée, de rendement de conversion de rayons X plus élevé que celui des scintillateurs transmissifs (24), et possédant un meilleur contretype optique, en ce qui concerne un spectre de haute sensibilité des transducteurs opto-électriques (22), que les scintillateurs transmissifs.
 
3. Système d'examen radiographique selon la revendication 1 ou la revendication 2, dans lequel les scintillateurs transmissifs comprennent un parmi du tungstate de cadmium et du germanate de bismuth et le scintillateur de rendement plus élevé comprend un parmi du séléniure de zinc et de l'oxy-sulfure de gadolinium.
 
4. Système d'examen radiographique selon l'une quelconque des revendications 1 à 3, dans lequel la couche de scintillateur à rendement plus élevé (26) comprend une série de canaux parallèles (44).
 
5. Système d'examen radiographique selon la revendication 4, comprenant en outre des grilles de diffusion de rayons X (46) reçues et supportées dans les canaux.
 
6. Système d'examen radiographique selon l'une quelconque des revendications précédentes, dans lequel la couche de scintillateur à rendement plus élevé comprend un scintillateur particulaire de rendement plus élevé (26) dispersé dans un liant transmissif de lumière.
 
7. Système d'examen radiographique selon l'une quelconque des revendications précédentes, comprenant en outre : un processeur (32) pour convertir les signaux électriques à partir des éléments opto-électriques en une représentation d'image ; un moniteur (38) pour convertir la représentation d'image en affichage lisible par humain.
 
8. Procédé d'examen diagnostique radiographique comprenant : la propagation de rayons X à travers un sujet ; avec une couche de matériau scintillateur à rendement plus élevé (26), la conversion d'une première portion des rayons X qui se sont propagés à travers le sujet en premiers signaux lumineux ; un réseau de scintillateurs transmissifs (24), simultanément convertissant une seconde portion des rayons X qui se sont propagés à travers le sujet et la couche de matériau scintillateur à rendement plus élevé en seconds signaux lumineux et combinant les premier et second signaux lumineux ; et un réseau d'éléments opto-électriques (22) ; convertissant les premier et second signaux lumineux en signaux électriques,
caractérisé par l'étape de l'entraînement d'une diffusion et de la prévention de réflexion totale à travers une surface gravée de la couche à rendement plus élevé (26) en face du réseau de scintillateurs transmissifs (24).
 
9. Procédé selon la revendication 8, comprenant en outre : la reconstruction des signaux électriques en une représentation d'image ; la conversion d'au moins une portion de la représentation d'image en un affichage lisible par humain.
 




Drawing


























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description