(19)
(11)EP 0 943 091 B2

(12)NEW EUROPEAN PATENT SPECIFICATION
After opposition procedure

(45)Date of publication and mention of the opposition decision:
29.09.2010 Bulletin 2010/39

(45)Mention of the grant of the patent:
02.05.2003 Bulletin 2003/18

(21)Application number: 98949736.7

(22)Date of filing:  02.10.1998
(51)International Patent Classification (IPC): 
G01N 29/02(2006.01)
G01N 9/00(2006.01)
(86)International application number:
PCT/US1998/020764
(87)International publication number:
WO 1999/018431 (15.04.1999 Gazette  1999/15)

(54)

METHOD AND APPARATUS FOR CHARACTERIZING MATERIALS BY USING A MECHANICAL RESONATOR

VERFAHREN UND VORRICHTUNG ZUR CHARAKTERISIERUNG VON MATERIALIEN MITTELS EINES MECHANISCHEN RESONATORS

PROCEDE ET DISPOSITIF DE CARACTERISATION DES MATERIAUX PAR UTILISATION D'UN RESONATEUR MECANIQUE


(84)Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(30)Priority: 08.10.1997 US 946921
12.08.1998 US 133171

(43)Date of publication of application:
22.09.1999 Bulletin 1999/38

(60)Divisional application:
03009712.5 / 1361428
03012443.2
03019073.0 / 1361429

(73)Proprietor: MEAS France
31100 Toulouse (FR)

(72)Inventors:
  • MATSIEV, Leonid
    Cupertino, CA 95014 (US)
  • BENNETT, James
    Santa Clara, CA 95050 (US)
  • McFARLAND, Eric
    Santa Barbara, CA 93111 (US)

(74)Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser Anwaltssozietät 
Leopoldstrasse 4
80802 München
80802 München (DE)


(56)References cited: : 
EP-A- 0 102 490
EP-A- 0 676 638
US-A- 4 734 609
EP-A- 0 282 251
US-A- 4 349 881
  
      


    Description

    TECHNICAL FIELD



    [0001] The present invention is directed to using mechanical oscillators for measuring various properties of fluids (including both liquids and vapors), and more particularly to a method and system using a mechanical oscillator (resonator) for measuring physical, electrical and/or chemical properties of a fluid based on the resonator's response in the fluid to a variable frequency input signal.

    BACKGROUND ART



    [0002] Companies are turning to combinatorial chemistry techniques for developing new compounds having novel physical and chemical properties. Combinatorial chemistry involves creating a large number of chemical compounds by reacting a known set of starting chemicals in all possible combinations and then analyzing the properties of each compound systematically to locate compounds having specific desired properties. See, for example WO 96/11878 entitled "The Combinatorial Synthesis of Novel Materials".

    [0003] EP-A- 0 676 638 shows a time interleaved method of efficient operation of an acoustic wave sensor array. EP-A-282251 shows a fluid transducer employing a tuning fork operated at resonance frequency a. Baltes, H, Göpel W., Hesse J., Sensors Update, Volume 2, Chapter 2: Acoustic Wave Sensors, pages 37 - 83, VCH, Weinheim, ISBN: 3-527-29432-5,1996 (1996-00-00), xp 002205093 relates to network analysers used in conjunction with shear mode resonators and surface acoustic wave resonators.

    [0004] The virtually endless number of possible compounds that can be created from the Periodic Table of Elements requires a systematic approach to the synthesizing and screening processes. Thus, any system that can analyze each compound's properties quickly and accurately is highly desirable. Further, such a system would be useful in any application requiring quick, accurate measurement of a liquid's properties, such as in-line measurement of additive concentrations in gasoline flowing through a conduit or detection of environmentally-offending molecules, such as hydrogen sulfide, flowing through a smokestack.

    [0005] It is therefore an object of the invention to measure simultaneously both the physical and the electrical properties of a fluid composition using a mechanical resonator device.

    [0006] It is also an object of the invention to detect differences clearly between two or more compounds in a fluid composition by using a mechanical resonator device to measure a composition's physical and electrical properties.

    [0007] It is a further object of the invention to use a mechanical resonator device to monitor and measure a physical or chemical transformation of a fluid composition.

    [0008] It is also an object of the invention to use a mechanical resonator device to detect the presence of a specific material in a fluid.

    SUMMARY OF THE INVENTION



    [0009] The present invention includes a method for monitoring a property of a fluid composition having the features set out in claim 1 and an apparatus as set out in claim 29.

    [0010] In an embodiment according to claim 8, the method can also measure a plurality of fluid compositions, wherein the fluid compositions are liquid compositions, using a plurality of tuning fork resonators, wherein the method further comprises:

    providing an array of sample wells;

    placing each of said plurality of liquid compositions in a separate sample well;

    placing at least one of said plurality of tuning fork resonators in at least one sample well;

    applying a variable frequency input signal to a measurement circuit coupled with each tuning fork resonator in said at least one sample wells to oscillate each tuning fork resonator associated with each of said at least one sample well;

    varying the frequency of the variable frequency input signal over a predetermined frequency range to obtain a frequency-dependent resonator response of each tuning fork resonator associated with said at least one sample well; and

    analyzing the resonator response of each tuning fork resonator associated with said at least one sample well to measure a property of each liquid composition in said at least one sample well.



    [0011] In an embodiment, the present invention is directed to a method for measuring physical and electrical properties, such as the viscosity density product, the dielectric constant, and the conductivity of sample liquid compositions in a combinatorial chemistry process. The detailed description below focuses primarily on thickness shear mode ("TSM") resonators as conventional devices and tuning fork resonators, but other types of resonators can be used, such as tridents, or cantilevers. Both the TSM resonator and the tuning fork resonator can be used to measure a plurality of compounds in a liquid composition, but the tuning fork resonator has desirable properties that make it more versatile than the TSM resonator and thus provide a solution according to the invention.

    [0012] According to the invention, the mechanical resonator is connected to a measuring circuit that sends a variable frequency input signal, such as a sinusoidal wave, that sweeps over a predetermined frequency range, preferably in the 25-30 kHz range for the tuning fork resonator. The resonator response over the frequency range is then monitored to determine selected physical and electrical properties of the liquid being tested. Although both the TSM resonator and the tuning fork resonator can be used to test physical and electrical properties, the tuning fork resonator is an improvement over the TSM resonator because of the tuning fork's unique response characteristics and high sensitivity.

    [0013] Both the TSM resonator and the tuning fork resonator can be used in combinatorial chemistry applications. The small size and quick response of the tuning fork resonator in particular makes it especially suitable for use in combinatorial chemistry applications, where the properties of a vast number of chemicals must be analyzed and screened in a short time period. In a preferred embodiment, a plurality of sample wells containing a plurality of liquid compositions are disposed on an array. A plurality of tuning fork resonators are dipped into the liquid compositions, preferably one resonator per composition, and then oscillated via the measuring circuit. Because the resonating characteristics of the tuning fork resonator virtually eliminate the generation of acoustic waves, the size of the sample wells can be kept small without the concern of acoustic waves reflecting from the walls of the sample wells. In practice, the tuning forks can be oscillated at a lower frequency range than TSM resonators, making the tuning forks more applicable to real-world applications and more suitable for testing a wide variety of compositions, including high molecular weight liquids.

    [0014] In another embodiment of the invention, the mechanical resonator is coated with a material to change the resonator's characteristics. The material can be a general coating to protect the resonator from corrosion or other problems affecting the resonator's performance, or it can be a specialized "functionalization" coating that changes the resonator's response if a selected substance is present in the composition being tested by the resonator.

    [0015] To obtain a more complete range of characteristics for a selected fluid composition, multiple resonators having different resonator characteristics can be connected together as a single sensor for measuring the fluid composition. The resonator responses from all of the resonators in the sensor can then be correlated to obtain additional information about the composition being tested. By using resonators having different characteristics, the fluid composition can be tested over a wider frequency range than a single resonator.

    [0016] The mechanical resonator system of the present invention, in one embodiment a system using the tuning fork resonator, can also be used to monitor changes in a particular liquid by keeping the resonator in the liquid composition as it undergoes a physical and/or chemical change, such as a polymerization reaction. The invention is not limited to measuring liquids, however; the quick response of the tuning fork resonator makes it suitable for measuring the composition of fluid compositions, both liquid and vaporous, that are flowing through a conduit to monitor the composition of the fluid.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0017] 

    Figures 1a and 1b are cross-sectional views of a TSM resonator plate and a tuning fork resonator tine respectively;

    Figure 2 is a block diagram illustrating an example of a composition testing system of the present invention;

    Figure 3 is a representative diagram illustrating oscillation characteristics of the tuning fork resonator used in a preferred embodiment of the present invention;

    Figures 4a and 4b are simplified schematic diagrams illustrating a tuning fork resonator connection with the measurement circuit in a preferred embodiment of the present invention;

    Figure 4c illustrates a sample response of the representative circuit shown in Figure 4b;

    Figures 5a and 5b are examples of traces comparing the frequency responses of the TSM resonator and the tuning fork resonator respectively;

    Figures 6a and 6b are examples of graphs illustrating the relationship between the viscosity density product and the equivalent serial resistance of the TSM resonator and the tuning fork resonator respectively;

    Figures 7a and 7b are examples of graphs illustrating the relationship between the dielectric constant and the equivalent parallel capacitance of the TSM resonator and the tuning fork resonator respectively;

    Figures 8a and 8b are examples of graphs illustrating the relationship between the molecular weight of a sample composition and the equivalent serial resistance of the TSM resonator and the tuning fork resonator respectively, in a polymerization reaction;

    Figures 9a and 9b illustrate another embodiment of the invention using a resonator that is treated with a coating for targeting detection of specific chemicals; and

    Figures 10a, 10b and 10c illustrate examples of different multiple resonator sensors of yet another embodiment of the present invention.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0018] The method and apparatus of the present invention focuses on using a mechanical resonator to generate and receive oscillations in a fluid composition for testing its characteristics in a combinatorial chemistry process or other process requiring analysis of the fluid composition's physical and/or chemical properties. Although the detailed description focuses on combinatorial chemistry and the measurement of a liquid composition's characteristics, the invention can be used in any application requiring measurement of characteristics of a fluid composition, whether the fluid is in liquid or vapor form. The fluid composition itself can be any type of fluid, such as a solution, a liquid containing suspended particulates, or, in some embodiments, even a vapor containing a particular chemical or a mixture of chemicals. It can also include a liquid composition undergoing a physical and/or chemical change (e.g. an increase in viscosity).

    [0019] Mechanical resonators, such as the thickness shear mode (TSM) quartz resonators 10, are used for measuring various physical properties of fluid compositions, such as a liquid's viscosity, molecular weight, specific weight, etc., in a combinatorial chemistry setting or other liquid measurement application. Referring to Figure 1a, TSM resonators 10 usually have a flat, plate-like structure where a quartz crystal 12 is sandwiched in between two electrodes 14. In combinatorial chemistry applications, the user first generates a "library", or large collection, of compounds in a liquid composition. Normally, each liquid composition is placed into its own sample well. A TSM resonator 10 connected to an input signal source (not shown) is placed into each liquid composition, and a variable frequency input signal is sent to each TSM resonator 10, causing the TSM resonator 10 to oscillate. The input signal frequency is swept over a predetermined range to generate a unique TSM resonator 10 response for each particular liquid. Because every compound has a different chemical structure and consequently different properties, the TSM resonator 10 response will be also be different for each compound. The TSM resonator response is then processed to generated a visual trace of the liquid composition being tested. An example of traces generated by the TSM resonator 10 for multiple liquid compositions is shown in Figure 5a. Screening and analysis of each compound's properties can then be conducted by comparing the visual traces of each compound with a reference and/or with other compounds. In this type of application, the TSM resonator 10 serves both as the wave source and the receiver.

    [0020] Two types of waves can be excited in liquids: compression waves (also called acoustic waves), which tend to radiate a large distance, on the order of hundreds of wavelengths, from the wave-generating source; and viscose shear waves, which decay almost completely only one wavelength away from the wave-generating source. In any liquid property testing, acoustic waves should be kept to a minimum because they will create false readings when received by the resonator due to their long decay characteristics. For typical prior art ultrasonic transducers/resonators, the resonator oscillation creates acoustic waves that radiate in all directions from the resonator, bounce off the sides of the sample well, and adversely affect the resonator response. As a result, the resonator response will not only reflect the properties of the liquid being measured, but also the effects of the acoustic waves reflecting from the walls of the sample well holding the liquid, thereby creating false readings. Using a sample well that is much greater than the acoustic wavelength does minimize the negative effects of acoustic waves somewhat, but supplying thousands of sample wells having such large dimensions tends to be impractical.

    [0021] TSM resonators 10 primarily generate viscose shear waves and are therefore a good choice for liquid property measurement in combinatorial chemistry applications because they do not generate acoustic waves that could reflect off the sides of the sample wells and generate false readings. As a result, the sample wells used with the TSM resonators 10 can be kept relatively small, making it feasible to construct an array of sample wells for rapid, simultaneous testing of many liquids. The high stiffness of TSM resonators 10, however, require them to be operated at relatively high frequencies, on the order of 8-10 MHz. This stiffness does not adversely affect measurement accuracy for many applications, though, making the TSM resonator an appropriate choice for measuring numerous liquid compositions.

    [0022] However, TSM resonators 10 can be somewhat insensitive to the physical properties of certain liquids because the load provided by the surrounding liquid is less than the elasticity of the resonator. More particularly, the high operating frequencies of TSM resonators 10 make them a less desirable choice for measuring properties of certain liquid compositions, particularly high-molecular weight materials such as polymers. When high frequency waves are propagated through high molecular-weight liquids, the liquids tend to behave like gels because the rates at which such large molecules move correspond to frequencies that are less than that of the TSM resonator's oscillations. This causes the TSM resonator 10 to generate readings that sometimes do not reflect the properties at which the liquids will actually be used (most materials are used in applications where the low-frequency dynamic response is most relevant). Although it would be more desirable to operate the TSM resonator 10 at lower frequencies so that laboratory conditions reflect real world conditions, the stiffness of the TSM resonator 10 and its resulting high operating frequencies can make operation at lower frequencies rather difficult. Further, even when the TSM resonator 10 can accurately measure a liquid's properties, the differences in the visual traces associated with different compositions are relatively slight, making it difficult to differentiate between compositions having similar structures, as shown in Figure 5a.

    [0023] TSM resonators and other plate-type resonators, while adequate, may not always be the best choice for measuring the electrical characteristics, such as the dielectric constant, of the liquid composition being measured. As shown in Fig. 1a, the cross-section of a TSM resonator 10 has the same structure as a flat capacitor, resulting in relatively little coupling between the electric field of the resonator and the surrounding composition. While there can be enough electrical coupling between the resonator and the composition to measure the composition's electrical properties, a greater amount of electrical coupling is more desirable for increased measurement accuracy. Electrical coupling will be explained in greater detail below when comparing the electrical characteristics between the TSM resonator 10 and the tuning fork resonator 20.

    [0024] Figures 1a and 1b show a cross-section of a TSM resonator plate 10 and a tuning fork tine 22, respectively. The tuning fork resonator 20 is preferably made from a quartz crystal 24 and has two tines 22, as represented in Figure 2, each tine having the quartz crystal center 24 and at least one electrode 26 connected to the quartz crystal 24. The tuning fork tines 22 in the preferred structure have a square or rectangular cross-section such that the quartz crystal center 24 of each tine has four faces. The electrodes 26 are then attached to each face of the quartz crystal center 24, as shown in Figure 1b. The method and system of the present invention can use any type of tuning fork resonator, such as a trident (three-prong) tuning fork or tuning forks of different sizes, without departing from the scope of the invention.

    [0025] The cross-sectional views of the TSM resonator 10 and the tuning fork resonator 20 shown in Figs. 1a and 1b also illustrate the relative differences between the electric coupling of each resonator with the surrounding liquid. Referring to Fig. 1a, the structure of the TSM resonator 10 is very flat, making it close to a perfect capacitor when it is placed in the liquid to be measured. As noted above, the quartz crystal 12 in the TSM resonator 10 is sandwiched between two electrodes 14, causing most of an electric field 16 to travel between the two electrodes through the quartz crystal 12. Because most of the electric field 16 is concentrated within the quartz crystal 12 rather than outside of it, there is very little electric coupling between the TSM resonator 10 and the surrounding liquid except at the edges of the resonator 10. While there may be sufficient electrical coupling to measure the electrical properties, such as the conductivity or dielectric constant, of the liquid composition being tested, a greater degree of coupling is desirable to ensure more accurate measurement.

    [0026] By comparison, as shown in Figure 1b, the structure of each tuning fork tine 22 allows much greater electrical coupling between the tine 22 and the surrounding liquid because the tuning fork tine's cross-sectional structure has a much different structure than a flat capacitor. Because the tuning fork tine 22 is submerged within the liquid being tested, an electric field 27 associated with each tine 22 does not concentrate in between the electrodes 24 or within the quartz crystal 24, but instead interacts outside the tine 22 with the surrounding liquid. This increased electrical coupling allows the tuning fork 20 to measure accurately the electrical properties of the liquid as well as its physical properties, and it can measure both types of properties simultaneously if so desired.

    [0027] One unexpected result of the tuning fork resonator 20 is its ability to suppress the generation of acoustic waves in a liquid being tested, ensuring that the resonator's 20 physical response will be based only on the liquid's physical properties and not on acoustic wave interference or the shape of the sample well holding the liquid. As explained above, TSM resonators 10 minimize excitation of acoustic waves because it generates shear oscillations, which do not excite waves normal to the resonator's surface. As also explained above, however, the TSM resonator 10 requires high frequency operation and is not suitable for many measurement applications, particularly those involving high-molecular weight liquids.

    [0028] Without wishing to be bound by any particular theory, the inventors believe that the tuning fork resonator 20 used in the present invention virtually eliminates the effects of acoustic waves without having to increase the size of the sample wells to avoid wave reflection. Tuning fork resonators 20, because of their shape and their orientation in the liquid being tested, contain velocity components normal to the vibrating surface. Thus, it was assumed in the art that tuning fork resonators were unsuitable for measuring liquid properties because they would generate acoustic waves causing false readings. In reality, however, tuning fork resonators 20 are very effective in suppressing the generation of acoustic waves for several reasons. First, the preferred size of the tuning fork resonator 20 used in the invention is much smaller than the wavelength of the acoustic waves that are normally generated in a liquid, as much as one-tenth to one-hundredth the size. Second, as shown in Figure 3, the tines 22 of the tuning fork resonator 20 oscillate in opposite directions, each tine 22 acting as a separate potential acoustic wave generator. In other words, the tines 22 either move toward each other or away from each other. Because the tines 22 oscillate in opposite directions and opposite phases, however, the waves that end up being generated locally by each tine 22 tend to cancel each other out, resulting in virtually no acoustic wave generation from the tuning fork resonator 22 as a whole.

    [0029] A simplified diagram of one example of the inventive mechanical resonator 20 system is shown in Figure 2. To measure the property of a given liquid, the tuning fork resonator 20 is simply submerged in the liquid to be tested. A variable frequency input signal is then sent to the tuning fork resonator using any known means to oscillate the tuning fork, and the input signal frequency is swept over a predetermined range. The tuning fork resonator's response is monitored and recorded. In the example shown in Figure 2, the tuning fork resonator 20 is placed inside a well 26 containing a liquid to be tested. This liquid can be one of many liquids for comparison and screening or it can simply be one liquid whose properties are to be analyzed independently. Further, if there are multiple liquids to be tested, they can be placed in an array and measured simultaneously with a plurality of tuning fork resonators to test many liquids in a given amount of time. The liquid can also be a liquid that is undergoing a polymerization reaction or a liquid flowing through a conduit.

    [0030] The tuning fork resonator 20 is preferably coupled with a network analyzer 28, such as a Hewlett-Packard 8751 A network analyzer, which sends a variable frequency input signal to the tuning fork resonator 20 to generate the resonator oscillations and to receive the resonator response at different frequencies. The resonator output then passes through a high impedance buffer 30 before being measured by a wide band receiver 32. The invention is not limited to this specific type of network analyzer, however; any other analyzer that generates and monitors the resonator's response over a selected frequency range can be used without departing from the scope of the invention. For example, a sweep generator and AC voltmeter can be used in place of the network analyzer.

    [0031] An equivalent circuit of the tuning fork resonator 20 and its associated measurement circuit is represented in Figures 4a and 4b . Figure 4a represents an illustrative tuning fork resonator system that measures a liquid's viscosity and dielectric constant simultaneously, while Figure 4b represents a tuning fork resonator system that can also measure a liquid's conductivity as well. Referring to Figure 4a, the measurement circuit includes a variable frequency input signal source 42, and the resonator equivalent circuit 43 contains series capacitor Cs, resistor Rs, inductor L, and parallel capacitor Cp. The resonator equivalent circuit 43 explicitly illustrates the fact that the quartz crystal 24 in the tuning fork resonator 20 acts like a capacitor Cp. The representative circuit 40 also includes input capacitor Cin, input resistor Rin and an output buffer 44.

    [0032] The representative circuit shown in Figure 4b adds a parallel resistor Rp in parallel to capacitor Cp to illustrate a circuit that measures conductivity as well as dielectric constant and viscosity, preferably by comparing the equivalent resistance found in a given liquid with a known resistance found via calibration. These concepts will be explained in further detail below with respect to Figures 5a-b, 6a-b. 7a-b, and 8a-b. Rp represents the conductivity of the liquid being tested. The resistance can be calibrated using a set of liquids having known conductivity and then used to measure the conductivity of a given liquid. For example, Figure 4c shows a sample trace comparing the resonator response in pure toluene and in KaBr toluene solution. A liquid having greater conductivity tends to shift the resonator response upward on the graph, similar to liquids having higher dielectric constants. However, unlike liquids with higher dielectric constants, a liquid having greater conductivity will also cause the resonator response to level out somewhat in the frequency sweep, as can be seen in the upper trace 45 between 30 and 31.5 kHz. In the example shown in Figure 4c, the difference between the upper trace 45 and the lower trace 46 indicates that the equivalent resistance Rp caused by the additional KaBr in solution was about 8 mega-ohms.

    Experimental Examples



    [0033] Figures 5a-b, 6a-b, 7a-b and 8a-b are examples demonstrating the effectiveness of the invention. These figures show some differences between the frequency responses, for various liquid compositions, of the plate-type TSM resonator 10 and the tuning fork resonator 20. Figures 5a, 6a, 7a and 8a are examples using the TSM resonator 10, and Figures 5b, 6b, 7b and 8b are examples using the tuning fork resonator 20.

    [0034] The experimental conditions for generating the example tuning fork resonator traces in Figures 5b, 6b, 7b, and 8b are described below. The experimental conditions for generating the comparative TSM resonator traces in Figures 5a, 6a, 7a and 8a are generally similar to, if not the same as, the conditions for the tuning fork resonator except for, if needed, minor modifications to accommodate the TSM resonator's particular geometry. Therefore, for simplicity and clarity, the TSM resonator's particular experimental conditions will not be described separately.

    [0035] All of the solvents, polymers and other chemicals used in the illustrated examples were purchased from Aldrich, and the polymer solutions were made according to standard laboratory techniques. Dry polymers and their corresponding solvents were weighed using standard balances, and the polymer and solvent were mixed until the polymer dissolved completely, creating a solution having a known concentration. The solutions were delivered to and removed from a 30 ul stainless steel cylindrical measurement well that is long enough to allow a tuning fork resonator to be covered by liquid. Liquid delivery and removal to and from the well was conducted via a pipette or syringe.

    [0036] Before any experiments were conducted with the solutions, the tuning fork resonator response in air was measured as a reference. The actual testing processes were conducted in a temperature-controlled laboratory set at around 20 degrees Centigrade. Once the liquid was delivered to the well, the tuning fork was placed in the well and the system was left alone to allow the temperature to stabilize. Alternatively, the tuning fork can be built into a wall portion or a bottom portion of the well with equally accurate results. The tuning fork was then oscillated using the network analyzer. The resonator response was recorded during each measurement and stored in a computer memory. The measured response curve was fitted to a model curve using an equivalent circuit, which provided specific values for the equivalent circuit components described above with respect to Figures 4a and 4b and the traces in Figures 6a through 8b.

    [0037] After the measurement of a given solution was completed, the resonator was kept in the well and pure solvent was poured inside the well to dissolve any polymer residue or coating in the well and on the tuning fork. The well and tuning fork were blown dry using dry air, and the tuning fork response in air was measured again and compared with the initial tuning fork measurement to ensure that the tuning fork was completely clean; a clean tuning fork would give the same response as the initial tuning fork response. Note that the above-described experimental conditions are described only for purposes of illustration and not limitation, and those of ordinary skill in the art would understand that other experimental conditions can be used without departing from the scope of the invention.

    [0038] The tuning fork resonator 20 has wider application than the TSM resonator 10 and is considered by the inventors to be the preferred embodiment for most measurement applications because of its sensitivity, availability and relatively low cost. For example, note that in Figures 5a and 5b, the frequency sweep for the TSM resonator 10 is in the 8 MHz range, while the frequency sweep for the tuning fork resonator 20 of the present invention is in the 25-30 kHz range, several orders of magnitude less than the TSM resonator frequency sweep range. This increases the versatility and applicability of the tuning fork resonator 20 for measuring high molecular weight liquids because the operating frequency of the tuning fork resonator 20 is not high enough to make high molecular weight liquids act like gels. Further, because most applications for the solutions are lower frequency applications, the laboratory conditions in which the liquid compositions are tested using the tuning fork resonator 20 more closely correspond with real-world conditions.

    [0039] Also, the operating frequency of the tuning fork resonator 20 varies according to the resonator's geometry; more particularly, the resonance frequency of the tuning fork 20 depends on the ratio between the tine cross-sectional area and the tine's length. Theoretically, it is possible to construct a tuning fork resonator 20 of any length for a given frequency by changing the tuning fork's cross-sectional area to keep the ratio between the length and the cross-section constant. In practice, however, tuning fork resonators 20 are manufactured from quartz wafers having a few selected standard thicknesses. Therefore, the cross-sectional area of the tuning fork 20 tends to be limited based on the standard quartz wafer thicknesses, forcing the manufacturer to change the tuning fork's resonating frequency by changing the tine length. These manufacturing limitations must be taken into account when selecting a tuning fork resonator 20 that is small enough to fit in minimal-volume sample wells (because the chemicals used are quite expensive) and yet operates at a frequency low enough to prevent the tested liquids from acting like gels. Of course, in other applications, such as measurement of liquids in a conduit or in other containers, the overall size of the tuning fork resonator 20 is not as crucial, allowing greater flexibility in selecting the size and dimensions of the tuning fork resonator 20. Selecting the actual tuning fork dimensions and designing a tuning fork resonator in view of manufacturing limitations are tasks that can be conducted by those of skill in the art after reviewing this specification.

    [0040] Referring to Figures 5a and 5b, the solutions used as examples in Figs. 5a and 5b have somewhat similar structures and weights. As a result, the TSM resonator responses for each solution, shown in Fig. 5a. create very similar traces in the same general range. Because the traces associated with the TSM resonator 10 overlap each other to such a great extent, it is difficult to isolate and compare the differences between the responses associated with each solution. By comparison, as shown in Fig. 5b. the increased sensitivity of the tuning fork resonator 20 causes small differences in the chemical structure to translate into significant differences in the resonator response. Because the traces generated by the tuning fork resonator 20 are so distinct and spaced apart, they are much easier to analyze and compare.

    [0041] Using a tuning fork resonator 20 to measure properties of liquids also results in greater linearity in the relationship between the square root of the product of the liquid's viscosity density and the equivalent serial resistance Rs (Figures 6a and 6b) as well as in the relationship between the dielectric constant and the equivalent parallel capacitance Cp (Figures 7a and 7b) compared to TSM resonators 10. For example, the relationship between the liquid viscosity and serial resistance for a tuning fork resonator 20, as shown in Figure 6b, is much more linear than that for the TSM resonator, as shown in Figure 6a.

    [0042] Similarly, the relationship between the dielectric constant and the equivalent parallel capacitance is more linear for a tuning fork resonator 20, as shown in Figures 7a and 7b. This improved linear relationship is primarily due to the relatively low frequencies at which the tuning fork resonator 20 operates; because many liquids exhibit different behavior at the operating frequencies required by the TSM resonator 10, the TSM resonator 10 will tend not to generate testing results that agree with known data about the liquids' characteristics.

    [0043] Figures 8a and 8b illustrate sample results from real-time monitoring of polymerization reactions by a TSM resonator and a tuning fork resonator, respectively. The graphs plot the equivalent resistance Rs of the resonators oscillating in 10 and 20 mg/ml polystyrene-toluene solutions versus the average molecular weight of polystyrene. As explained above, high molecular weight solutions often exhibit different physical characteristics, such as viscosity, at higher frequencies.

    [0044] The size and shape of the TSM resonator 10 make the resonator suitable. but not as accurate, for real-time monitoring of polymerization reactions compared with the tuning fork resonator 20. This is because the TSM resonator's high operating frequency reduces the accuracy of measurements taken when the molecular weight of the polymerizing solution increases. As shown in Figure 8a, a high operating frequency TSM resonator is not very sensitive in monitoring the molecular weight of the polystyrene solution used in the illustrated example. A tuning fork resonator, by contrast, has greater sensitivity to the molecular weight of the solution being measured, as shown in Figure 8b. This sensitivity and accuracy makes it possible, for many reactions, to estimate the amount of converted solution in the polymerization reaction and use the conversion data to estimate the average molecular weight of the polymer being produced.

    [0045] Although the above-described examples describe using a TSM or a tuning fork resonator without any modifications, the resonator can also be treated with a "functionality" (a specialized coating) so that it is more sensitive to certain chemicals. The resonator may also be treated with a general coating to protect the resonator from corrosion or other problems that could impede its performance. A representative diagram of an embodiment having a functionalized resonator is shown in Figures 9a and 9b.

    [0046] The tuning fork resonator 20 can be coated with a selected material to change how the resonator 20 is affected by a fluid composition (which, as explained earlier, includes both liquid and vapor compositions). As mentioned above, one option is a general coating for providing the tuning fork resonator 20 with additional properties such as corrosion resistance, chemical resistance. electrical resistance, and the like. Another option, as noted above, is using a "functionality", which coats the tines with materials that are designed for a specific application, such as proteins to allow the tuning fork resonator 20 to be used as a pH meter or receptors that attract specific substances in the fluid composition to detect the presence of those substances. The coating or functionality can be applied onto the tuning fork resonator 20 using any known method, such as spraying or dipping. Further, the specific material selected for the coating or functionality will depend on the specific application in which the tuning fork resonator 20 is to be used. J. Hlavay and G.G. Guilbault described various coating and functionalization methods and materials to adapt piezoelectric crystal detectors for specific applications in "Applications of the Piezoelectric Crystal Detector in Analytical Chemistry," Analytical Chemistry, Vol. 49, No. 13, November 1977, p. 1890, incorporated herein by reference. For example, applying different inorganic functionalities to the tuning fork resonator 20 allows the resonator to detect organophosphorous compounds and pesticides.

    [0047] An example of a tuning fork resonator that has undergone a functionalization treatment is illustrated in Figures 9a and 9b. Figure 9a represents a tuning fork tine 22 that has been treated by absorbing, coating, or otherwise surrounding the tine 22 with a functionality designed to change the tuning fork's resonance frequency after being exposed to a selected target chemical. In the illustrated example, the tuning fork tine 22 is covered with receptor molecules 90, represented in Figures 9a and 9b by Y-shaped members, designed to bond with specific target molecules. Because the resonance frequency and the damping of the tuning fork resonator depends on the effective mass of the tine 22 and the amount of "drag" of the tine 22 within the fluid, any change in the tine's mass or the amount of drag will change the tuning fork's resonance response. More specifically, the resonance frequency of the tuning fork resonator is proportional to the square root of the inverse of the tuning fork's mass. An increase in the tuning fork's mass will therefore reduce the tuning fork's resonance frequency.

    [0048] This mass-frequency relationship is used to detect the presence of a specific target chemical in a fluid composition in this example. When the functionalized tuning fork tine 22 is placed in a fluid composition containing the target chemical, the receptors 90 on the tuning fork tine 22 will chemically bond with molecules of the target chemical 92, as shown in Figure 9b. The resonance frequency of the tuning fork resonator will consequently decrease because of the increased mass and the additional drag created by the additional molecules 92 attached to the tuning fork tines 22 via the receptor molecules 90. Thus, when screening a plurality of fluid compositions to detect the presence of a target chemical in any of them, only the fluid compositions containing the target chemical will cause the tuning fork's resonance frequency to change. Fluid compositions without the target chemical will not contain molecules that will bond with the receptor molecules 90 on the tuning fork tine 22, resulting in no resonance frequency change for those fluids. Alternatively, the tuning fork tines 22 can be functionalized with a material that physically changes when exposed to molecules of a selected chemical such that the material changes the mechanical drag on the tuning fork tine 22 when it is exposed to the selected chemical. For example, adding a hydrophobic or hydrophilic functionality to the tuning fork tine 22 allows the tine 22 to attract or repel selected substances in the medium being analyzed, changing the mass or effective mass of the tuning fork and thereby changing its resonance frequency.

    [0049] In yet another embodiment of the present invention, multiple mechanical resonators can be attached together in a single sensor to measure a wider range of responses for a given fluid composition, as shown in Figures 10a, 10b and 10c. The multiple resonator sensor can be fabricated from a single quartz piece such that all of the resonators are attached together by a common base, as shown in the figures. The multi-resonator sensor could also be attached to multiple frequency generating circuits, such as multiple network analyzers 28, to measure properties of the fluid compositions over multiple frequency sweeps so that the generated data can be correlated to obtain additional information about the liquid compositions. Because different resonator structures are best suited for measurement over different frequency ranges and for materials having different characteristics, a sensor combining a plurality of different resonators can provide a more complete representation of the fluid composition's characteristics over a wider frequency range than a single resonator. Figures 10a, 10b and 10c show specific examples of possible multi-resonator configurations, but those of skill in the art would understand that sensors having any combination of resonators can be constructed without departing from the scope of the invention.

    [0050] Figure 10a illustrates one possible sensor 100 configuration containing both a tuning fork resonator 102 and a TSM resonator 104. This type of sensor 100 can be used to, for example, measure the mechanical and electrical properties of very thick liquids such as polymer resins and epoxies. This sensor 100 can also be used to monitor a material as it polymerizes and hardens. For example, the sensor 100 can be placed in a liquid composition containing urethane rubber in its diluted state so that the tuning fork 102 is used initially to measure both the composition's density viscosity product and its dielectric constant. As the rubber changes to a gel and finally to a solid, the sensor 100 can switch to using the TSM resonator 104 to measure the rubber's mechanical properties, leaving the tuning fork resonator 102 to operate as a dielectric sensor only.

    [0051] A sensor 106 for observing a fluid composition over a wide frequency range is shown in Figure 10b. High polydispersity polymer solutions are ideally measured over a wide frequency spectrum, but most resonators have optimum performance within a relatively limited frequency range. By combining different resonators having different resonance frequencies and different response characteristics, it is possible to obtain a more complete spectrum of resonator responses for analyzing the fluid's characteristics under many different conditions. For example, due to the wide spectrum of polydisperse solution relaxation times, it is generally predicted that high molecular weight compositions will react at lower frequencies than lighter molecular weight compositions. By changing the temperature, observing the frequency response of different resonators, and correlating the different resonator responses, it is possible to obtain a more accurate picture of a composition's relaxation spectrum than from a single resonator.

    [0052] A low frequency tuning fork resonator 108 and a high frequency tuning fork resonator 110 in one sensor will probably suffice for most wide-frequency range measurements. For certain cases, however, the resonators in the multi-resonator sensor 106 can also include a trident tuning fork resonator 112, a length extension resonator 114, a torsion resonator 116, and a TSM resonator 118, membrane oscillators, bimorphs, unimorphs, and various surface acoustic wave devices, as well as any combination thereof, or even a single resonator structure than can operate in multiple mechanical modes (e.g. compression mode, axial mode, torsion mode). Of course, not all of these resonators are needed for every application, but those of skill in the art can select different combinations that are applicable to the specific application in which the sensor 106 will be used.

    [0053] Alternatively, multiple resonators having the same structure but different coatings and/or functionalities can be incorporated into one sensor 120, as shown in Figure 10c. In this example, a plurality of tuning fork resonators 122, 124, 126 have the same structure but have different functionalities, each functionality designed to, for example, bond with a different target molecule. The high sensitivity of the tuning fork resonators 122, 124, 126 makes them particularly suitable for "artificial noses" that can detect the presence of an environmentally-offending molecule, such as hydrogen sulfide or nitrous oxide, in industrial emissions. When the sensor 120 is used in such an application, one tuning fork resonator 122 can, for example, be functionalized with a material designed to bond with hydrogen sulfide while another resonator 124 can be functionalized with a material designed to bond with nitrous oxide. The presence of either one of these molecules in the fluid composition being tested will cause the corresponding tuning fork resonator 122, 124 to change its resonance frequency, as explained with respect to Figures 9a and 9b.

    [0054] The tuning fork resonators 122, 124, 126 can also be functionalized with a polymer layer or other selective absorbing layer to detect the presence of specific molecules in a vapor. Because the tuning fork resonators 122, 124, 126 are highly sensitive to the dielectric constant of the surrounding fluid, the tuning fork resonators 122, 124, 126 can easily detect changes in the dielectric constant of the fluid and recognize a set of solvents with different dielectric constants in the fluid. This information, combined with other observable parameters, makes tuning fork resonators particularly adaptable for use in artificial noses.

    [0055] The method and system of the present invention has been described above in the combinatorial chemistry context, but it is not limited to such an application. Because the resonators in the method and system of the present invention have high sensitivities and quick response times, it can be also be used for in-line monitoring of fluid compositions flowing through conduits or pipelines. For example, the invention can be used in a feedback system to monitor properties of liquids flowing through a gas or oil pipeline to monitor and control the concentration of additives in the gas or oil, or to detect the presence of impurities in water flowing through a water pipe. The additives or impurities will change the physical and electrical characteristics of the liquid flowing through the conduit. A functionalized tuning fork resonator 20 can further detect the presence of a specific chemical in a fluid composition, whether it is a liquid or a vapor, and can be used to monitor the presence of, for example, a known chemical pollutant in a smokestack. The high sensitivity and quick response time of the resonator, and the tuning fork resonator 20 in particular, makes it uniquely suitable for such an application. The circuitry and system used to generate the visual traces from the resonator's response can be the same as described above or be any other equivalent resonator analysis system.

    [0056] Further, although the above description focuses primarily on using tuning fork resonators, other mechanical resonators exhibiting similar characteristics can be used, such as Tridents and cantilevers.

    [0057] It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that the methods and apparatus within the scope of these claims and their equivalents be covered thereby.


    Claims

    1. A method for monitoring a property of a fluid composition, the method comprising:

    placing a mechanical resonator selected from the group consisting of tuning fork, trident, and cantilever in the fluid composition such that at least a portion of the mechanical resonator is surrounded by the fluid composition;

    applying a variable frequency input signal to a measurement circuit coupled with the resonator to oscillate the mechanical resonator to obtain a frequency-dependent resonator response of the mechanical resonator;

    varying the frequency of the variable frequency input signal over a predetermined frequency range to obtain a frequency-dependent resonator response curve of the mechanical resonator;

    fitting the response curve to a model curve using an equivalent circuit; and

    determining the property of the fluid composition based on the mechanical resonator response,

    said mechanical resonator containing velocity components normal to the vibrating surface.


     
    2. The method of claim 1, further comprising:

    repeating the applying, varying, fitting, and determining steps over time; and

    monitoring over time a change in the mechanical resonator response reflecting a change in the property of the fluid composition.


     
    3. The method of claim 2, wherein the change monitored in the monitoring step is a physical change in a liquid composition.
     
    4. The method of claim 3, wherein the physical change in the liquid composition is a liquid-to-solid state transformation of the liquid composition.
     
    5. The method of claim 2, wherein the change monitored in the monitoring step is a chemical transformation of the fluid composition.
     
    6. The method of claim 5, wherein the chemical transformation monitored in the monitoring step is a polymerization reaction.
     
    7. The method of claim 1, wherein the mechanical resonator is a tuning fork resonator.
     
    8. The method of claim 1 or 7, wherein the fluid composition is a liquid composition and, wherein a plurality of liquid compositions are measured by a plurality of mechanical resonators, and wherein said method further comprises:

    providing an array of sample wells;

    placing each of said plurality of liquid compositions in a separate sample well;

    placing at least one of said plurality of mechanical resonators in at least one sample well;

    applying a variable frequency input signal to a measurement circuit coupled with each mechanical resonator in said at least one sample well to oscillate each mechanical resonator associated with each of said at least one sample well;

    varying the frequency of the variable frequency input signal over a predetermined frequency range to obtain a frequency-dependent resonator response of each mechanical resonator associated with said at least one sample well; and

    analyzing the resonator response of each mechanical resonator associated with said at least one sample well to measure a property of each liquid composition in said at least one sample well.


     
    9. The method of claim 1, 2, 7 or 8, wherein said method measures a physical property of the fluid composition.
     
    10. The method of claim 9, wherein the physical property measured by said method is selected from the group consisting of specific weight, temperature and viscosity.
     
    11. The method of claim 1, 2, 7 or 8, wherein said method measures an electrical property of the fluid composition.
     
    12. The method of claim 11, wherein the electrical property measured by said method is selected from the group consisting of dielectric constant and conductivity.
     
    13. The method of claim 1, 2, 7 or 8, wherein said method measures an electrical property and a physical property of the fluid composition simultaneously.
     
    14. The method of claim 13, wherein the electrical properties and the physical properties measured by said method are selected from the group consisting of specific weight, viscosity, temperature, dielectric constant and conductivity.
     
    15. The method of claim 14, wherein said method simultaneously measures at least two properties selected from the group consisting of specific weight, viscosity, temperature, dielectric constant and conductivity of each fluid composition in an array of sample wells.
     
    16. The method of any of claims 1 to 15, further comprising the step of coating the mechanical resonator with a material that modifies the characteristics of the mechanical resonator.
     
    17. The method of claim 16, wherein the material used in said coating step is a functionality designed to change the resonator response of the mechanical resonator if a selected substance is present in the fluid composition.
     
    18. The method of claim 17, wherein said functionality used in the coating step contains receptor molecules for attracting molecules of the selected substance in the fluid composition to change the resonator response.
     
    19. The method of any of claims 1 to 18, wherein the placing step includes placing a plurality of mechanical resonators in the fluid composition.
     
    20. The method of claim 19, wherein the varying step varies the frequency of the variable frequency input signal over a plurality of predetermined frequency ranges to obtain a plurality of frequency dependent resonator responses from the plurality of mechanical resonators.
     
    21. The method of claim 19, or 20, wherein each of said plurality of mechanical resonators has a different resonator response characteristic.
     
    22. The method of claims 1 to 18, wherein the mechanical resonator placed in the placing step is a multiple-mode resonator that can be operated in more than one mechanical mode, and wherein the varying step comprises varying the frequency of the variable frequency input signal to obtain a plurality of frequency-dependent resonator responses corresponding to said more than one mechanical mode.
     
    23. The method of claim 8 or 7 and 8 in combination, further comprising the step of distinguishing between at least two of said plurality of liquid compositions based on the mechanical resonator response.
     
    24. The method of claim 8 or 19, wherein the plurality of mechanical resonators placed in the placing step are selected from the group consisting of tridents, cantilevers, torsion resonators, length extension resonators, bimorphs, unimorphs, membrane resonator, surface acoustic wave devices, and tuning fork resonators.
     
    25. The method of claim 24, wherein each of the plurality of mechanical resonators placed in the placing step is a different type of mechanical resonator from the other mechanical resonators in the plurality of mechanical resonators.
     
    26. The method of claim 7, further comprising the steps of:

    calibrating said tuning fork resonator against a standard liquid having known properties to obtain calibration data; and

    determining the property of the liquid composition based on the calibration data.


     
    27. The method of any of claims 1 to 7, wherein the fluid composition is flowing through a conduit, the mechanical resonator is placed in the conduit such that at least a portion of the mechanical resonator will be surrounded by the fluid composition as the fluid composition flows through the conduit.
     
    28. The method of claim 27, further comprising the steps of:

    calibrating the mechanical resonator against a standard fluid having known properties to obtain calibration data; and

    determining the property of the fluid composition based on the calibration data.


     
    29. An apparatus for measuring a property of a fluid composition, comprising:

    a mechanical resonator (10, 20) selected from the group consisting of tuning fork, trident, and cantilever;

    means for containing the fluid composition;

    a measurement circuit coupled with said mechanical resonator, said measurement circuit having a signal generator for generating a variable frequency input signal to cause said mechanical resonator to oscillate;

    a receiver coupled to the measurement circuit to output a frequency response of said mechanical resonator;

    a frequency sweep system for varying the variable frequency input signal over a selected frequency range to generate a response curve;

    a computer memory for storing the response curve; and

    means for fitting the response curve to a model curve using an equivalent circuit,

    said mechanical resonator containing velocity components normal to the vibrating surface.


     
    30. The apparatus of claim 29, wherein the fluid composition is a liquid composition, the apparatus further comprising:

    an array of tuning fork resonators (20); and

    an array of sample wells for holding a plurality of liquid compositions, and wherein said measurement circuit and said receiver are coupled with said array of tuning fork resonators to obtain a frequency response associated with each of said plurality of liquid compositions.


     
    31. The apparatus of claim 30, wherein the tuning fork comprises at least two tines (22), each tine including a quartz crystal center portion having at least two faces and an electrode on at least one of the two faces of said quartz crystal center portion.
     
    32. The apparatus of claim 31, wherein said quartz crystal center portion of each tine has four faces and, wherein four electrodes are connected to said quartz crystal center portion such that one electrode is coupled to each face.
     
    33. The apparatus of claim 30, further comprising a coating material on said mechanical resonator that modifies the characteristics of the mechanical resonator.
     
    34. The apparatus of claim 33, wherein said coating material is a functionality designed to change the resonator response of the mechanical resonator if a selected substance is present in the fluid composition.
     
    35. The apparatus of claim 34, wherein said functionality contains receptor molecules for attracting molecules of the selected substance in the fluid composition to change the resonator response.
     
    36. The apparatus of claim 29, further comprising a plurality of tuning fork resonators, each tuning fork resonator having a different resonator response characteristics.
     
    37. The apparatus of claim 36, wherein each tuning fork has a different functionality, each functionality designed to change the resonator response of its associated tuning fork resonator if a selected substance corresponding with the specific coating is present in the fluid composition.
     


    Ansprüche

    1. Ein Verfahren zum Überwachen einer Eigenschaft eines Fluidgemischs, umfassend:

    Platzieren eines mechanischen Resonators in dem Fluidgemisch, so dass wenigstens ein Teil des mechanischen Resonators von dem Fluidgemisch umgeben ist, wobei der mechanische Resonator ausgewählt ist aus der aus einer Stimmgabel, einem Dreizack und einem Freischwinger bestehenden Gruppe;

    Anlegen eines Eingangssignals mit veränderlicher Frequenz an einen Messkreis, der mit dem Resonator gekoppelt ist, um den mechanischen Resonator in Schwingung zu versetzen und dabei eine frequenzabhängige Resonatorresponse des mechanischen Resonators zu erhalten;

    Verändern der Frequenz des Eingangssignals mit veränderlicher Frequenz über einen vorbestimmten Frequenzbereich, um eine frequenzabhängige Resonatorresponsekurve des mechanischen Resonators zu erhalten;

    Anpassen der Responsekurve an eine Modelkurve unter Verwendung eines Äquivalentschaltkreises; und

    Bestimmen der Eigenschaft des Fluidgemischs auf der Grundlage der Response des mechanischen Resonators,

    wobei der mechanische Resonator Geschwindigkeitskomponenten enthält, die senkrecht zur schwingenden Oberfläche sind.


     
    2. Das Verfahren gemäß Anspruch 1, weiter umfassend:

    Zeitliches Wiederholen der Schritte des Anlegen, Verändern, Anpassen und Bestimmen; und

    zeitliches Überwachen einer Veränderung in der Respons des mechanischen Resonators, welche eine Änderung der Eigenschaft des Fluidgemischs wiederspiegelt.


     
    3. Das Verfahren gemäß Anspruch 2, bei welchem die im Überwachungsschritt festgestellte Änderung eine physikalische Änderung eines Flüssigkeitsgemischs ist.
     
    4. Das Verfahren gemäß Anspruch 3, wobei die physikalische Änderung des Flüssigkeitsgemischs eine Umwandlung des Flüssigkeitsgemischs vom flüssigen in den festen Zustand ist.
     
    5. Das Verfahren gemäß Anspruch 2, wobei die im Überwachungsschritt festgestellte Änderung eine chemische Umwandlung des Fluidgemischs ist.
     
    6. Das Verfahren gemäß Anspruch 5, wobei die chemische Umwandlung, die im Überwachungsschritt festgestellt wird, eine Polymerisationsreaktion ist.
     
    7. Das Verfahren gemäß Anspruch 1, wobei der mechanische Resonator ein Stimmgabelresonator ist.
     
    8. Das Verfahren gemäß Anspruch 1 oder 7, wobei das Fluidgemisch ein Flüssigkeitsgemisch ist und wobei eine Mehrzahl von Flüssigkeitsgemischen durch eine Mehrzahl von mechanischen Resonatoren gemessen wird, und wobei das Verfahren weiter umfasst:

    Bereitstellen einer Anordnung von Probenbehältern;

    Platzieren jedes der Mehrzahl von Flüssigkeitsgemischen in einem separaten Probenbehälter;

    Platzieren wenigstens eines Resonators der Mehrzahl der mechanischen Resonatoren in wenigstens einem Probenbehälter;

    Anlegen eines variablen Frequenzeingangssignales an einen Messkreis, der mit jedem mechanischen Resonator in dem wenigstens einem Probenbehälter gekoppelt ist, um jeden mechanischen Resonator in Schwingungen zu versetzen, der mit jedem wenigstens einen Probenbehälter in Zusammenhang steht;

    Variieren der Frequenz des veränderlichen Frequenzeingangssignals über einen vorbestimmten Frequenzbereich, um eine frequenzabhängige Resonatorresponse jedes mechanischen Resonators, der mit dem wenigstens einen Probenbehälter verbunden ist, zu erhalten; und

    Analysieren der Resonatorresponse jedes mechanischen Resonators, der mit dem wenigstens einen Probenbehälter in Zusammenhang steht, um eine Eigenschaft jedes Flüssigkeitsgemischs in dem wenigstens einen Probenbehälter zu messen.


     
    9. Das Verfahren gemäß Anspruch 1, 2, 7 oder 8, wobei das Verfahren eine physikalische Eigenschaft des Fluidgemischs misst.
     
    10. Das Verfahren gemäß Anspruch 9, wobei die durch das Verfahren gemessene physikalische Eigenschaft aus der Gruppe bestehend aus spezifischem Gewicht, Temperatur und Viskosität ausgewählt wird.
     
    11. Das Verfahren gemäß Anspruch 1, 2, 7 oder 8, wobei das Verfahren eine elektrische Eigenschaft misst.
     
    12. Das Verfahren gemäß Anspruch 11, wobei die durch das Verfahren gemessene physikalische Eigenschaft aus der Gruppe bestehend aus dielektrischer Konstante und Leitfähigkeit ausgewählt wird.
     
    13. Das Verfahren gemäß Anspruch 1, 2, 7 oder 8, wobei das Verfahren gleichzeitig eine elektrische Eigenschaft und eine physikalische Eigenschaft des Fluidgemischs misst.
     
    14. Das Verfahren gemäß Anspruch 13, wobei die elektrischen Eigenschaften und die mechanischen Eigenschaften, die mit dem Verfahren gemessen werden, aus der Gruppe bestehend aus spezifischem Gewicht, Viskosität, Temperatur, dielektrischer Konstante und Leitfähigkeit ausgewählt werden.
     
    15. Das Verfahren gemäß Anspruch 14, wobei das Verfahren gleichzeitig wenigstens zwei Eigenschaften misst, die aus der Gruppe bestehend aus spezifischem Gewicht, Viskosität, Temperatur, dielektrischer Konstante und Leitfähigkeit eines jeden Fluidgemischs in einer Anordnung von Proben behältern ausgewählt werden.
     
    16. Das Verfahren gemäß einem der Ansprüche 1 bis 15, ferner umfassend den Schritt: Beschichten des mechanischen Resonators mit einem Material, das die Charakteristik des mechanischen Resonators modifziert.
     
    17. Das Verfahren gemäß Anspruch 16, wobei das im Beschichtungsschritt verwendete Material hinsichtlich einer Funktionalität ausgelegt wird, um die Resonatorresponse des Stimmgabelresonators zu verändern, wenn eine ausgewählte Substanz in dem Fluidgemisch vorhanden ist.
     
    18. Das Verfahren gemäß Anspruch 17, wobei die im Beschichtungsschritt verwendete Funktionalität Rezeptormoleküle umfasst, um Moleküle der ausgewählten Substanz in dem Fluidgemisch anzuziehen, um die Resonatorrespons zu verändern.
     
    19. Das Verfahren gemäß einem der Ansprüche 1 bis 18, wobei der Platzierungsschritt das Platzieren einer Mehrzahl von mechanischen Resonatoren in dem Fluidgemisch beinhaltet.
     
    20. Das Verfahren gemäß Anspruch 19, wobei der Schritt des Veränderns die Frequenz des veränderlichen Frequenzeingangssignals über eine Mehrzahl von vorbestimmten Frequenzbereichen variiert, um eine Mehrzahl von frequenzabhängigen Resonatorresponsesignalen der Mehrzahl der mechanischen Resonatoren zu erhalten.
     
    21. Das Verfahren gemäß Anspruch 19 oder 20, wobei jeder der Mehrzahl der mechanischen Resonatoren eine andere Resonatorresponsecharakteristik aufweist.
     
    22. Das Verfahren gemäß den Ansprüchen 1 bis 18, wobei der im Platzierungsschritt platzierte mechanische Resonator ein Mehrmodenresonator ist, der in mehr als einer mechanischen Mode betrieben werden kann, und wobei der Schritt des Veränderns das Variieren der Frequenz des veränderlichen Frequenzeingangssignals umfasst, um eine Mehrzahl von frequenzabhängigen Resonatorresponsesignalen entsprechend der mehr als einen mechanischen Mode zu erhalten.
     
    23. Das Verfahren gemäß Anspruch 8 oder Anspruch 7 in Kombination mit Anspruch 8, weiter umfassend den Schritt:

    Unterscheiden zwischen wenigstens zwei der Mehrzahl der Fluidgemischen auf Grundlage der Response der mechanischen Resonatoren.


     
    24. Das Verfahren gemäß Anspruch 8 oder 19, wobei die Mehrzahl von mechanischen Resonatoren, die im Platzierungsschritt platziert werden, aus der Gruppe bestehend aus Dreizackschwingern, Freischwindern, Torsionsresonatoren, Längenerweiterungsresonatoren, Bimorphen, Unimorphen, Membranresonatoren, akustischen Oberflächenwelleneinrichtungen und Stimmgabelresonatoren ausgewählt werden.
     
    25. Das Verfahren gemäß Anspruch 24, wobei jeder der Mehrzahl der im Platzierungsschritt platzierten mechanischen Resonatoren ein anderer Typ eines mechanischen Resonators als die anderen mechanischen Resonatoren der Mehrzahl der mechanischen Resonatoren ist.
     
    26. Das Verfahren gemäß Anspruch 7, ferner umfassend die Schritte:

    Kalibrieren des Stimmgabelresonators gegenüber einer Standardflüssigkeit mit bekannten Eigenschaften, um Kalibrierungsdaten zu erhalten; und

    Ermitteln der Eigenschaft des Flüssigkeitsgemischs auf Grundlage der Kalibrierungsdaten.


     
    27. Das Verfahren gemäß einem der Ansprüche 1 bis 7, wobei das Fluidgemisch durch einen Kanal strömt und der mechanische Resonator in dem Kanal platziert wird, so dass wenigstens ein Teil des mechanischen Resonators durch das Fluidgemisch umgeben ist, während das Fluidgemisch durch den Kanal strömt.
     
    28. Das Verfahren gemäß Anspruch 27, ferner umfassend die Schritte:

    Kalibrieren des mechanischen Resonators gegenüber einem Standardfluid mit bekannten Eigenschaften, um Kalibrierungsdaten zu erhalten; und

    Ermitteln der Eigenschaft des Fluidgemischs auf Grundlage der Kalibrierungsdaten.


     
    29. Eine Vorrichtung zum Messen einer Eigenschaft eines Fluidgemischs, umfassend:

    einen mechanischen Resonator (10, 20), der ausgewählt ist aus der aus einer Stimmgabel, einem Dreizack und einem Freischwinger bestehenden Gruppe;

    Einrichtungen zum Aufnehmen des Fluidgemischs;

    einen Messkreis, der mit dem mechanischen Resonator gekoppelt ist, wobei der Messkreis einen Signalgenerator zum Erzeugen eines veränderlichen Frequenzeingangssignals aufweist, um den mechanischen Resonator in Schwingungen zu versetzen; und

    eine Empfangseinrichtung, die mit dem Messkreis gekoppelt ist, um eine Frequenzresponse des mechanischen Resonators auszugeben,

    ein Frequenzdurchlaufsystem zum Variieren des veränderlichen Frequenzeingangssignals über einen ausgewählten Frequenzbereich zum Erzeugen einer Responsekurve;

    einen Computerspeicher zum Speichern der Responsekurve; und

    ein Mittel zum Anpassen der Responsekurve an eine Modelkurve unter Verwendung eines Äquivalenzschaltkreises;

    wobei der mechanische Resonator Geschwindigkeitskomponenten enthält, die senkrecht zur schwingenden Oberfläche sind.


     
    30. Die Vorrichtung gemäß Anspruch 29, wobei das Fluidgemisch ein Flüssigkeitsgemisch ist und die Vorrichtung ferner umfasst:

    eine Anordnung von Stimmgabelresonatoren 20; und

    eine Anordnung von Probenbehältern zum Aufnehmen einer Mehrzahl von Flüssigkeitsgemischen, und wobei der Messkreis und die Empfangseinrichtung mit der Anordnung von Stimmgabelresonatoren gekoppelt sind, um eine Frequenzresponse in Zusammenhang mit jedem der Mehrzahl von Flüssigkeitsgemischen zu erhalten.


     
    31. Die Vorrichtung gemäß Anspruch 30, wobei die Stimmgabel wenigstens zwei Zinken (22) umfasst, wobei jede Zinke einen Quarzkristallmittelteil beinhaltet, der wenigstens zwei Flächen und eine Elektrode auf wenigstens einer der zwei Flächen des Quarzkristallmittelteils aufweist.
     
    32. Die Vorrichtung gemäß Anspruch 31, wobei der Quarzkristallmittelteil jeder Zacke vier Flächen aufweist und wobei vier Elektroden mit dem Quarzkristallmittelteil so verbunden sind, dass eine Elektrode mit jeder Fläche gekoppelt ist.
     
    33. Die Vorrichtung gemäß Anspruch 30, ferner umfassend ein Beschichtungsmaterial auf dem mechanischen Resonator, welches die Charakteristik des mechanischen Resonators modifziert.
     
    34. Die Vorrichtung gemäß Anspruch 33, wobei das Beschichtungsmaterial hinsichtlich seiner Funktionalität ausgewählt ist, um die Resonatorresponse des mechanischen Resonators zu verändern, wenn eine ausgewählte Substanz in dem Fluidgemisch vorhanden ist.
     
    35. Die Vorrichtung gemäß Anspruch 34, wobei die Funktionalität Rezeptormoleküle umfasst, um Moleküle der ausgewählten Substanz in dem Fluidgemisch anzuziehen, um die Resonatorresponse zu verändern.
     
    36. Die Vorrichtung gemäß Anspruch 29, ferner umfassend:

    eine Mehrzahl von Stimmgabelresonatoren, wobei jeder Stimmgabelresonator eine andere Resonatorresponscharakteristik aufweist.


     
    37. Die Vorrichtung gemäß Anspruch 36, wobei jede Stimmgabel eine andere Funktionalität aufweist, wobei jede Funktionalität so ausgewählt ist, dass die Resonatorresponse ihres zugehörigen Stimmgabelresonators sich ändert, falls eine ausgewählte Substanz entsprechend der speziellen Beschichtung in dem Fluidgemisch vorhanden ist.
     


    Revendications

    1. Procédé pour surveiller une propriété d'une composition fluide, le procédé comprenant :

    - le placement d'un résonateur mécanique choisi dans le groupe consistant en un diapason, un trident et un élément en porte à faux dans la composition fluide de telle sorte qu'au moins une partie du résonateur mécanique est entourée par la composition fluide ;

    - l'application d'un signal d'entrée à fréquence variable à un circuit de mesure couplé au résonateur afin de faire osciller le résonateur mécanique pour obtenir une réponse de résonateur dépendant de la fréquence du résonateur mécanique, et

    - la variation de la fréquence du signal d'entrée à fréquence variable sur une bande de fréquences prédéterminée afin d'obtenir une réponse de résonateur dépendant de la fréquence du résonateur mécanique ;

    - l'adaptation de la courbe de réponse à une courbe servant de modèle en utilisant un circuit équivalent ; et

    - la détermination de la propriété du fluide sur la base de la réponse de résonateur mécanique ;

    ledit résonateur mécanique contenant des composants de vitesse, perpendiculaires à la surface vibratoire.
     
    2. Procédé selon la revendication 1, comprenant en outre :

    - la répétition dans le temps des étapes d'application, de variation, d'adaptation et de détermination, et

    - la surveillance dans le temps d'une modification de la réponse de résonateur mécanique reflétant une modification de la propriété de la composition fluide.


     
    3. Procédé selon la revendication 2, dans lequel la modification surveillée au cours de l'étape de surveillance est une modification physique d'une composition liquide.
     
    4. Procédé selon la revendication 3, dans lequel la modification physique de la composition liquide est une transformation d'état liquide à solide de la composition liquide.
     
    5. Procédé selon la revendication 2, dans lequel la modification surveillée au cours de l'étape de surveillance est une transformation chimique de la composition fluide.
     
    6. Procédé selon la revendication 5, dans lequel la transformation chimique surveillée au cours de l'étape de surveillance est une réaction de polymérisation.
     
    7. Procédé selon la revendication 1, dans lequel le résonateur mécanique est un résonateur à diapason.
     
    8. Procédé selon la revendication 1 ou 7, dans lequel la composition fluide est une composition liquide, et dans lequel une pluralité de compositions liquides est mesurée par une pluralité de résonateurs mécaniques, et dans lequel ledit procédé comprend en outre :

    - la fourniture d'un réseau de puits d'échantillon ;

    - le placement de chaque composition de ladite pluralité de compositions liquides dans un puits d'échantillon séparé ;

    - le placement d'au moins un résonateur de ladite pluralité de résonateurs mécaniques dans au moins un puits d'échantillon ;

    - l'application d'un signal d'entrée à fréquence variable à un circuit de mesure couplé à chaque résonateur mécanique dans ledit au moins un puits d'échantillon afin de faire osciller chaque résonateur mécanique associé à chaque dit au moins un puits d'échantillon ;

    - la variation de la fréquence du signal d'entrée à fréquence variable sur une bande de fréquences prédéterminée afin d'obtenir une réponse de résonateur dépendant de la fréquence de chaque résonateur mécanique associé audit au moins un puits d'échantillon, et

    - l'analyse de la réponse de résonateur de chaque résonateur mécanique associé audit au moins un puits d'échantillon afin de mesurer une propriété de chaque composition liquide dans ledit au moins un puits d'échantillon.


     
    9. Procédé selon la revendication 1, 2, 7 ou 8, dans lequel ledit procédé mesure une propriété physique de la composition fluide.
     
    10. Procédé selon la revendication 9, dans lequel la propriété physique mesurée par ledit procédé est choisie dans le groupe constitué du poids spécifique, de la température et de la viscosité.
     
    11. Procédé selon la revendication 1, 2, 7 ou 8, dans lequel ledit procédé mesure une propriété électrique de la composition fluide.
     
    12. Procédé selon la revendication 11, dans lequel la propriété électrique mesurée par ledit procédé est choisie dans le groupe constitué de la constante diélectrique et de la conductivité.
     
    13. Procédé selon la revendication 1, 2, 7 ou 8, dans lequel ledit procédé mesure simultanément une propriété électrique et une propriété physique de la composition fluide.
     
    14. Procédé selon la revendication 13, dans lequel les propriétés électriques et les propriétés physiques mesurées par ledit procédé sont choisies dans le groupe consistant en le poids spécifique, la viscosité, la température, la constante diélectrique et la conductivité.
     
    15. Procédé selon la revendication 14, dans lequel ledit procédé mesure simultanément au moins deux propriétés choisies dans le groupe consistant en le poids spécifique, la viscosité, la température, la constante diélectrique et la conductivité de chaque composition fluide dans un réseau de puits d'échantillon.
     
    16. Procédé selon l'une quelconque des revendications 1 à 15, comprenant en outre l'étape de revêtement du résonateur mécanique avec un matériau modifiant les caractéristiques du résonateur mécanique.
     
    17. Procédé selon la revendication 16, dans lequel le matériau utilisé au cours de ladite étape de revêtement est une fonctionnalité conçue pour modifier la réponse de résonateur du résonateur mécanique si une substance choisie est présente dans la composition fluide.
     
    18. Procédé selon la revendication 12, dans lequel ladite fonctionnalité utilisée au cours de ladite étape de revêtement contient des molécules de récepteur pour attirer des molécules de la substance choisie dans la composition fluide afin de modifier la réponse de résonateur.
     
    19. Procédé selon l'une quelconque des revendications 1 à 18, dans lequel l'étape de placement comprend le placement d'une pluralité de résonateurs mécaniques dans la composition fluide.
     
    20. Procédé selon la revendication 19, dans lequel l'étape de variation fait varier la fréquence du signal d'entrée à fréquence variable sur une pluralité de bandes de fréquences prédéterminées afin d'obtenir une pluralité de réponses de résonateur dépendant de la fréquence provenant de la pluralité de résonateurs mécaniques.
     
    21. Procédé selon la revendication 19 ou 20, dans lequel chaque résonateur de ladite pluralité de résonateurs mécaniques présente une caractéristique de réponse de résonateur différente.
     
    22. Procédé selon les revendications 1 à 18, dans lequel le résonateur mécanique placé au cours de l'étape de placement est un résonateur à modes multiples pouvant fonctionner selon plus d'un mode mécanique, et dans lequel l'étape de variation comprend la variation de la fréquence du signal d'entrée à fréquence variable afin d'obtenir une pluralité de réponses de résonateur dépendant de la fréquence correspondant audit plus d'un mode mécanique.
     
    23. Procédé selon la revendication 8 ou les revendications 7 et 8 associées, comprenant en outre l'étape de distinction entre au moins deux compositions de ladite pluralité de compositions liquides, sur la base de la réponse de résonateur mécanique.
     
    24. Procédé selon la revendication 8 ou 19, dans lequel la pluralité de résonateurs mécaniques placés au cours de l'étape de placement est choisie dans le groupe constitué de tridents, d'éléments en porte à faux, de résonateurs à torsion, de résonateurs à rallonge, de bimorphes, d'unimorphes, d'un résonateur à diaphragme, de dispositifs à ondes élastiques de surface et de résonateurs à diapason.
     
    25. Procédé selon la revendication 24, dans lequel chaque résonateur de la pluralité de résonateurs mécaniques placés au cours de l'étape de placement est un type de résonateur mécanique différent des autres résonateurs mécaniques dans la pluralité de résonateurs mécaniques.
     
    26. Procédé selon la revendication 7, comprenant en outre les étapes :

    - d'étalonnage de chacun desdits résonateurs à diapason par rapport à un liquide de référence présentant des propriétés connues afin d'obtenir des données d'étalonnage, et

    - de détermination de la propriété de chaque composition liquide d'après les données d'étalonnage.


     
    27. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel la composition fluide s'écoule à travers un conduit, le résonateur mécanique est placé dans le conduit de telle sorte qu'au moins une partie du résonateur mécanique est entourée par la composition fluide à mesure que la composition fluide s'écoule à travers le conduit.
     
    28. Procédé selon la revendication 27, comprenant en outre les étapes :

    - d'étalonnage du résonateur mécanique par rapport à un fluide de référence présentant des propriétés connues afin d'obtenir des données d'étalonnage, et

    - de détermination de la propriété de la composition fluide d'après les données d'étalonnage.


     
    29. Appareil pour mesurer une propriété d'une composition fluide, comprenant :

    - un résonateur mécanique (10, 20) choisi dans le groupe consistant en un diapason, un trident et un élément en porte à faux ;

    - des moyens pour contenir la composition fluide ;

    - un circuit de mesure couplé audit résonateur mécanique, ledit circuit de mesure comportant un générateur de signaux pour produire un signal d'entrée à fréquence variable afin de provoquer l'oscillation dudit résonateur mécanique ;

    - un récepteur couplé au circuit de mesure afin de produire en sortie une réponse en fréquence dudit résonateur mécanique ;

    - un système de balayage de fréquence pour faire varier le signal d'entrée à fréquence variable sur une bande de fréquences choisie pour engendrer une courbe de réponse ;

    - une mémoire informatique pour mémoriser la courbe de réponse ; et

    - des moyens pour adapter la courbe de réponse à une courbe servant de modèle en utilisant un circuit équivalent, ledit résonateur mécanique contenant des composants de vitesse, perpendiculaires à la surface vibratoire.


     
    30. Appareil selon la revendication 29, dans lequel la composition fluide est une composition liquide, l'appareil comprenant en outre :

    - un réseau de résonateurs à diapason (20), et

    - un réseau de puits d'échantillon pour contenir une pluralité de compositions liquides, et dans lequel ledit circuit de mesure et ledit récepteur sont couplés audit réseau de résonateurs à diapason afin d'obtenir une réponse en fréquence associée à chaque composition de ladite pluralité de compositions liquides.


     
    31. Appareil selon la revendication 30, dans lequel le diapason comprend au moins deux dents (22), chaque dent comportant une partie centrale à cristal de quartz ayant au moins deux faces et une électrode sur au moins une des deux faces de ladite partie centrale à cristal de quartz.
     
    32. Appareil selon la revendication 31, dans lequel ladite partie centrale à cristal de quartz de chaque dent présente quatre faces, et dans lequel quatre électrodes sont connectées à ladite partie centrale à cristal de quartz, de telle sorte qu'une électrode est couplée à chaque face.
     
    33. Appareil selon la revendication 30, comprenant en outre un matériau de revêtement sur ledit résonateur mécanique qui modifie les caractéristiques du résonateur mécanique.
     
    34. Appareil selon la revendication 33, dans lequel ledit matériau de revêtement est une fonctionnalité conçue pour modifier la réponse de résonateur du résonateur mécanique si une substance choisie est présente dans la composition fluide.
     
    35. Appareil selon la revendication 34, dans lequel ladite fonctionnalité contient des molécules de récepteur pour attirer des molécules de la substance choisie dans la composition fluide afin de modifier la réponse de résonateur.
     
    36. Appareil selon la revendication 29, comprenant en outre une pluralité de résonateurs à diapason, chaque résonateur à diapason présentant des caractéristiques de réponse de résonateur différentes.
     
    37. Appareil selon la revendication 36, dans lequel chaque diapason présente une fonctionnalité différente, chaque fonctionnalité étant conçue pour modifier la réponse de résonateur de son résonateur à diapason associé si une substance choisie correspondant au revêtement spécifique est présente dans la composition fluide.
     




    Drawing



































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description