(19)
(11)EP 2 143 683 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
10.09.2014 Bulletin 2014/37

(21)Application number: 09008876.6

(22)Date of filing:  07.07.2009
(51)International Patent Classification (IPC): 
G06Q 10/08(2012.01)
B66F 9/075(2006.01)

(54)

Pallet counter for lift truck

Palettenzähler für einen Gabelstapler

Compteur de palette pour chariot élévateur


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 10.07.2008 US 170622

(43)Date of publication of application:
13.01.2010 Bulletin 2010/02

(73)Proprietor: The Raymond Corporation
Greene, New York 13778-0130 (US)

(72)Inventor:
  • McCabe, Paul Patrick
    Binghamton, NY 13905 (US)

(74)Representative: advotec. 
Patent- und Rechtsanwälte Widenmayerstrasse 4
80538 München
80538 München (DE)


(56)References cited: : 
EP-A- 0 200 039
EP-A- 1 770 613
US-A- 4 949 263
EP-A- 0 795 514
WO-A-02/068310
US-A1- 2007 208 476
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to lift trucks, and more specifically to a method and apparatus for determining a number of pallets or loads that have been moved by an operator.

    BACKGROUND OF THE INVENTION



    [0002] In warehousing applications and particularly stock picking or order filling operations, it is generally desirable to move as much stock as possible, in as little time as possible, such that stock can be delivered with a high degree of efficiency. To help to assure that these goals are met, it is desirable to monitor the number of pallet loads that are moved by an operator during a predefined period of time, such as an operator's shift.

    [0003] One known method for monitoring pallet loads has been to require the operator or a supervisor to manually keep records of load movement. These records could then be used to determine an operator's productivity level, to determine when truck maintenance was required, and to determine when lease and rental fees were due. While providing the required information, however, manual record-keeping interferes with the efficiency of a warehousing operation either by disrupting the operator, and preventing the operator from delivering goods, or requiring additional personnel to monitor load movement.

    [0004] Another known method for tracking pallet loads is through the use of computerized systems. These systems are typically add-on devices that are installed on a vehicle, and typically use bar code scanners or RFID scanners to monitor the movement of pallets. These devices, again, are useful in monitoring pallets, but can decrease efficiency because they require scanning, which disrupts the operator from his or her main task of stock picking or order filling. Additionally, these devices can be expensive, requiring not only specialized equipment for the vehicle, but also marking of the pallets with bar codes, RFID tags, or other identifying devices.

    [0005] Therefore, while methods are known for tracking and counting pallet movement, these methods typically decrease the efficiency of the driver or are otherwise expensive to implement. The present invention addresses these issues.

    [0006] From document EP 1 770 613 A1, a lift truck is known which comprises a movable fork and a vehicle controller. Further, the known lift truck is provided with a number of sensors for measuring and estimating the working conditions for the truck and the individual motors and hydraulic systems. The output of these sensors are sent to the vehicle controller.

    SUMMARY OF THE INVENTION



    [0007] In one aspect of the invention, a lift truck is provided, which comprises the features defined in claim 1. The lift truck includes an power unit, and a fork moveably coupled to the power unit. A weight sensor is coupled to the fork for producing a weight control signal indicative of a weight of a load provided on the fork, and a height sensor is coupled to the mast for producing a height control signal indicative of a height of the fork. A wheel and associated traction motor are coupled to the operator station, and a distance sensor is coupled to the traction motor for providing a distance control signal indicative of a distance traveled by the vehicle. A vehicle control system is provided in the lift truck in communication with the weight sensor, the height sensor, and the distance sensor, and is programmed to receive the weight control signal, the height control signal, and the distance control signal. The vehicle control system determines whether a load has been moved based on the weight control signal, the height control signal, and the distance control signal and increment, a pallet count when the vehicle control system determines that a pallet has been moved.

    [0008] In another aspect of the invention, the vehicle control system is further programmed to compare the weight control signal, the height control signal, and the distance control signal to a minimum load weight, a minimum travel distance, and a minimum load height, respectively, and to increment the pallet count when the weight control signal, the height control signal, and the distance control signal exceed the corresponding minimum load weight, minimum travel distance, and minimum load height.

    [0009] In still another aspect of the invention, the vehicle control system is further programmed to monitor a clock signal and to calculate a time period associated with the pallet count. The vehicle control system can also be programmed to calculate a number of pallets moved over a predetermined period as a function of the pallet count and the time period. The calculated number can be, for example, an average number of pallets moved over a predetermined period of time.

    [0010] In yet another aspect of the invention a scanning device is coupled to the vehicle control system, and is programmed to read an identifier associated with a load to be moved. The identifier can be compared against a list of loads to be moved by the operator which is stored in memory. Alternatively, the identifying data can be stored to provide a record of the loads moved. The identifying data can also be associated with a time stamp for tracking or other purposes.

    [0011] In another aspect of the invention, a user input is provided in communication with the vehicle control system, and the vehicle control system is further programmed to receive the minimum load weight, the minimum travel distance, and the minimum load height from the operator, and to store the minimum load weight, the minimum travel distance, and the minimum load height in memory, thereby allowing a user to customize the criteria for determining when a pallet is moved.

    [0012] In another aspect of the invention, a method for determining an efficiency of an operator driving a lift truck having a fork mounted to a mast for moving pallets is disclosed as defined in claim 12. The method comprises determining a weight of a pallet on the fork, determining a height of the fork, and determining a distance traveled by the lift truck. The weight of the load, the height of the fork, and the distance traveled are then compared to a minimum weight, height, and distance, respectively, and a pallet counter is incremented when the weight of the load, the height of the fork, and the distance traveled exceed the corresponding minimum weight, height, and distance, respectively.

    [0013] These and other aspects of the invention will become apparent from the following description. In the description, reference is made to the accompanying drawings which form a part hereof, and in which there is shown a preferred embodiment of the invention. Such embodiment does not necessarily represent the full scope of the invention and reference is made therefore, to the claims herein for interpreting the scope of the invention.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0014] Fig. 1 is a perspective view of a lift truck that can include the pallet counter system constructed in accordance with the present invention.

    [0015] Fig. 2 is a block diagram of a control system of the lift truck of Fig. 1.

    [0016] Fig. 3 is a simplified block diagram of the vehicle control system of Fig. 2 illustrating the use of the control system for pallet counting.

    [0017] Fig. 4 is a flow chart illustrating one embodiment of a pallet counting process.

    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT



    [0018] Referring now to the Figures, and more particularly to FIG. 1, a material handling vehicle or lift truck 10 constructed in accordance with the present invention is shown. The material handling vehicle 10 includes a power unit 11 including an operator compartment 11 comprising an enclosure 17 with an opening 19 for entry and exit of the operator. The power unit 11 include a control handle 14 which is mounted to the enclosure 17 at the front of the power unit 11 proximate the forks 31, and a floor switch 20 positioned on the floor 21 of the power unit 11. A steering wheel 16 is also provided in the power unit 11. Although the material handling vehicle 10 as shown by way of example as a standing, fore-aft stance operator configuration lift truck, it will be apparent to those of skill in the art that the present invention is not limited to vehicles of this type, and can also be provided in various other types of material handling and lift truck configurations. Furthermore, although the pallet count system of the present invention is described and shown in conjunction with a reach truck, it will be apparent that the present invention can be implemented on any lift truck vehicle that includes a fork intended for moving pallets and loads of material. For example, the present invention can also be used on pallet trucks, counter-balanced fork lifts, order pickers, swing reach vehicles, and other types of material handling vehicles.

    [0019] Referring now to FIG. 2, a block diagram of a control system for a typical lift truck 10 in which the present invention can be provided is illustrated. The lift truck 10 comprises a vehicle control system 12 which receives operator input signals from the operator control handle 14, the steering wheel 16, a key switch 18, and the floor switch 20 and, based on the received signals, provides command signals to each of a lift motor control 23 and a drive system 25 including both a traction motor control 27 and a steer motor control 29. The drive system 25 provides a motive force for driving the lift truck 10 in a selected direction, while the lift motor control 23 drives forks 31 along a mast 33 to raise or lower a load 35, as described below. The lift truck 10 and vehicle control system 12 are powered by one or more battery 37, coupled to the vehicle control system 12, drive system 25, steer motor control 29, and lift motor control 23 through a bank of fuses or circuit breakers 39.

    [0020] As noted above, the operator inputs include a key switch 18, floor switch 20, steering wheel 16, and an operator control handle 14. The key switch 18 is activated to apply power to the vehicle control system 12, thereby enabling the lift truck 10. The floor switch 20 provides a signal to the vehicle control system 12 for operating the brake 22 to provide a deadman braking device, disabling motion of the vehicle unless the floor switch 20 is activated by the operator.

    [0021] The operator control handle 14 provides a travel request signal to the vehicle control system 12. Typically, the handle 14 is rotated in a vertical plane to provide a travel direction and speed command of motion for the lift truck 10. A four-way switch 15 located on the top of the handle 14 provides a tilt up/down function when activated in the forward and reverse directions and a sideshift right and left function when activated to the right and left directions. A plurality of control actuators 41 located on the handle 14 provide a number of additional functions, and can include, for example, a reach push button, a retract push button, and a horn push button as well as a potentiometer providing a lift function. A number of other functions could also be provided, depending on the construction and intended use of the lift truck 10.

    [0022] The traction motor control 27 drives one or more traction motor 43 which is connected to wheel 45 to provide motive force to the lift truck. The speed and direction of the traction motor 43 and associated wheel is selected by the operator from the operator control handle 14, and is typically monitored and controlled through feedback provided by a speed/distance sensor 44 which can be an encoder or other feedback device coupled to the traction motor 43, and which can also be used to provide feedback for determining a distance traveled by the lift truck 10. The wheel 45 is also connected to friction brake 22 through the traction motor 43, to provide both a service and parking brake function for the lift truck 10. The friction brake 22 can be a spring-activated brake that defaults to a "brake on" position, such that the switch 20 and associated brake 22 therefore provide the deadman braking function. The operator must provide a signal indicating that the deadman brake is to be released to drive the truck, here provided by the floor switch 20, as described above. The traction motor 43 is typically an electric motor, and the associated friction brakes 22 can be either electrically operated or hydraulically operated devices. Although one friction brake 22, motor 43, and wheel 45 are shown, the lift truck 10 can include one or more of these elements.

    [0023] The steer motor control 29 is connected to drive a steer motor 47 and associated steerable wheel 49 in a direction selected by the operator by rotating the steering wheel 16, described above. The direction of rotation of the steerable wheel 49 determines the direction of motion of the lift truck 10.

    [0024] The lift motor control 33 provides command signals to control a lift motor 51 1 which is connected to a hydraulic circuit 53 for driving the forks 31 along the mast 33, thereby moving the load 35 up or down, depending on the direction selected at the control handle 14. In some applications, the mast 33 can be a telescoping mast. Here, additional hydraulic circuitry is provided to raise or lower the mast 33 as well as the forks 31. As shown here, a height sensor 59 is provided in the mast control system to provide a signal to the controller 12 indicating the height of the mast 33. The height sensor 59 can be, for example, an encoder, a flow sensor in the hydraulic system, a light beam, or other types of sensors. Similarly, a weight sensor 57 is provided on the forks 31. The weight sensor 57 can be, for example, a load cell, strain gauge, light beam or pressure sensor in the lift system and provides a signal to the controller 12 that indicates whether a load is on the forks, and a weight of the load.

    [0025] In addition to providing control signals to the drive system and lift control system, the vehicle control 12 can also provide data to a display 55 for providing information to the operator. Information provided on the display 55 can include, for example, a number of pallets moved, a number of pallets moved over a period of time, an average number of pallets moved by the vehicle, a weight of a pallet or load placed on the forks 31, the speed of the vehicle, the time, or maintenance information.

    [0026] Referring still to Fig. 2 a number of data input and output devices can also be coupled to the vehicle control system 12, including, for example, a user interface 67, an inventory scanning device 65, and a communications port 69. The user interface 67 allows the operator, a supervisor, or other personnel to enter data into the vehicle control 12, and can be implemented as a touch screen in display 55, or provided as a keyboard, a series of input keys, a mouse, joystick or other input devices as will be apparent to those of ordinary skill in the art. The inventory scanning device 65, can be, for example, a barcode reader, RFID reader, data entry pad, RuBee reader or other device capable of reading corresponding identifiers such as RFID tags, RuBee tages, barcodes or other symbols associated with a pallet or other load. The communications port 69 can be a parallel or serial communications link, an Ethernet or other network connection, TCP/IP port, wireless communications link or other device capable of downloading data to and from the vehicle control system 12.

    [0027] Referring now to Fig. 3, a simplified block diagram of the vehicle control system 12 as used for counting pallets is shown. As shown here, the vehicle control 12 includes a central processing unit, a memory component 70, and an internal clock 72. Software for calculating a number of loads or pallets moved by the lift truck 10 is stored in the memory 70. A user interface 67 can be coupled in communication with the vehicle control 12, as described above, and in particular, can be used by the operator to designate a minimum load, minimum travel distance, and minimum lift height required as comparators for determining when a pallet or load has been moved. Alternatively, or in addition to a user selected value, a pre-determined minimum load, travel distance and lift height can be established and stored in memory 70, where the data is easily accessed for use in computing the number of pallets moved.

    [0028] As described above, the weight sensor 57, height sensor 59, and distance sensor 44 are each coupled to the vehicle control 12 to provide a control signal indicative of the weight of a load on the fork, the height of the load and forks on the mast and the distance that the vehicle has moved, respectively. The minimum weight, height, and distance values, and the corresponding control signals, are used to determine when a load has been placed on the forks 31, lifted by the forks 31, moved, and then lowered by the forks. As described above, minimum weight, height, and distance values can be stored in a memory component associated with the vehicle control 12. These values can be default values, or selected by a user through user interface 67.

    [0029] In addition, data from the clock 72 can be used to establish time parameters to calculate efficiency rating, such as the number of pallets moved within a calculated time frame. During operation, identifying data associated with a load can be scanned by scanning device 65. The identifying data can be compared to a list of loads to be moved by the operator which is stored in memory, or can be individually stored to provide a record of the loads moved. The identifying data can also be associated with a time stamp for tracking or other purposes.

    [0030] Referring now to Fig. 4, a process flow chart illustrating the steps associated with one method for counting pallets or loads moved by an operator of the lift truck 10 is shown, as executed in the in the vehicle control 12. Initially as described above, in process block 80, the weight sensor 57 (Figs. 2 and 3) is monitored to determine whether a load or pallet has been lifted. At process block 82 the vehicle control 12 determines whether the weight exceeds the minimum weight stored in the memory 70 and, if not, the process returns to process block 80, and continues measuring the load on the forks until the weight does exceed the minimum. When the weight at weight sensor 57 does exceed the minimum weight stored in memory 70, the process moves to process block 84, where an analysis is done to determine if the lift truck 10 has moved and if so, what distance. This change in distance is determined by reference to the encoder 44 (Fig. 2) associated with traction motor as described above. Again, until the distance moved by the lift truck 10 exceeds the minimum distance, the process remains in a loop at process block 86. When the distance moved exceeds the minimum distance at process block 86, the height sensor 59 is monitored to determine the height of the forks along the mast 33 at process block 88. Again, the process remains in a loop between process blocks 88 and 90 until the change in height exceeds the minimum setting, either raised or lowered. Once the weight, height, and distance minimums have been exceeded, a load or pallet has been moved.

    [0031] Once a determination has been made that a load has been moved, optionally, at process block 92, the scanning device 65 is read to identify the load. The identity of the load can then be verified, for example, against a warehousing list or other list providing the identities of pallets to be moved by the operator. This step is useful, for determining whether a load lifted by the lift truck 10 is a legitimate part of a load to be moved, an empty pallet, or another load that is not part of an approved listing of pallets to be moved, and can be used, for example, to prevent an operator from gaining efficiency credit while moving empty pallets, or for general maintenance, or other tasks. At process block 94, if the scanned load is not part of the inventory of interest, the process is stopped, and the load is not counted.

    [0032] If the load is a legitimate load, or if no identification check is made, in process blocks 96 and 98, the weight sensor 57 is monitored to determine when the weight on the forks falls below the minimum value, thereby indicating that the load has been delivered. When a cycle is completed, e.g. a load of appropriate weight has been lifted above the predetermined minimum weight, has been moved beyond the minimum distance, and has been delivered or lowered, the pallet counter is incremented at process block 100.

    [0033] Referring still to Fig. 4, when the pallet count is complete, the vehicle control 12 can determine an elapsed time period since the last move, or a current time, based on input from the clock 72. After a time is established, the vehicle control 12 can optionally, calculate one or more relationship associating pallets moved as a function of time. As shown here by way of example, at process block 102, the total number of loads moved in the last 60 minutes can be calculated. Additionally, or in the alternative, at process block 104, the number of total pallets moved within the last 8 hours can be calculated. As shown in process block 106, an average number of pallets moved in the last 8 hours can be provided. A rolling average can also be maintained. The data calculated in process blocks 100, 102, 104, and 106 can be used to analyze the efficiency of an operator driving the lift truck 10, to determine the efficiency of the lift truck 10, to schedule maintenance procedures for the lift truck 10, or to determine payments for leases based on number of pallets moved. Various other uses for the data acquired through the algorithm described above will be apparent to those of skill in the art. Although specific calculations are described here, it will be apparent that these calculations are examples, and that many statistical calculations could be made to evaluate an efficiency of an operator or the efficiency of the vehicle. Furthermore, the data acquired can be used to determine other parameters including lease payments, when maintenance needs to be performed on the vehicle, or various other vehicle use parameters.

    [0034] As described above, the data acquired by the vehicle control system 12 can be displayed on display 55 in the lift truck 10, and/or downloaded or otherwise transmitted through communications port 69.

    [0035] Although preferred embodiments have been shown and described, it will be apparent that various modifications can be made to the features described above. For example, although the process is described above as requiring monitoring of a weight, a height, and a distance traveled, it will be apparent to those of ordinary skill in the art that a determination as to whether a load or pallet has been moved could be made, albeit with less accuracy, as a function of a weight alone, a weight and a height measurement, a weight and a distance traveled, a weight and a time, or in various other ways. Furthermore, although a distance is described above, it will be apparent that the distance can either be an actual distance, or an indication of movement for a predetermined period of time. For example, an actual distance can be calculated based on encoder data in combination with wheel size. Alternatively, encoder feedback indicating that the traction motor 43 is active in combination with a time period can be used to determine the distance. The distance could therefore be specified in terms of length of travel, or time of motor activation.

    [0036] Additionally, although the scanning system 65 is described above specifically for use in verifying picked stock against a listing of pallets to be moved, it will be apparent that scanned data can be used in various other ways. For example, the pallet identification can be associated with a time stamp from clock 72 to indicate when a specific pallet was moved. Various methods of using the scanned data will be apparent to those of ordinary skill in the art.

    [0037] As discussed above, although the vehicle is shown and described specifically for use on a reach truck vehicle, it will be apparent that this description is not intended to limit the scope of the invention, and that the present invention can be used on various types of material handling vehicles. Furthermore, although a mast construction is shown and described, it will be apparent that other methods for raising and lowering a fork can also be used.

    [0038] To apprise the public of the scope of this invention, the following claims are made:


    Claims

    1. A lift truck, comprising:

    a power unit (11); a fork (31) moveably coupled to the power unit (11); a weight sensor (57) coupled to the fork (31) for producing a weight control signal indicative of a weight of a load provided on the fork (31); a lift motor (51) coupled to the fork (31) for raising and lowering the fork (31); a height sensor (59) coupled to the fork (31) for producing a height control signal indicative of a height of the fork (31); a wheel (45) coupled to the power unit (11); a distance sensor (44) coupled to the wheel (45) for providing a distance control signal indicative of a distance traveled by said lift truck; and a vehicle control system (12), the vehicle control system (12) in communication with the weight sensor (57), the height sensor (59), and the distance sensor (44), wherein the vehicle control system (12) is programmed to receive the weight control signal, the height control signal, and the distance control signal, and is programmed to determine whether a pallet has been moved based on the weight control signal, the height control signal, and the distance control signal, and to increment a pallet count, characterized in that

    the vehicle control system (12) is further programmed to compare the weight control signal, the height control signal, and the distance control signal to a minimum load weight, a minimum load height, and a minimum travel distance, respectively, and to increment the pallet count when the weight control signal, the height control signal, and the distance control signal exceed the corresponding minimum load weight, minimum load height, and minimum travel distance.


     
    2. The lift truck as in claim 1, wherein the vehicle control system (12) is further programmed to monitor a clock signal and to calculate a time period associated with the pallet count.
     
    3. The lift truck as defined in claim 2, wherein the vehicle control system (12) is further programmed to calculate a number of pallets moved for a predetermined period as a function of the pallet count and the time period.
     
    4. The lift truck as defined in claim 3, wherein the vehicle control system (12) is further programmed to calculate an average number of pallets moved over a predetermined period of time as a function of the pallet count and the time period.
     
    5. The lift truck as in any one of the preceding claims, further comprising a scanning device (65) coupled to the vehicle control system (12), the scanning device (65) being programmed to read an identifier, such as an active data tag or a passive data tag, associated with a pallet to be moved.
     
    6. The lift truck as in any one of the preceding claims, wherein the vehicle control system (12) is further programmed to compare the identifier to a stored list to identify the load.
     
    7. The lift truck as in any one of the preceding claims, further comprising a user input in communication with the vehicle control system (12), wherein the vehicle control system (12) is further programmed to receive the minimum load weight, the minimum travel distance, and the minimum load height from the operator, and to store the minimum load weight, the minimum travel distance, and the minimum load height in memory (70).
     
    8. The lift truck as in any one of the preceding claims, further comprising a display (55) in communication with the vehicle control system (12), wherein the vehicle control system (12) is programmed to selectively provide the pallet count on the display (55).
     
    9. The lift truck as in any one of the preceding claims, further comprising at least one communications port coupled (69) to the vehicle control system (12), the vehicle control system (12) being further programmed to selectively communicate the pallet count and the time period through the communications port (69).
     
    10. The lift truck as in any one of the preceding claims, further comprising a scanner (65) in communication with the vehicle control system (12) for scanning an identifier associated with the pallet, wherein the vehicle control system (12) is programmed to compare the identifier against a listing of loads to be moved, and to increment the pallet counter only when the identifier matches the listing of loads.
     
    11. The lift truck as in any one of the preceding claims, wherein the controller (27) calculates the distance as a length of travel of the lift truck or as a function of traction motor (43) activation and time.
     
    12. A method for determining an efficiency of an operator driving a lift truck (10) as in any one of the preceding claims, the method comprising the following steps:

    determining a weight of a load on the fork (31);

    determining a height of the fork (31);

    determining a distance traveled by the lift truck (10);

    comparing each of the weight of the load, the height of the fork (31), and the distance traveled by the lift truck (10) to a minimum weight, height, and travel distance, respectively; and
    incrementing a pallet counter when the weight of the load, the height of the fork (31) and the distance traveled exceed the corresponding minimum weight, height, and distance, respectively.


     
    13. The method as recited in claim 12, further comprising at least one of the following steps:

    calculating a time period, and correlating the time period to the pallet count for the time period;

    selectively providing at least one of the pallet count, the time period, and a pallet count as a function of the time period to a user;

    identifying the pallet, comparing the identity of the pallet to a listing of loads to be moved, and incrementing the load count only if the load is part of the listing;

    determining when the weight of the load on the truck (10) falls below the minimum level indicating that the load has been removed, and incrementing the pallet count when the load has been removed.


     
    14. The method as recited in claim 13, wherein the step of determining a distance traveled comprises calculating a time period during which a traction motor (43= is active or calculating a length of travel by the lift truck (10).
     


    Ansprüche

    1. Flurförderzeug, umfassend:

    einen Antrieb (11); eine Gabel (31), die beweglich an den Antrieb (11) gekoppelt ist; einen an die Gabel (31) gekoppelten Gewichtssensor (57) zum Erzeugen eines Gewichtssteuersignals, das ein Gewicht einer auf der Gabel (31) vorgesehenen Last anzeigt; einen an die Gabel (31) gekoppelten Hubmotor (51) zum Heben und Senken der Gabel (31); einen an die Gabel (31) gekoppelten Höhensensor (59) zum Erzeugen eines Höhensteuersignals, das eine Höhe der Gabel (31) anzeigt; ein an den Antrieb (11) gekoppeltes Rad (45): einen an das Rad (45) gekoppelten Entfernungssensor (44) zum Bereitstellen eines Entfemungssteuersignals, das eine von dem Flurförderzeug zurückgelegte Entfernung anzeigt; und ein Fahrzeugsteuersystem (12), das in Kommunikation mit dem Gewichtssensor (57), dem Höhensensor (59) und dem Entfernungssensor (44) steht,

    wobei das Fahrzeugsteuersystem (12) programmiert ist, das Gewichtssteuersignal, das Höhensteuersignal und das Entfernungssteuersignal zu empfangen, und

    programmiert ist, auf Basis des Gewichtssteuersignals, des Höhensteuersignals und des Entfernungssteuersignals festzustellen, ob eine Palette bewegt wurde,

    und eine Palettenzahl zu erhöhen,

    dadurch gekennzeichnet,

    dass das Fahrzeugsteuersystem (12) weiterhin programmiert ist, das Gewichtssteuersignal, das Höhensteuersignal und das Entfernungssteuersignal jeweils mit einem Minimallastgewicht, einer Minimallasthöhe und einer Minimalentfernung zu vergleichen und die Palettenzahl zu erhöhen, wenn das Gewichtssteuersignal,

    das Höhensteuersignal und das Entfernungssteuersignal den entsprechenden Minimallastwert, die Minimallasthöhe und die Minimalentfernung überschreiten.


     
    2. Flurförderzeug nach Anspruch 1,
    wobei das Fahrzeugsteuersystem (12) weiterhin programmiert ist, ein Taktsignal zu überwachen und eine mit der Palettenzahl verbundene Zeitdauer zu berechnen.
     
    3. Flurförderzeug nach Anspruch 2,
    wobei das Fahrzeugsteuersystem (12) weiterhin programmiert ist, eine Anzahl von in einer vorbestimmten Dauer bewegten Paletten in Abhängigkeit von der Palettenzahl und der Zeitdauer zu berechnen.
     
    4. Flurförderzeug nach Anspruch 3,
    wobei das Fahrzeugsteuersystem (12) weiterhin programmiert ist, eine durchschnittliche Anzahl von während einer vorgegebenen Zeitdauer bewegten Paletten in Abhängigkeit von der Palettenzahl und der Zeitdauer zu berechnen.
     
    5. Flurförderzeug nach einem der vorhergehenden Ansprüche, weiterhin umfassend eine an das Fahrzeugsteuersystem (12) gekoppelte Scan-Einrichtung (65), die dazu programmiert ist, eine einer zu bewegenden Palette zugeordnete Kennung, wie zum Beispiel ein aktives Datenetikett oder ein passives Datenetikett, abzulesen.
     
    6. Flurförderzeug nach einem der vorhergehenden Ansprüche, wobei das Fahrzeugsteuersystem (12) weiterhin programmiert ist, die Kennung mit einer gespeicherten Liste zu vergleichen, um die Last zu identifizieren.
     
    7. Flurförderzeug nach einem der vorhergehenden Ansprüche, weiterhin umfassend eine Nutzereingabe in Kommunikation mit dem Fahrzeugsteuersystem (12), wobei das Fahrzeugsteuersystem (12) weiterhin programmiert ist, das Minimallastgewicht, die Minimalentfernung und die Minimallasthöhe von dem Bediener zu erhalten und das Minimallastgewicht, die Minimalentfernung und die Minimallasthöhe in einem Speicher (70) zu speichern.
     
    8. Flurförderzeug nach einem der vorhergehenden Ansprüche, weiterhin umfassend eine Anzeige (55) in Kommunikation mit dem Fahrzeugsteuersystem (12), wobei das Fahrzeugsteuersystem (12) programmiert ist, die Palettenzahl wahlweise auf der Anzeige (55) darzustellen.
     
    9. Flurförderzeug nach einem der vorhergehenden Ansprüche, weiterhin umfassend mindestens einen an das Fahrzeugsteuersystem (12) gekoppelten Kommunikationsport (69), wobei das Fahrzeugsteuersystem (12) weiterhin programmiert ist, die Palettenzahl und die Zeitdauer wahlweise über den Kommunikationsport (69) zu übermitteln.
     
    10. Flurförderzeug nach einem der vorhergehenden Ansprüche, weiterhin umfassend einen Scanner (65) in Kommunikation mit dem Fahrzeugsteuersystem (12) zum Scannen einer der Palette zugeordneten Kennung, wobei das Fahrzeugsteuersystem (12) programmiert ist, die Kennung mit einer Auflistung von zu bewegenden Lasten zu vergleichen und den Palettenzähler nur dann zu erhöhen, wenn die Kennung der Lastenauflistung entspricht.
     
    11. Flurförderzeug nach einem der vorhergehenden Ansprüche, wobei die Steuerung (27) die Entfernung als Fahrlänge des Flurförderzeugs oder in Abhängigkeit von einer Aktivierung eines Traktionsmotors (43) und der Zeit berechnet.
     
    12. Verfahren zum Ermitteln einer Effizienz eines Bedieners, der ein Flurförderzeug (10) nach einem der vorhergehenden Ansprüche fährt, wobei das Verfahren die folgenden Schritte umfasst:

    Ermitteln eines Gewichts einer Last auf der Gabel (31);

    Ermitteln einer Höhe der Gabel (31);

    Ermitteln einer von dem Flurförderzeug (10) zurückgelegten Entfernung;

    Vergleichen jeweils des Gewichts der Last, der Höhe der Gabel (31) und der von dem Flurförderzeug (10) zurückgelegten Entfernung mit einem Minimalgewicht,

    einer Minimalhöhe und einer Minimalentfemung; und

    Erhöhen eines Palettenzählers, wenn das Gewicht der Last, die Höhe der Gabel (31) und die zurückgelegte Entfernung das entsprechende Minimalgewicht, die Minimalhöhe und die Minimaldistanz jeweils überschreiten.


     
    13. Verfahren nach Anspruch 12, weiterhin umfassend mindestens einen der folgenden Schritte:

    Berechnen einer Zeitdauer und Verknüpfen der Zeitdauer mit der Palettenzahl für diese Zeitdauer;

    wahlweise Bereitstellen von mindestens einem der Faktoren Palettenzahl, Zeitdauer und Palettenzahl in Abhängigkeit von der Zeitdauer für einen Nutzer;

    Identifizieren der Palette, Vergleichen der Identität der Palette mit einer Auflistung von zu bewegenden Lasten und Erhöhen der Lastenzahl nur wenn die Last Teil der Auflistung ist;

    Feststellen, wann das Gewicht der Last auf dem Flurförderzeug (10) unter den Minimalwert fällt, was anzeigt, dass die Last entfernt wurde, und Erhöhen der Palettenzahl, wenn die Last entfernt wurde.


     
    14. Verfahren nach Anspruch 13, wobei der Schritt des Ermittelns einer zurückgelegten Entfernung das Berechnen einer Zeitdauer, während der ein Traktionsmotor (43) aktiv ist, oder das Berechnen einer Fahrlänge des Flurförderzeugs (10) umfasst.
     


    Revendications

    1. Chariot élévateur, comprenant :

    un groupe de puissance (11) ; une fourche (31) couplée de manière mobile au groupe de puissance (11) ; un capteur de poids (57) couplé à la fourche (31) pour produire un signal de contrôle de poids indiquant un poids d'une charge disposée sur la fourche (31) ; un moteur élévateur (51) couplé à la fourche (31) pour lever et baisser la fourche (31) ; un capteur de hauteur (59) couplé à la fourche (31) pour produire un signal de contrôle de hauteur indiquant une hauteur de la fourche (31) ; une roue (45) couplée au groupe de puissance (11) ; un capteur de distance (44) couplé à la roue (45) pour produire un signal de contrôle de distance indiquant une distance couverte par ledit chariot élévateur ; et un système de contrôle de véhicule (12) en communication avec le capteur de poids (57), le capteur de hauteur (59) et le capteur de distance (44), dans lequel le système de contrôle de véhicule (12) est programmé pour recevoir le signal de contrôle de poids, le signal de contrôle de hauteur et le signal de contrôle de distance, et il est programmé pour déterminer si une palette a été déplacée sur la base du signal de contrôle de poids, du signal de contrôle de hauteur et du signal de contrôle de distance, et pour incrémenter un compte de palettes,

    caractérisé en ce que

    le système de contrôle de véhicule (12) est programmé en outre pour comparer le signal de contrôle de poids, le signal de contrôle de hauteur et le signal de contrôle de distance respectivement à un poids minimum de charge, une hauteur minimum de charge et une distance minimum de déplacement, et pour incrémenter le compte de palettes quand le signal de contrôle de poids, le signal de contrôle de hauteur et le signal de contrôle de distance dépassent le poids minimum de charge correspondant, la hauteur minimum de charge correspondante et la distance minimum de déplacement correspondante.


     
    2. Chariot élévateur selon la revendication 1, dans lequel le système de contrôle de véhicule (12) est programmé en outre pour surveiller un signal d'horloge et pour calculer une période de temps associée au compte de palettes.
     
    3. Chariot élévateur selon la revendication 2, dans lequel le système de contrôle de véhicule (12) est programmé en outre pour calculer un nombre de palettes déplacées pour une période prédéterminée en fonction du compte de palettes et de la période de temps.
     
    4. Chariot élévateur selon la revendication 3, dans lequel le système de contrôle de véhicule (12) est programmé en outre pour calculer un nombre moyen de palettes déplacées sur une période de temps prédéterminée en fonction du compte de palettes et de la période de temps.
     
    5. Chariot élévateur selon l'une quelconque des revendications précédentes, comprenant en outre un dispositif scanner (65) couplé au système de contrôle de véhicule (12), le dispositif scanner (65) étant programmé pour lire un identificateur, telles qu'une étiquette active de données ou une étiquette passive de données, associé à une palette à déplacer.
     
    6. Chariot élévateur selon l'une quelconque des revendications précédentes, dans lequel le système de contrôle de véhicule (12) est programmé en outre pour comparer l'identificateur avec une liste enregistrée afin d'identifier la charge.
     
    7. Chariot élévateur selon l'une quelconque des revendications précédentes, comprenant en outre un entrée utilisateur en communication avec le système de contrôle de véhicule (12), dans lequel le système de contrôle de véhicule (12) est programmé en outre pour recevoir de l'opérateur le poids minimum de charge, la distance minimum de déplacement et la hauteur minimum de charge, et pour enregistrer le poids minimum de charge, la distance minimum de déplacement et la hauteur minimum de charge dans une mémoire (70).
     
    8. Chariot élévateur selon l'une quelconque des revendications précédentes, comprenant en outre un écran (55) en communication avec le système de contrôle de véhicule (12), dans lequel le système de contrôle de véhicule (12) est programmé pour fournir sélectivement le compte de palettes sur l'écran (55).
     
    9. Chariot élévateur selon l'une quelconque des revendications précédentes, comprenant en outre au moins un port de communication (69) couplé au système de contrôle de véhicule (12), le système de contrôle de véhicule (12) étant programmé en outre pour communiquer sélectivement le compte de palettes et la période de temps par le port de communication (69).
     
    10. Chariot élévateur selon l'une quelconque des revendications précédentes, comprenant en outre un scanner (65) en communication avec le système de contrôle de véhicule (12) pour scanner un identificateur associé à la palette, dans lequel le système de contrôle de véhicule (12) est programmé pour comparer l'identificateur à une liste de charges à déplacer, et pour incrémenter le compteur de palettes seulement si l'identificateur correspond à la liste de charges.
     
    11. Chariot élévateur selon l'une quelconque des revendications précédentes, dans lequel le contrôleur (27) calcule la distance comme longueur de déplacement du chariot élévateur ou en fonction de l'activation du moteur de traction (43) et du temps.
     
    12. Procédé pour déterminer une efficacité d'un opérateur conduisant un chariot élévateur (10) selon l'une quelconque des revendications précédentes, le procédé comprenant les étapes suivantes :

    déterminer un poids d'une charge sur la fourche (31) ;

    déterminer une hauteur de la fourche (31) ;

    déterminer une distance couverte par le chariot élévateur (10) ;

    comparer chaque du poids de la charge, la hauteur de la fourche (31) et la distance couverte par le chariot élévateur (10) à un poids minimum, une hauteur minimum et une distance de déplacement minimum ; et

    incrémenter un compteur de palette quand le poids de la charge, la hauteur de la fourche (31) et la distance couverte dépassent le poids minimum, la hauteur minimum et la distance minimum respectivement correspondants.


     
    13. Procédé selon la revendication 12, comprenant en outre au moins une des étapes suivantes :

    calculer une période de temps et mettre en corrélation la période de temps avec le compte de palettes pour la période de temps ;

    fournir sélectivement au moins un du compte de palettes, de la période de temps et d'un compte de palettes en fonction de la période de temps à un utilisateur ;

    identifier la palette, comparer l'identité de la palette à une liste de charges à déplacer, et incrémenter le compte de charges seulement si la charge fait partie de la liste ;

    déterminer quand le poids de la charge sur le chariot (10) tombe au-dessous le niveau minimum indiquant que la charge a été enlevée, et incrémenter le compte de palettes quand la charge a été enlevée.


     
    14. Procédé selon la revendication 13, dans lequel l'étape de déterminer une distance couverte comprend calculer une période de temps pendant laquelle un moteur de traction (43) est actif, ou calculer une longueur de déplacement du chariot élévateur (10).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description