(19)
(11)EP 2 540 386 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
01.01.2014 Bulletin 2014/01

(21)Application number: 11171881.3

(22)Date of filing:  29.06.2011
(51)International Patent Classification (IPC): 
B01F 5/02(2006.01)
B01F 15/00(2006.01)
B01F 3/08(2006.01)
B01F 5/10(2006.01)
B08B 9/093(2006.01)

(54)

Method for ejecting liquid into a container for mixing and cleaning purposes

Verfahren zum Eintrag von Flüssigkeit in einen Behälter für Misch- und Reinigungszwecke

Procédé d'éjection de liquides dans un conteneur à des fins de mélange et de nettoyage


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
02.01.2013 Bulletin 2013/01

(73)Proprietor: Alfa Laval Corporate AB
221 00 Lund (SE)

(72)Inventor:
  • Falster-Hansen, Henrik
    4340 Tølløse (DK)


(56)References cited: : 
EP-A2- 1 884 289
WO-A1-2011/123537
US-A1- 2002 144 714
US-A1- 2006 253 835
WO-A1-2010/117324
DE-U1- 20 113 587
US-A1- 2005 207 268
US-A1- 2009 173 362
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical field



    [0001] The invention relates to a method for mixing and cleaning by ejecting liquid in a container. The method being performed by a system comprising a mixer with an inlet for receiving liquid and a rotary head fitted with a nozzle for ejecting liquid into the container. A drive member for rotating the rotary head about at least one axis such that liquid is ejected into the container in a predetermined pattern.

    Background art



    [0002] Today, various techniques are used for mixing liquids that are stored in tanks, e.g. in process applications where a body of liquid requires equalization of differences in concentration and temperature, intensification of heat transfer, dissolution of a solid, dispersion of immiscible liquids or sparging of a gas.

    [0003] The requirements are often different in different application areas. For example, in applications with beer fermenters or yeast tanks, mixing is typically applied for obtaining uniformity in concentration of ingredients and temperature. Within food, cosmetics and pharmaceutical industry, mixing of very exact and minute quantities of ingredients into relatively larger volumes of liquid is often performed. Within the pulp and paper, paint, petrochemical, plastics and mining industry, liquids with coarse particles are often mixed. The requirements for obtaining satisfactory mixing thus differ significantly and mixing is often performed by different types of rotary impellers or by liquid ejecting nozzles that are specifically designed for one application area. Baffles are often provided for preventing bulk rotation or swirling of liquid in a tank due to the effect of e.g. a rotating impeller or similar.

    [0004] Generally, after a liquid has been mixed it is expelled from the tank in which it was mixed and the tank must be cleaned before a next mixing operation may commence. The cleaning should remove residues for a number of reasons such as for avoiding cross contamination, for avoiding build up of contamination layers and for preparing the cleaned tank for another batch of product. A liquid ejected for mixing the liquid content is often of the same type as the liquid content. A liquid ejected for cleaning the tank is generally a cleaning liquid, which gradually may be contaminated with the liquid that is cleaned off from the tank.

    [0005] Cleaning is accomplished by a number of different arrangements. However, in some cases the same arrangement is used for both mixing and cleaning. For example, patent document EP1324818 A1 discloses an arrangement with a jetting device adapted for introducing jets of liquid into a body of liquid inside a tank in order to cause stirring to the body of liquid. A jet nozzle is adapted for rotation about a first axis and about a second axis perpendicular, or non-perpendicular, to the first axis. Upon emptying the tank, the jetting device may serve for cleaning the tank by spraying liquid onto the tank walls.

    [0006] Other techniques related to mixing or cleaning are described in patent documents US4166704 A, US5620250 A, US2005/0207268 A1, US2006/253835A1 and US2009/0173362A1.

    [0007] The techniques mentioned above are generally capable of mixing a liquid content of a tank (container), and to clean the tank after mixing is complete and the content is expelled.

    [0008] However, the techniques suffer from an inability to efficiently perform mixing within a wide range of applications areas where different types of liquid contents are mixed, in particular if subsequent cleaning of a tank shall be effected with reasonable effort and/or if time and resources for mixing and cleaning should be kept as low as possible.

    Summary



    [0009] It is an object of the invention to improve the above-identified techniques and prior art. In particular, it is an object

    [0010] of the invention to provide a method for mixing and cleaning by ejecting a liquid in a container according to claim 1.

    [0011] Still other objectives, features, aspects and advantages of the invention will appear from the following detailed description, from the attached claims as well as from the drawings.

    Drawings



    [0012] Embodiments of the invention will now be described, by way of example, with reference to the accompanying schematic drawings, in which

    Fig. 1 is a schematic view of an embodiment of a system configured to eject liquid in a container,

    Fig. 2 is a flow chart illustrating an embodiment of a method for ejecting liquid in a container, as performed by the system of Fig. 1, and

    Fig. 3 is an embodiment of an alternative rotary head for the system of Fig. 1.


    Detailed description



    [0013] With reference to Fig. 1 an embodiment of a system 2 that is configured to eject a liquid L in a container 40 is illustrated. The system 2 comprises a mixer 100, at least one drive member 21, 109 for the mixer 100, and a processing unit 30 that is configured to control the drive member 21, 109 and thereby a pattern for how liquid L is ejected from the mixer 100 and into the container 40.

    [0014] In detail, the mixer 100 has a pipe 101 that extends into the container 40 via an opening in an upper part of the container 40. The mixer 100 has a flange 102 that provides a secure connection as well as a tight seal to the container 40. An upper part of the pipe 101 that is outside the container 40 has an inlet 103 for receiving a liquid L. A lower part of the pipe 101 that extends into the container 40 has at its end a connection flange 105 to which a rotary head 106 is connected.

    [0015] The rotary head 106 comprises a housing 107 that is rotatable around a first axis A1 that is parallel to the pipe 101. A first bearing 108 is arranged in between the connection flange 105 and an inlet end of the housing 107 that faces the connection flange 105, such that the housing 107 is rotatable relatively the connection flange 105.

    [0016] The rotary head 106 also comprises a rotary hub 110 on which a number of liquid ejection nozzles 112 are arranged. In the illustrated embodiment four nozzles are symmetrically arranged on the rotary hub 110 even though it is possible to have e.g. only one nozzle on the rotary hub 110. A second bearing 111 is arranged in between the rotary hub 110 and an outlet end of the housing 107 that faces the rotary hub 110, such that the rotary hub 110 is rotatable relatively the housing 107. The second bearing 111 allows the rotary hub 110 to rotate about a second axis A2 that is typically offset from the first axis A1 by an angle of 80-100° (90° in the illustrated embodiment). Thus, the rotary hub 110 and the nozzles 112 are able to rotate in a first direction R1 about the first axis A1 and in a second direction R2 about the second axis A2, as seen relative the pipe 101 or relative the container 40.

    [0017] The inlet 103 and the pipe 101 each have the principal shape of a conventional pipe and are capable of transporting liquid L to be ejected into the container 40. Liquid L enters the inlet 103, is conveyed into the pipe 101 and towards the rotary head 106. Liquid L then enters the rotary head 106 at the housings 107 connection to the connection flange 105 and exits the housing 107 at the housings 107 connection to the rotary hub 110. The rotary hub 110 receives liquid from the housing 107 and distributes liquid L further to the nozzles 112, which eject the liquid L into the container 40 such that liquid L streams into a liquid content 48 of the container 10 or, if the content 48 has been ejected from the container 10, hits an inner surface 41 of the container 40.

    [0018] The rotation in the first direction R1 about the first axis A1 is accomplished via a shaft 104 that extends from an upper end of the pipe 101 and to the rotary head 106 where it is connected to the housing 107. The shaft 104 has a diameter that is smaller than both an inner diameter of the pipe 101, an inner diameter of the connection flange 105 and a diameter of an opening at the inlet end of the housing 107. This allows liquid L to flow past the shaft 104. When the shaft 104 is rotated, the housing 107 and thereby the rotary head 106 are rotated in the first direction R1.

    [0019] The pipe 101 is connected to a connection piece 23 and a gearbox 22 is connected to the connection piece 23. The shaft 104 is connected to the gearbox 22, which in turn is connected to a drive member 21. The drive member 21 is here a conventional electrical motor 21, but other types of motors such as a pneumatic motor may be used just as well. When the motor 21 is activated, it generates a rotation of the shaft 104 and thereby a rotation of the rotary head 106 in the first direction R1.

    [0020] To accomplish the rotation in the second direction R2 a drive member 109 in form of an impeller 109 is arranged inside the housing 107. A rotation of the impeller 109 is induced by a flow of liquid L that passes through the housing 107, from the inlet end to the outlet end of the housing 107. When the impeller 109 rotates, its rotational movement is used for generating a rotation of the rotary head 106, or more specifically, for generating a rotation of the rotary hub 110 in the second direction R2. Any suitable technique for arranging the impeller 109 and for transferring a rotational movement of the impeller 109 to the rotary hub 110 may be employed, such as the technique disclosed in patent document EP1324818 A1.

    [0021] A liquid circuit 50 is connected to the container 40 and to the mixer 100 for accomplishing a flow of liquid L that shall be ejected from the nozzles 112 and into the container 40. The liquid circuit 50 comprises, in a downstream direction, a liquid source 51, a first valve 52, a first connection point 53, a pump 54, a second connection point 55 and a second valve 58. After the second valve 58 the liquid circuit 50 is connected to the inlet 103 of the mixer 100. A bottom of the container 40 is connected to the liquid circuit 50 at the first connection point 53. A liquid outlet 57 is via a third valve 56 connected to the second connection point 55. A second source of liquid 60 is via a fourth valve 61 connected to the container 40.

    [0022] The pump 54 may be e.g. a gear pump, a lube pump, a centrifugal pump or a pump of another suitable type. The valves 52, 56, 58, 61 may be butterfly valves, globe valves or valves of another suitable type. A liquid from the liquid source 51 is typically a liquid to be mixed in the container 40 or a liquid that constitutes a major part of a liquid to be mixed in the container 40. A liquid content 62 of the second source of liquid 60 may be a liquid to be mixed with the liquid from the liquid source 51, or maybe a liquid to be used for cleaning of the container 40. Additional liquid sources like the second source of liquid 60 may be connected to the container 40, as required by a predetermined mixing or cleaning application.

    [0023] By opening the first valve 52 and by closing the second valve 58 and the third valve 56 (or having the pump 54 inactive, depending on pump type), liquid may be fed from the liquid source 51 and into the container 40 via the first connection point 53. In this way the container 40 may be filled with the liquid content 48. The container 40 is typically filled to such an extent that the liquid content 48 completely covers the rotary head 106 and all the nozzles 112. Thus, a surface 49 of the liquid content is well above the rotary head 106 and the nozzles 112.

    [0024] By closing the first valve 52 and the third valve 56, opening the second valve 58 and operating the pump 54, the liquid content 48 of the container 40 may be circulated via the liquid circuit 50 and the mixer 100. This circulation effects mixing of the liquid content 48 since liquid L then is ejected into the liquid content 48, which efficiently causes the liquid content 48 to be stirred.

    [0025] By closing the first valve 52 and the second valve 58, opening the third valve 56 and operating the pump 54, the liquid content 48 may be expelled from the container 40 by transporting it to the liquid outlet 57. In this context, when liquid content 48 is expelled, some content is typically still present in the container 40, i.e. expelling a liquid content does not necessarily mean that every part of the liquid content is completely removed from the container 40. Content that is present in the container 40 after the expelling is typically cleaned of in a cleaning process performed by the mixer 100.

    [0026] The liquid content 62 of the second source of liquid 60 may be introduced in the container 40 by opening the fourth valve 61. If this is done during a mixing operation the liquid content 62 of the second source of liquid 60 is efficiently mixed into the content 48 of the container 10.

    [0027] When the liquid content 62 of the second source of liquid 60 is a cleaning liquid, then the liquid content 62 is introduced into the container 40 after the (mixed) liquid content 48 is expelled. Cleaning is then effected by closing the first valve 52 and the third valve 56, by opening the second valve 58 and by operating the pump 54. The liquid L is then a cleaning liquid that is expelled into the container 40 and hits the inner surface 41, which efficiently effects cleaning of the inner surface 41. Generally, when cleaning is effected the cleaning liquid in the container 40 does not cover the rotary head 106, i.e. the rotary head 106 and the nozzles 112 are then not submersed in a liquid content.

    [0028] The motor 21 and the impeller 109 form a drive member 21, 109 that provides the rotations in the first R1 and in the second R2 directions. The mixer 100 comprises the processing unit 30 for controlling the drive member 21, 109. In detail, the processing unit 30 has a central processing unit 31 (CPU) that is connected to and controls an inpuUoutput device 36 (I/O). The input/output device 36 is in turn connected to the motor 21 and to the pump 54. The CPU 31 is a central processing unit or microprocessor of a conventional type and represents the portion of the processing unit 30 that is capable of carrying out instructions of a computer program, and is the primary element carrying out the functions of the processing unit 30.

    [0029] A computer readable medium 32 (also referred to as a memory unit) in the form of e.g. a flash memory, a hard disk or an EEPROM (Electronically Erasable Programmable Read-only Memory) is connected to the CPU 31, and a computer program 33 having software instructions implementing one or more software applications are stored on the computer readable medium 32. The computer readable medium 32 may store various data and control parameters, and the software instructions 33 typically include software instructions that implement the functionality for the processing unit 30 described herein. The software instructions 33 include a module 34 for controlling the motor 21 and a module 35 for controlling the pump 54. In this context, controlling the pump 54 means that a flow of the liquid L is controlled. Since the flow of liquid controls a rotational movement of the impeller 109, the processing unit 30 thereby controls the impeller 109, i.e. the processing unit 30 controls the drive member 109 in form of the impeller.

    [0030] The processing unit 30 is in addition implemented according to common standards within the field of industrial communication including e.g. Ethernet technology. This includes support for communication with a control station 70 in form of e.g. a conventional personal computer, for example via the input/output device 36. This also includes a capability of the processing unit 30 to send a signal Sm to the motor 21 which in response to the signal Sm operates at a predetermined number of revolutions per minute, as well as a capability to send a signal Sp to the pump 54, which in response to the signal Sp operates at a rate that generates a predetermined flow rate of the flow of the liquid L to be ejected into the container 40.

    [0031] Also, the processing unit 30 may comprise a programmable interface 38 that allows an operator to input operation parameters in a memory unit like the memory unit 32 and/or in another memory unit like the memory unit 39 described further on. The operation parameters may then be inputted directly by the processing unit 30 or via e.g. the control station 70. The processing unit 30 is thus capable of, i.e. configured to, receive and store operation parameters representative of mixing of a liquid content of the container, respectively operation parameters representative of cleaning of an inner surface of the container. The programmable interface may alternatively be implemented in the control station 70.

    [0032] The software instructions 33, i.e. a computer program code for carrying out the operations of the processing unit 30 described herein may for development convenience be written in a high-level programming language such as Java, C, and/or C++ but also in other programming languages, such as, but not limited to, interpreted languages. Some modules or routines for the operation of the processing unit 30 may be written in assembly language or micro-code to enhance performance and/or memory usage. It will be further appreciated that functional steps performed by the processing unit 30 may be implemented by using one or more processor, such as e.g. the CPU 31, discrete hardware components, one or more application specific integrated circuits, signal processors or microcontrollers.

    [0033] The control station 70 has access to a memory unit 39 (i.e. a computer readable medium) in the form of e.g. a flash memory, a hard disk or an EEPROM that stores a number of operation parameters. The operation parameters may be transmitted to and used by the processing unit 30 for operating the drive member 21, 54 in form of the motor 21 and the pump 54. The operation parameters are structured according to a predetermined type of operation (A, B, C, D), where each type of operation represents, i.e. are indicative of, mixing of a predetermined type of liquid or cleaning of predetermined type of liquid. Each type of operation is for this embodiment associated with a rotational speed of the motor 21, a flow rate produced by the pump 54 and possibly also a time value or another stopping criterion that indicates for how long the type of operation shall commence. For example, operation A indicates that the motor 21 shall be operated (run) at a rotational speed of ωA revolutions per minute, that the pump 54 shall produce a flow rate of qA m3/hour of the liquid L, and that the motor 21 and pump 54 shall be operated for tA number of minutes.

    [0034] A first operation parameter thus comprises operation parameters wA, qA and optionally also tA. As will be described later, in some embodiments it is sufficient that the first operation comprises only qA. The first operation parameter wA, qA, tA is, as indicated, associated with a predetermined type of operation A that indicates mixing or cleaning of a predetermined liquid. Correspondingly, a second operation parameter wB, qB, tB is associated with a predetermined type of operation B (that is different from operation A) indicates mixing or cleaning of a predetermined liquid. ωA, wB are typically carried to the motor 21 by the signal Sm sent to the motor 21 while qA, qB are carried to the pump via the signal Sp sent to the pump 54.

    [0035] The disclosed operation parameters serve as an illustrating embodiment and other parameters may be implemented as well. For example, time dependant control parameters may be used, such that the rotational speed of the motor 21 and/or the flow rate of a flow of the liquid L produced by the pump 54 vary over time. This includes that the rotational speed of the motor 21 and/or that the flow rate produced by the pump 54 may be set to zero at periods, for example at regular intervals. In any case, the different operation parameters in the memory unit 39 are still associated with a type of operation in form of mixing of the liquid content 48 or cleaning of the inner surface 41, and with a type of a liquid to be mixed or cleaned off from the inner surface 41. Examples of types of a liquids are beer, milk, crude oil, kerose and all other liquids used in industrial processes where mixing and cleaning are required. Examples of types of operations are mixing, cleaning, different grades and rates of mixing and cleaning.

    [0036] The memory unit 39 for the operation parameters may be seen as comprised in the system 2 even though it is illustrated as connected to the control station 70. Additionally or alternatively, the control station 70 may be comprised in the system 2. Also, the memory unit 39 for the operation parameters may be omitted by storing the operation parameters directly in the memory unit 32 of the processing unit 30, which then may directly obtain the operation parameters without communicating with the control station 70. In any case, at some point in time the processing unit 30 receives from a memory unit the operations parameters. As described, the ejection into the container 40 may be an ejection that effects either mixing or cleaning.

    [0037] An effect of predetermined operation parameters is that liquid is ejected into the container 40 in a predetermined pattern. The predetermined pattern determines how well the liquid content 48 is mixed or how well the inner surface 41 of the container 40 is cleaned. The pattern describes, as a function of time, in what directions the liquid L is ejected from the nozzles 112, and is a result of rotations in the directions R1 and R2. Thus, the control of the drive unit 21, 54 causes the liquid L to be ejected into the container 40 in a predetermined pattern. Exactly which predetermined pattern is best for mixing or for cleaning of a certain liquid is typically empirically determined by running the drive unit 21, 54 at different operation parameters and by observing the result for various liquids. When a satisfying result has been found, the operation parameters are noted and stored in the memory unit 39. Reference is made to patent document EP1324818 A1 for more information in respect of ejection of a liquid in a predetermined pattern.

    [0038] Typically, operation parameters for mixing and cleaning of various liquids may be stored in a knowledge database maintained by a manufacturer of the system 2. The shape of the container 40 may sometimes be relevant for the cleaning or mixing and one knowledge database may then be created for each type of container. In any case, the memory unit 39 may typically be loaded with information from such a knowledge database, which reduces the need of empirically determining suitable operation parameters.

    [0039] A sensor unit 37 is connected to the tank 40 for sending to the processor unit 30, via the input/output device 36, a signal Ss that is indicative of a property of the liquid content 48 in the tank 40. Examples of properties may be a temperature, a pH-value, a viscosity value, a molecule level indicative of toxins, nutrients, pheromones, glucose, oxygen or osmolality etc., and the sensor unit 37 is of a type that is suitable for detecting one or more of the exemplified properties or another property. The sensor unit 37 is connected to the input/output device 36 that receives the signal Ss. The signal Ss is then indicative of a property of the liquid content 48 of the tank 40, and the processing unit 30 controls the motor 21 and/or the pump 54 in response to the signal Ss. This control typically comprises altering how the liquid L is ejected into the container 40, e.g. by increasing or decreasing a rotational speed of the motor 21 and/or a flow rate produced by the pump 54.

    [0040] With reference to Fig. 2 a method for ejecting the liquid L into the container 40 is illustrated. The method is performed by the system 2 and comprises a number of iteratively performed steps where, in a first step 204 in a first iteration, the processing unit 30 receives e.g. the first operation parameter ωA, qA, tA associated with operation A. The first operation parameter ωA, qA, tA includes in this embodiment at least one of an operation parameter wA for the rotational speed of the motor 21 and an operation parameter qA for the pump 54. The first operation parameter may also include a time parameter tA that indicates how long the operations parameters wA, qA are valid. Generally, the first operation parameter ωA, qA, tA is received by the processing unit 30 and from the memory unit 39, or is directly received or obtained from the memory unit 32 in the processing unit 30 if the parameter is stored there.

    [0041] In a next step 206 the motor 21 and the pump 54 are controlled according to the first operation parameter, or more precisely according to the operation parameter ωA for the rotational speed of the motor 21 and the operation parameter qA for the pump 54, such that the liquid L is ejected into the container 40 in a first predetermined pattern.

    [0042] In a final step 208 it is determined if the control of the motor 21 and the pump 54 shall be stopped, i.e. if the ejection of the liquid L is complete. A stopping criteria may include determining of a lapsed time t exceeds the time parameter tA.

    [0043] Thereafter the method is reiterated and steps 204, 206 and 208 are performed again. However, in the next iteration a new, second operation parameter is received, e.g. the second operation parameter ωB, qB, tB associated with operation B, and the motor 21 and the pump 54 are controlled accordingly until the associated stopping criterion is fulfilled.

    [0044] Generally, a first operation parameter (associated with e.g. operation A) represents and effects mixing of a liquid content in the container 40 when the rotary head 106 is submersed in the liquid content 48. Naturally, the container 40 is filled with the liquid content 48 before the mixing is performed. A next operation parameter (associated with e.g. operation B) represents and effects cleaning of the inner surface 41 of the container 40. Naturally, between the iterations of the method the mixed content 48 is expelled from the container 40 and a cleaning liquid is ejected or fed into the container 40.

    [0045] Filling of a content to be mixed, ejecting a mixed content respectively filling and ejecting a cleaning liquid may be accomplished as previously described. The filling and ejection operations are typically controlled by the control station 70, by the control unit 30 or by another system for process control.

    [0046] With reference to Fig. 3 another embodiment of a rotary head 206 for the system of Fig. 1 is illustrated. The rotary head 206 is arranged at a lower end of a pipe 201 that is similar to the pipe 101 of Fig. 1. The rotary head 206 comprises a ball-shaped body 207 that is connected to the pipe 201 via a bearing 208 that allows the rotary head 206 to rotate in a first direction about an axis A1 that is parallel to the pipe 201. Liquid may enter the rotary head 206 from the pipe 210 and is ejected from the rotary head 206 via a number of slits 271-274 in the body 207. The slits 271-274 eject, in a conventional manner, the fluid in directions that effects a rotational movement of the rotary head 206, and, as known within the art, a predetermined flow of the liquid effects a predetermined rotational speed of the rotary head 206. From this follows that the slits 271-274 form a drive member that provides rotation of the rotary head 206 about the axis A1, such that liquid is ejected into the container in a predetermined pattern.

    [0047] In this embodiment no motor like the motor 21 of Fig. 1 is required and the processing unit 30 receives a first operation parameter that indicates a flow rate of the liquid L and possibly also a stopping criteria. Naturally, in this case the memory unit 39 does not include any parameter for operating the motor 21 of Fig. 1. Apart from a different rotary head and operation without a motor, the embodiments are similar.


    Claims

    1. A method for mixing and cleaning by ejecting liquid (L) in a container (40), the method performed by a system comprising a mixer (100) having an inlet (103) for receiving liquid (L), and a rotary head (106) fitted with a nozzle (112) for ejecting liquid (L) into the container (40), at least one drive member (21 ; 109) for rotating the rotary head (106) about at least one axis (A1, A2) such that liquid (L) is ejected into the container (40) in a predetermined pattern, and a processing unit (30), the method comprising

    - receiving (204) a first operation parameter (ωA; qA) representative of mixing of a liquid content (48) of the container (40) when the rotary head (106) is submersed in the liquid content (48),

    - controlling (206) the drive member (21; 109) in response to the first operation parameter (ωA; qA), such that liquid (L) is ejected into the container (40) in a first predetermined pattern and mixing of the liquid content (48) is effected,

    - receiving (204) a second operation parameter (ωB; qB) representative of cleaning of an inner surface (41) of the container (40) after the liquid content (48) is expelled from the container (40), and

    - controlling (206) the drive member (21; 109) in response to the second operation parameter (ωB; qB), such that liquid (L) is ejected into the container (40) in a second predetermined pattern and cleaning of the inner surface (41) of the container (40) is effected, wherein
    the system (2) comprises a memory unit (39) that stores a number of different operation parameters, where each operation parameter is associated with a type of operation in form of mixing of a liquid content (48) or cleaning of the inner surface (41), and a type of a liquid to be mixed or cleaned off from the inner surface (41).


     
    2. A method according to claim 1, wherein the rotary head (106) is, during mixing of the content (48) of the container (40), operable to eject the liquid (L) into the container (40) when the rotary head (106) and its nozzle (112) are fully submersed in the liquid content (48).
     
    3. A method according to claim 1 or 2, wherein
    the drive member (21; 109) comprises a motor (21) configured to rotate the rotary head (106) about a first axis (A1), and
    the processing unit (30) is configured to control the motor (21) and thereby control the rotation of the rotary head (106) about the first axis (A1).
     
    4. A method according to any one of claims 1 - 3, wherein
    the drive member (21; 109) comprises an impeller (109) configured to rotate the rotary head (106) about a second axis (A2) in response to a flow of liquid (L) to be ejected into the container (40), and
    the processing unit (30) is configured to control a pump (54) that generates the flow of liquid (L) to be ejected into the container (40), and thereby control the impeller (109) and the rotation of the rotary head (106) about the second axis (A2).
     
    5. A method according to any one of claims 1 - 4, wherein the first operation parameter (ωA; qA) is indicative of
    a first rotational speed (ωA) of the motor (21) and
    a first flow rate (qA) of a flow of liquid (L) to be ejected into the container (40).
     
    6. A method according to claim 5, wherein the second operation parameter (ωB; qB) is indicative of
    a second rotational speed (ωB) of the motor (21), which second rotational speed (ωB) is different from the first rotational speed (ωA), and
    a second flow rate (qB) of a flow of liquid (L) to be ejected into the container (40), which second flow rate (qB) is different from the first flow rate (qA)
     
    7. A method according to claim 1, wherein the processing unit (30) is configured to, in dependence of the type of operation, receive from the memory unit (39) an operation parameter that is indicative of a rotational speed of the motor (21).
     
    8. A method according to claim 1 or 7, wherein the processing unit (30) is configured to, in dependence of the type of operation, receive from the memory unit (39) an operation parameter that is indicative of a flow rate of a flow of liquid (L) to be ejected into the container (40).
     
    9. A method according to any one of claims 1, 7 or 8, wherein the processing unit (30) is configured to, in dependence of the type of liquid, receive from the memory unit (39) an operation parameter that is indicative of a rotational speed of the motor (21).
     
    10. A method according to any one of claims 1 or 7 - 9, wherein the processing unit (30) is configured to, in dependence of the type of liquid, receive from the memory unit (39) an operation parameter that is indicative of a flow rate of a flow of liquid (L) to be ejected into the container (40).
     
    11. A method according to any one of claims 1 - 10, wherein the processing unit (30) comprise a programmable interface (38) for receiving and storing

    - operation parameters representative of mixing of a liquid content (48) of the container (40), and

    - operation parameters representative of cleaning of an inner surface (41) of the container (40).


     
    12. A method according to any one of claims 1 - 11, comprising a sensor unit (37) that is connected to the tank (40) and configured to send to the processing unit (30) a signal (Ss) indicative of a property of the liquid content (48) of the tank (40), wherein the processing unit (30) is configured to control the drive member (21; 109) in response to the signal (Ss) for altering how liquid (L) is ejected into the container (40).
     


    Ansprüche

    1. Verfahren zum Mischen und Reinigen durch Eintragen von Flüssigkeit (L) in einen Behälter (40), wobei das Verfahren von einem System durchgeführt wird, das einen Mischer (100) mit einem Einlass (103) zum Aufnehmen von Flüssigkeit (L) und einem sich drehenden Kopf (106), der mit einer Düse (112) zum Eintragen von Flüssigkeit (L) in den Behälter (40) versehen ist, mindestens ein Antriebselement (21; 109) zum Drehen des sich drehenden Kopfs (106) um mindestens eine Achse (A1, A2), sodass Flüssigkeit (L) in einem vorher festgelegten Muster in den Behälter (40) eingetragen wird, sowie eine Verarbeitungseinheit (30) umfasst, wobei das Verfahren Folgendes umfasst:

    - Empfangen (204) eines ersten Betriebsparameters (ωA; qA), der das Mischen eines flüssigen Inhalts (48) des Behälters (40), wenn der sich drehende Kopf (106) in dem flüssigen Inhalt (48) eingetaucht ist, darstellt,

    - Steuern (206) des Antriebselements (21; 109) als Reaktion auf den ersten Betriebsparameter (ωA; qA), sodass Flüssigkeit (L) in einem ersten vorher festgelegten Muster in den Behälter (40) eingetragen wird und das Mischen des flüssigen Inhalts (48) erfolgt,

    - Empfangen (204) eines zweiten Betriebsparameters (ωB; qB), der das Reinigen einer Innenfläche (41) des Behälters (40), nachdem der flüssige Inhalt (48) aus dem Behälter (40) ausgetragen ist, darstellt, und

    - Steuern (206) des Antriebselements (21; 109) als Reaktion auf den zweiten Betriebsparameter (ωB; qB), sodass Flüssigkeit (L) in einem zweiten vorher festgelegten Muster in den Behälter (40) eingetragen wird und die Reinigung der Innenfläche (41) des Behälters (40) erfolgt, wobei
    das System (2) eine Speichereinheit (39) umfasst, die mehrere unterschiedliche Betriebsparameter speichert, wo jeder Betriebsparameter einer Betriebsart in Form des Mischens eines flüssigen Inhalts (48) oder des Reinigens der Innenfläche (41) und einer Art einer zu mischenden oder von der Innenfläche (41) zu reinigenden Flüssigkeit zugehörig ist.


     
    2. Verfahren nach Anspruch 1, wobei der sich drehende Kopf (106), während des Mischens des Inhalts (48) des Behälters (40), so betreibbar ist, dass er die Flüssigkeit (L) in den Behälter (40) einträgt, wenn der sich drehende Kopf (106) und seine Düse (112) vollständig in dem flüssigen Inhalt (48) eingetaucht sind.
     
    3. Verfahren nach Anspruch 1 oder 2, wobei
    das Antriebselement (21; 109) einen Motor (21) umfasst, der so eingerichtet ist, dass er den sich drehenden Kopf (106) um eine erste Achse (A1) dreht, und
    die Verarbeitungseinheit (30) so eingerichtet ist, dass sie den Motor (21) steuert und dadurch die Drehung des sich drehenden Kopfs (106) um die erste Achse (A1) steuert.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, wobei
    das Antriebselement (21; 109) einen Impeller (109) umfasst, der so eingerichtet ist, dass er den sich drehenden Kopf (106) als Reaktion auf einen Strom von Flüssigkeit (L), die in den Behälter (40) eingetragen werden soll, um eine zweite Achse (A2) dreht, und
    die Verarbeitungseinheit (30) so eingerichtet ist, dass sie eine Pumpe (54) steuert, die den Strom von Flüssigkeit (L) erzeugt, die in den Behälter (40) eingetragen werden soll, und dadurch den Impeller (109) und die Drehung des sich drehenden Kopfs (106) um die zweite Achse (A2) steuert.
     
    5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der erste Betriebsparameter (ωA; qA) Folgendes anzeigt:

    eine erste Drehzahl (ωA) des Motors (21) und

    einen ersten Durchfluss (qA) eines Stroms von Flüssigkeit (L), die in den Behälter (40) eingetragen werden soll.


     
    6. Verfahren nach Anspruch 5, wobei der zweite Betriebsparameter (ωB; qB) Folgendes anzeigt:

    eine zweite Drehzahl (ωB) des Motors (21), wobei sich die zweite Drehzahl (ωB) von der ersten Drehzahl (ωA) unterscheidet, und

    einen zweiten Durchfluss (qB) eines Stroms von Flüssigkeit (L), die in den Behälter (40) eingetragen werden soll, wobei sich der zweite Durchfluss (qB) von dem ersten Durchfluss (qA) unterscheidet.


     
    7. Verfahren nach Anspruch 1, wobei die Verarbeitungseinheit (30) so eingerichtet ist, dass sie in Abhängigkeit von der Betriebsart, von der Speichereinheit (39) einen Betriebsparameter empfängt, der eine Drehzahl des Motors (21) anzeigt.
     
    8. Verfahren nach Anspruch 1 oder 7, wobei die Verarbeitungseinheit (30) so eingerichtet ist, dass sie in Abhängigkeit von der Betriebsart, von der Speichereinheit (39) einen Betriebsparameter empfängt, der einen Durchfluss eines Stroms von Flüssigkeit (L) anzeigt, die in den Behälter (40) eingetragen werden soll.
     
    9. Verfahren nach einem der Ansprüche 1, 7 oder 8, wobei die Verarbeitungseinheit (30) so eingerichtet ist, dass sie in Abhängigkeit von der Flüssigkeitsart, von der Speichereinheit (39) einen Betriebsparameter empfängt, der eine Drehzahl des Motors (21) anzeigt.
     
    10. Verfahren nach einem der Ansprüche 1 oder 7 bis 9, wobei die Verarbeitungseinheit (30) so eingerichtet ist, dass sie in Abhängigkeit von der Flüssigkeitsart, von der Speichereinheit (39) einen Betriebsparameter empfängt, der einen Durchfluss eines Stroms von Flüssigkeit (L) anzeigt, die in den Behälter (40) eingetragen werden soll.
     
    11. Verfahren nach einem der Ansprüche 1 bis 10, wobei die Verarbeitungseinheit (30) eine programmierbare Schnittstelle (38) umfasst zum Empfangen und Speichern von

    - Betriebsparametern, die das Mischen eines flüssigen Inhalts (48) des Behälters (40) darstellen, und

    - Betriebsparametern, die das Reinigen einer Innenfläche (41) des Behälters (40) darstellen.


     
    12. Verfahren nach einem der Ansprüche 1 bis 11, das eine Sensoreinheit (37) umfasst, die mit dem Behälter (40) verbunden ist und so eingerichtet ist, dass sie der Verarbeitungseinheit (30) ein Signal (Ss) sendet, das eine Eigenschaft des flüssigen Inhalts (48) des Behälters (40) anzeigt, wobei die Verarbeitungseinheit (30) so eingerichtet ist, dass sie das Antriebselement (21; 109) als Reaktion auf das Signal (Ss) steuert, um zu verändern, wie Flüssigkeit (L) in den Behälter (40) eingetragen wird.
     


    Revendications

    1. Procédé de mélange et de nettoyage par éjection de liquide (L) dans un conteneur (40), le procédé étant exécuté par un système comprenant un mélangeur (100) présentant une entrée (103) pour recevoir du liquide (L), et une tête rotative (106) équipée d'une buse (112) pour éjecter du liquide (L) dans le conteneur (40), au moins un élément d'entraînement (21 ; 109) pour faire tourner la tête rotative (106) autour d'au moins un axe (A1, A2) de sorte que du liquide (L) est éjecté dans le conteneur (40) selon un motif prédéterminé, et une unité de traitement (30), le procédé comprenant

    - recevoir (204) un premier paramètre de fonctionnement (ωA ; qA) représentant le mélange d'un contenu liquide (48) du conteneur (40) quand la tête rotative (106) est immergée dans le contenu liquide (48),

    - commander (206) l'élément d'entraînement (21 ; 109) en réaction au premier paramètre de fonctionnement (ωA ; qA), de sorte que du liquide (L) est éjecté dans le conteneur (40) selon un premier motif prédéterminé et que le mélange du contenu liquide (48) est réalisé,

    - recevoir (204) un second paramètre de fonctionnement (ωB ; qB) représentant le nettoyage d'une surface intérieure (41) du conteneur (40) après que le contenu liquide (48) est expulsé du conteneur (40), et

    - commander (206) l'élément d'entraînement (21 ; 109) en réaction au second paramètre de fonctionnement (ωB ; qB), de sorte que du liquide (L) est éjecté dans le conteneur (40) selon un second motif prédéterminé et que le nettoyage de la surface intérieure (41) du conteneur (40) est réalisé, dans lequel
    le système (2) comprend une unité de mémoire (39) qui enregistre un nombre de paramètres de fonctionnement différents, chaque paramètre de fonctionnement étant associé à un type de fonctionnement se présentant sous forme du mélange d'un contenu liquide (48) ou du nettoyage de la surface intérieure (41), et à un type d'un liquide destiné à être mélangé ou nettoyé de la surface intérieure (41).


     
    2. Procédé selon la revendication 1, dans lequel la tête rotative (106) peut, pendant le mélange du contenu (48) du conteneur (40), être actionnée de façon à éjecter le liquide (L) dans le conteneur (40) quand la tête rotative (106) et sa buse (112) sont entièrement immergées dans le contenu liquide (48).
     
    3. Procédé selon la revendication 1 ou 2, dans lequel
    l'élément d'entraînement (21 ; 109) comprend un moteur (21) configuré pour faire tourner la tête rotative (106) autour d'un premier axe (A1), et
    l'unité de traitement (30) est configurée pour commander le moteur (21) et commander ainsi la rotation de la tête rotative (106) autour du premier axe (A1).
     
    4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel
    l'élément d'entraînement (21 ; 109) comprend un rotor (109) configuré pour faire tourner la tête rotative (106) autour d'un second axe (A2) en réaction à un flux de liquide (L) destiné à être éjecté dans le conteneur (40), et
    l'unité de traitement (30) est configurée pour commander une pompe (54) qui génère le flux de liquide (L) destiné à être éjecté dans le conteneur (40), et commander ainsi le rotor (109) et la rotation de la tête rotative (106) autour du second axe (A2).
     
    5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le premier paramètre de fonctionnement (ωa ; qA) indique
    une première vitesse de rotation (ωA) du moteur (21) et
    un premier débit (qA) d'un flux de liquide (L) destiné à être éjecté dans le conteneur (40).
     
    6. Procédé selon la revendication 5, dans lequel le second paramètre de fonctionnement (ωB ; qB) indique
    une seconde vitesse de rotation (ωB) du moteur (21), laquelle seconde vitesse de rotation (ωB) est différente de la première vitesse de rotation (ωA), et
    un second débit (qB) d'un flux de liquide (L) destiné à être éjecté dans le conteneur (40), lequel second débit (qB) est différent du premier débit (qA).
     
    7. Procédé selon la revendication 1, dans lequel l'unité de traitement (30) est configurée pour, en fonction du type de fonctionnement, recevoir de l'unité de mémoire (39) un paramètre de fonctionnement qui indique une vitesse de rotation du moteur (21).
     
    8. Procédé selon la revendication 1 ou 7, dans lequel l'unité de traitement (30) est configurée pour, en fonction du type de fonctionnement, recevoir de l'unité de mémoire (39) un paramètre de fonctionnement qui indique un débit d'un flux de liquide (L) destiné à être éjecté dans le conteneur (40).
     
    9. Procédé selon l'une quelconque des revendications 1, 7 ou 8, dans lequel l'unité de traitement (30) est configurée pour, en fonction du type de liquide, recevoir de l'unité de mémoire (39) un paramètre de fonctionnement qui indique une vitesse de rotation du moteur (21).
     
    10. Procédé selon l'une quelconque des revendications 1 ou 7 à 9, dans lequel l'unité de traitement (30) est configurée pour, en fonction du type de liquide, recevoir de l'unité de mémoire (39) un paramètre de fonctionnement qui indique un débit d'un flux de liquide (L) destiné à être éjecté dans le conteneur (40).
     
    11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel l'unité de traitement (30) comprend une interface programmable (38) pour recevoir et enregistrer

    - des paramètres de fonctionnement représentant le mélange d'un contenu liquide (48) du conteneur (40), et

    - des paramètres de fonctionnement représentant le nettoyage d'une surface intérieure (41) du conteneur (40).


     
    12. Procédé selon l'une quelconque des revendications 1 à 11, comprenant une unité de détection (37) qui est raccordée au réservoir (40) et configurée pour envoyer à l'unité de traitement (30) un signal (Ss) indiquant une propriété du contenu liquide (48) du réservoir (40), dans lequel l'unité de traitement (30) est configurée pour commander l'élément d'entraînement (21 ; 109) en réaction au signal (Ss) pour modifier la manière dont le liquide (L) est éjecté dans le conteneur (40).
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description