(19)
(11)EP 1 109 198 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.01.2011 Bulletin 2011/01

(21)Application number: 00310626.7

(22)Date of filing:  30.11.2000
(51)Int. Cl.: 
H01J 49/06  (2006.01)

(54)

Mass spectrometer system including a double ion guide interface and method of operation

Massenspektrometer mit doppelter Ionenleiterschnittstelle und Vorrichtung zur Verwendung desselben

Spectromètre de masse ayant une interface avec deux guides d'ions et méthode de mise en oeuvre


(84)Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

(30)Priority: 03.12.1999 US 454273
16.11.2000 US 715815

(43)Date of publication of application:
20.06.2001 Bulletin 2001/25

(60)Divisional application:
10183513.0

(73)Proprietor: THERMO FINNIGAN LLC
San Jose, California 95134-1991 (US)

(72)Inventors:
  • Tang, Keqi
    Richland, Washington 99352 (US)
  • Schoen, Alan E.
    Saratoga, California 95070 (US)
  • Dunyach, Jean-Jacques
    San Jose, California 95134 (US)

(74)Representative: Cross, Rupert Edward Blount et al
Boult Wade Tennant Verulam Gardens 70 Gray's Inn Road
London WC1X 8BT
London WC1X 8BT (GB)


(56)References cited: : 
EP-A- 0 898 297
US-A- 5 304 798
US-A- 5 652 427
WO-A-98/06481
US-A- 5 432 343
US-A- 5 744 798
  
  • NIESSEN W M A: "Advances in instrumentation in liquid chromatography-mass spectrometry and related liquid-introduction techniques" JOURNAL OF CHROMATOGRAPHY A, ELSEVIER, AMSTERDAM, NL, vol. 794, no. 1-2, 23 January 1998 (1998-01-23), pages 407-435, XP004115410 ISSN: 0021-9673
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the Invention



[0001] This invention relates generally to mass spectrometry, and more particularly to mass spectrometers employing atmospheric pressure ion sources such as electrospray or atmospheric pressure chemical ionization. More particularly, the invention relates to the use of two consecutive ion guides between the ion source and the mass analyzer to dissociate adduct ions, thus increasing the ion current for the analytically useful molecular species.

Background of the Invention



[0002] Generally, the interface between the atmospheric pressure ion source and the mass analyzer includes a capillary tube or other restrictive aperture which determines ion and gas throughput between the atmospheric pressure ionization region and a lower pressure region. The ions are drawn through the capillary or other restrictive aperture and directed to a downstream conical skimmer with a small aperture through which the sample ions flow. A tube lens or other electrostatic or electrodynamic focusing element may be associated with the capillary of force ions to the center of the jet stream leaving the capillary to thereby increase the ion transmission through the aperture of the skimmer. Reference is made to U.S. Patent No. 5,157,260 which describes the operation of an atmospheric pressure ionization source, capillary lens and conical skimmer. One or more vacuum stages are interposed between the skimmer and the mass analyzer which is operated at vacuum pressures in the free molecular flow region.

[0003] The prior art interface vacuum stages have included ion guides to transfer the Ions through the stages of decreasing pressure into the mass analyzer. In many prior art systems, the ions are guided by electrostatic lenses. In other systems, the ions are guided by electrodynamic multipole ion guides.

[0004] The use of an r.f.-only octopole ion guide for focusing and guiding ion beams has been described by Teloy and Gerlich (Chem. Phys., Vol. 4, p. 417, 1974) and Jarrold et. Al. (Mol. Phys., Vol. 39, p. 787, 1980).

[0005] The dissociation of mass selected ions in an r.f.-only quadrupole by collision with a target gas at low translational energies (Elab < about 100 eV) has been described by R. A. Yost and C. G. Enke et. Al. (Anal. Chem., Vol. 51, p. 1251a, 1979), and Dawson et. Al. (Int. J. Mass Spec. Ion Proc., Vol. 42, p. 195, 1982).

[0006] McIver et. Al. described the use of an r.f.-only quadrupole ion guide for guiding a beam of mass-selected ions into a Fourier-transform ion cyclotron resonance mass analyzer (Int. J. Mass Spec. Ion Proc., Vol 64, p. 67, 1985).

[0007] Szabo described the theory of operation for multipole ion guides with various electrode structures (Int. J. Mass Spec. Ion Proc., Vol 73, pp. 197-312, 1986).

[0008] Efficient transport of ions through vacuum chambers by multipole ion guides has been described by Smith et. Al. (Anal. Chem., Vol. 60, pp. 436-441, 1988).

[0009] Beu et. al. described the use of three quadrupole ion guides to transport ions from an atmospheric pressure ionization source through three vacuum pumping stages into a Fourier-transform ion cyclotron resonance mass analyzer (J. Am. Soc. Mass Spec., Vol. 4, pp. 557-565, 1993).

[0010] Niessen (Journal of Chromatography A, p407-435, 1998) reviews the development of atmospheric pressure ionization (API) sources.

[0011] U.S. Patent No. 4,963,736 describes the use of a multipole ion guide in the first pumping stage of a two-stage system. Operation of the multipole ion guide in certain length-times-pressure regimes is claimed for the purposes of enhancing ion signal. U.S. Patent No's. 5,179,278 and 5,811,800 describe the temporary storage of ions in an rf multipole rod system for subsequent analysis in an r.f. quadrupole ion trap mass spectrometer. This is done for the purpose of matching the time scales of compounds eluting from chromatographic or electrophoretic separation devices to the time scale of mass spectrometric analyses performed by an r.f. quadrupole ion trap.

[0012] U.S. Patent No.5,304,798 describes a housing for converting an electrospray ion source into a desolvated ion stream for analysis. Desolvation is claimed to be carried out by heating the housing.

[0013] U.S. Patent No. 5,432,343 describes an ion focusing lensing system for interfacing an atmospheric pressure ionization source to a mass spectrometer. It describes the use of an electrostatic lens in a transition flow pressure region of the interface, claiming benefit of independent adjustment of operating voltages controlling the collisionally induced dissociation and declustering processes. Enhancement of ion beam transmission into the mass analyzer is also claimed.

[0014] U.S. Patent No. 5,652,427 describes in one embodiment a system in which a multipole ion guide extends between two vacuum stages and in another embodiment a system which includes a multipole in each of two adjacent stages. Improved performance and lower cost are claimed.

[0015] U.S. Patent No. 5,744,798 discloses a mass spectrometer with a mass analyzer separated from an atmospheric pressure ion source by two differentially pumped ion guide free vacuum chambers.

[0016] U.S. Patent No. 5,852,294 describes the construction of a miniature multipole ion guide assembly.

[0017] A goal to be achieved in all single or multiple interface vacuum chambers is to transport as many protonated molecular cations or molecular anions as possible from the atmospheric pressure ionization source to the mass analyzer. However, many solvent adduct ions which are formed in the high pressure region travel through the interface vacuum chambers into the analyzer. The process of solvent adduction in the mass spectrometer system is generally considered to be a non-covalent association between sample ions of interest and neutral solvent molecules. Thus, in the case of introduction of an analyte into an electrospray or atmospheric pressure chemical ionization source, the ion current produced from that analyte may be divided between the protonated molecular cation or molecular anion and one or more solvent adduct species. Specific detection is usually accomplished by monitoring the ion signal, or derivative of that signal, for one specific mass. In the case where solvent adducts are formed, the limit of detection or limit of quantitation for the analyte is reduced.

[0018] Experimental evidence indicates that these adduct ions are predominantly formed in the high pressure regions of the system ranging from the API source region through the interface vacuum regions. The degree of adduction various directly with the pressures in these regions. The formation of adduct ions significantly reduces the abundance of sample analyte ions. Furthermore, the adduct ions which enter into the mass analyzer complicates the mass spectrum and make the identification of mass peaks more difficult.

Objects and Summary of the Invention



[0019] It is an object of the present invention to provide a mass spectrometer system employing an ion source with multiple ion guides configured and operated to convert adduct ions into sample ions and a method of operating multiple ion guides to convert adduct ions into sample ions to thereby increase the analyte ions current and sensitivity of the mass spectrometer system.

[0020] In accordance with a first aspect of the present invention there is provided a method as described in claim 1.

[0021] In accordance with a second aspect of the present invention, there is provided a mass spectrometer system as described in claim 6.

Brief Description of the Drawings



[0022] The foregoing and other objects of the invention will be more clearly understood from the following description when read in conjunction with the accompanying drawings in which:

Figure 1 is a schematic view of a mass spectrometer system including an atmospheric pressure ion source coupled to a tandem mass analyzer through evacuated interface chambers with multipole ion guides.

Figures 2A and 2B show the mass spectra for an injection of Alprazolam in a liquid stream flowing at 400 microliters per minute (µl/min) with -5V DC offset and -15V DC offset applied to the second ion guide.

Figures 3A and 3B show the mass spectra for an injection of Alprazolam in a liquid stream flowing at 1 milliliter per minute (ml/min) with -5V DC offset and -15V DC offset applied to the second ion guide.

Figures 4A and 4B show the mass spectra for an injection of codeine-d3 in a liquid stream flowing at 400 µl/min with -5V DC offset and -15V DC offset applied to the second ion guide.

Figures 5A and 5B show the mass spectra for an injection of codeine-d3 in a liquid stream flowing at 1 ml/min with -5V DC offset and -15V DC offset applied to the second ion guide.

Figures 6A and 6B show the mass spectra for an injection of acetaminophen in a liquid stream flowing at 400µl/min flow with -5V DC offset and -15 DC offset applied to the second ion guide.

Figures 7A and 7B show the mass spectra for an injection of Ibuprofen in a liquid stream flowing at 400 µl/min with +5V DC offset and +15 DC offset applied to the second ion guide.

Figure 8 is a schematic view of a mass spectrometer system as in Figure 1 with a single quadrupole mass analyzer rather than a tandem mass analyzer or other suitable mass analyzer.


Description of Preferred Embodiments



[0023] Referring to Figure 1, an atmospheric pressure ion source in chamber 11 is interfaced to a tandem mass analyzer 12 via three vacuum pumping stages. The first stage 13 which has the highest pressure is evacuated by an oil-filled rotary vane vacuum pump 14. Other types of vacuum pumps may also be used for this stage, such as a diaphragm pump or scroll pump. A typical pressure for first stage 13 is between 133 and 266 Pa (1-2. Torr). The second and third stages 16 and 17 are separated by a lens 18 with an orifice 19, which in one example was 1.5 mm in diameter, and can be evacuated by a hybrid or compound turbomolecular pump 21 which includes both turbomolecular and molecular drag pumping stages, and may have multiple inlets into each of these pumping stages, or by individual vacuum pumps (not shown). As will be explained in accordance with the present invention, the pressure in chamber 16 is below 66.67 Pa (500 mTorr), preferably below 33.33 Pa (250mTorr), and more preferably below 23.33 Pa (175 mTorr); and the pressure in chamber 17 is below 0.13 Pa (1 mTorr). The pressure in the tandem mass analyzer chamber is approximately 1.3x10-3 Pa (1x10-5 Torr) or below.

[0024] The atmospheric pressure ion source may be an electrospray ion source or atmospheric pressure chemical ionization source. With either ion source, sample liquid is introduced into the chamber 11, which is at atmospheric pressure, and ionized. The ions are drawn through a capillary 22, which may be heated, into chamber 13. The end of the capillary is opposite a conical skimmer 24 which includes a central orifice or aperture 26. The skimmer separates the low pressure stage 13 from the lower pressure stage 16. A portion of the ion and gas flow is skimmed from the free jet expansion leaving the capillary and enters the second lower pressure stage.
The ions which travel through the skimmer are guided into the mass analyzer by first and second multipole ion guides 27 and 28. In one example, the ion guides are square quadrupoles. The guide 27 is 31.75mm (1.25 inches long) and the guide 28 is 85.60mm (3.37 inches) with the rods separated by 3mm (0.118 inches. The ion guides are mounted coaxially using polycarbonate holders (not shown). The quadrupole ion guides are operated by applying AC voltages 31 and 32 to the poles which guide ions as is well known. Ions which enter the second and third stages drift under the influence of DC voltage 33 applied between the skimmer lens 24 and lens 18, by DC voltage 34 applied between the lens 18 and the lens 36, and by DC offset voltages applied to ion guides 27 and 28.

[0025] As discussed above, solvent adduct ions are formed in the high pressure regions ranging from the atmospheric pressure region to the quadrupole ion guide stages or regions. The degree of adduction is believed to vary directly with the pressure in these regions. The formation of adduct ions can significantly reduce the abundance of sample analyte ions which reach the analyzer. Consequently, effective conversion of the adduct ions into protonated molecular cations or molecular anions ions can greatly enhance the sample ion current and the sensitivity of the mass spectrometer system.

[0026] We have discovered that the solvent adduct ions can be dissociated and converted into sample ions in the second ion guide 28 by applying a small DC offset voltage between the ion guide 28 and the lens 18 to increase the energy of the solvent adduct ions. An additional 10 volts DC offset applied to the second ion guide (usually used with a standard 5 V DC offset) is sufficient to convert the solvent adducts into the protonated molecular cation or molecular anion for all compounds tested. In addition, this offset voltage is insufficient to cause fragmentation of the analyte ions at the pressure of the second stage.

[0027] Both pumping efficiency and solvent adduction were evaluated. The pumping requirement and vacuum condition on the double ion guide system were compared to a standard TSQ 7000 system sold by ThermoQuest Corporation under the same gas load conditions. Several different compounds including a) acetaminophen; b) Alprazolam; c) codeine-d3; d) ibuprofen were used to investigate the degree of solvent used in the experiment was 50:50 acetonitrile:water + 5mM ammonium acetate adjusted to a pH of 4.5. Table 1 lists the main experimental conditions, compound, molecular weight and type of solvent adduction investigated.
TABLE 1
CompoundMolecular WeightSolvent AdductIon PolarityLC Flow (µl/min)Sample Injected (ng)
Acetaminophen 151 Acetonitrile Positive 400 500
Alprazolam 308 Acetonitrile Positive 400 - 1000 1.6
Codeine-d3 302 Acetonitrile Positive 400 - 1000 50
Ibuprofen 206 Acetate Negative 200 50


[0028] Figures 2-7 show the comparative mass spectra for the four different compounds used in the evaluation under standard (±5 V DC) offset and an incremental 10 V DC (±15 V DC total) offset conditions between the interstage ion lens 18 and the second multipole ion guide 28 indicating that the signal intensity and peak area for the protonated molecular cations or molecular anions can be significantly enhanced by the application of the increased DC offset on the second multipole ion guide 28.

[0029] Figure 2A shows the mass scan for Alprazolam at 400 µl/min liquid chromatograph flow with the standard -5 volt offset, and Figure 2B shows Alprazolam with an incremental 10 volts of offset at the same flow rate. The increased sample ion signal produced by the incremental offset voltage is apparent.

[0030] Figures 3A and 3B show the mass spectra for Alprazolam at 1 ml/min flow. Again the increased sample ion current is apparent. Figures 4A and 4B show the mass spectra for codeine-d3 at 400 µl/min flow with the standard and increased offset voltages. The increased sample ion signal at m/z 302 is apparent. The same mass spectra are shown for 1 ml/min codeine-d3 in Figures 5A and 5B. Figures 6A and 6B show a comparison of the mass spectra for Acetaminophen at 400 µl/min flow with the standard and increased offset voltages. Again, the vast improvement in sensitivity is apparent. Figures 7A and 7B show the mass spectra for ibuprofen flowing at 400 µl/min flow with the standard and increased offset voltages. The improved signal at m/z 205 should be noted.

[0031] The DC offset required for high efficiency solvent adduct ion conversion at different vacuum conditions in both first chamber and second chamber was also investigated. The following tables summarize one set of tests in which the ration of the acetonitrile adduct to the protonated molecular cation of codeine-d3 was investigated at different pressures and different DC offset voltages on the second ion guides.
TABLE 2
DC offset on second ion guide (volts) -5 -5 -5 -5 -5
First ion guide pressure (Pa (mTorr) 81.19(609) 75.06(563) 66.93(502) 29.86 (224) 22.26 (167)
Second ion guide pressure Pa (mTorr) 0.21(1.6) 0.16(1.2) 0.13(1) 0.09(0.7) 0.07(0.5)
Ration of acetronitrile adduct ion to protonated molecular ion 704% 926% 288% 354% 248%
 
DC offset on second ion guide (volts) -15 -15 -15 -15 -15
First ion guide pressure (Pa (mTorr)) 81.19 (609) 75.06 (563) 66.93 (503) 29.86 (224) 22.26(167)
Second ion guide pressure (Pa (mTorr)) 0.21(1.6) 0.16(1.2) 0.13(1) 0.09(0.7) 0.07(0.5)
Ration of acetronitrile adduct ion to protonated molecular ion 445% 407% 82% 38% 17%
 
DC offset on second ion guide (volts) -35 -35 -35 -35 -35
First ion guide pressure (Pa (mTorr)) 81.19 (609) 75.06(563) 66.93(502) 29.86 (224) 22.26(167)
Second ion guide pressure (Pa (mTorr)) 0.21(1.6) 0.16(1.2) 0.13(1) 0.09(0.7) 0.07(0.5)
Ration of acetronitrile adduct ion to protonated molecular ion 300% 248% 40% 7% 3%


[0032] The bold data in Table 2 indicates the range of pressure and offset voltages at which the most efficient conversion of solvent adduct to protonated molecular cation is achieved. According to these results, the operating pressure for the ion guides should be:
First Ion Guide: below 66.67 Pa (500 mTorr)
Second Ion Guide: below 0.13 Pa (1 mTorr) and above 0.01 Pa (0.1 mTorr)


[0033] Although the offset voltage which provides the translational kinetic energy to the adduct ions has been described as applied between the interstage lens and the second multipole guide, it is apparent that the translational kinetic energy can be provided by applying DC offset voltages simultaneously between each lens and its respective multipole ion guide. The operating pressure will be the same as above.

[0034] The DC offset voltage range for efficient solvent adduction conversion should be ±10 to ±30 Volts, although ±10 V is preferable.

[0035] The preferred pressure range is less than 33.33 Pa (250 mTorr) for the first stage and 0.09 Pa (0.7 mTorr) for the second stage, and the most preferred pressure range is less than 23.33 Pa (175 mTorr) for the first stage, and 0.7 Pa (0.5 mTorr) for the second stage.

[0036] The present invention can be used for other types of mass analyzers such as quadrupole mass analyzers of the type described in U.S. Patent Nos. 4,540,884 and RE 34,000. Figure 8 shows the interface stages and ion guides associated with a quadrupole mass analyzer 41 disposed in the vacuum chamber 12. Like members have been applied to the parts which correspond to those in Figure 1. It is apparent that the invention is applicable to other types of mass analyzers such as quadrupole ion trap, ion cyclotron resonance (i.e., magnetic ion trap), time-of-flight, magnetic sector, and double-focusing magnetic/electric sector, monopole, etc.


Claims

1. A method of operating a mass spectrometer system including a mass analyzer (12) which analyzes sample ions formed at atmospheric pressure, and in which some sample ions and solvent molecules combine to form adduct ions with a reduction of sample ions, said system including first and second multipole ion guides (27, 28) disposed in serial first and second evacuated chambers (16, 17), a first ion lens (24) defining the first evacuated chamber (16, 17), and a second ion lens (18) separating the first evacuated chamber (16) and the second evacuated chamber (17) for guiding analyte ions into said mass analyzer (12), wherein the pressure in the first chamber is below 66.67 Pa (500 mTorr), and the pressure in the second chamber is below 0.13 Pa (1 mTorr); the method characterised by the step of:

applying a DC offset voltage between the second ion lens (18) and the second multipole ion guide (28) having an amplitude between 10 volts and 30 volts so as to provide translational kinetic energy to said adduct ions in an amount suitable to dissociate the adduct ions within the second chamber and at the pressure thereof, without fragmenting sample ions, to increase the sample ion current and the sensitivity of the mass spectrometer system.


 
2. A method as in claim 1 in which the pressure in the first chamber is less than 33.33 Pa (250 mTorr), and in the second chamber is less than 0.09 Pa (0.7 mTorr).
 
3. A method as in claim 1 in which the pressure in the first chamber is less than 23.33 Pa (175 mTorr), and in the second chamber is less than 0.07 Pa (0.5 mTorr).
 
4. A method as in claim 2 or 3 in which the offset voltage is ± 10 volts.
 
5. A method as in claim 1 to 3, wherein a DC offset voltage is simultaneously applied between the first ion lens (24) and the first multipole ion guide (27).
 
6. A mass spectrometer system including a mass analyser (12) disposed in a high vacuum chamber for analyzing ions formed at atmospheric pressure and directed to the analyzer (12) through intermediate vacuum chambers (13, 16, 17), in which sample ions and solvent molecules form adduct ions with a reduction of sample ion current, including:

first (16) and second (17) evacuated chambers directly preceding the mass analyzer (12) chamber with the first chamber (16) being at a higher pressure than the second chamber (17),

a first multipole ion guide (27) in the first chamber (16) for guiding ions into said second chamber (17),

a second multipole ion guide (28) in the second chamber (17) for guiding ions from the second chamber (17) into the high vacuum chamber for mass analysis,

a first ion lens (24) defining the first evacuated chamber (16, 17),

a second ion lens (18) separating the first evacuated chamber (16) and the second evacuated chamber (17),

means arranged to maintain a pressure in the first chamber below 66.67 Pa (500 mTorr), and a pressure in the second chamber below 0.13 Pa (1 mTorr), and characterised by

means arranged to apply a DC offset voltage between the second lens (18) and the second multipole ion guide (28) having an amplitude between 10 volts and 30 volts so as to increase the translational kinetic energy of the adduct ions entering the second chamber (17) by an appropriate amount so that at the vacuum pressure of the second chamber (17) adduct ions travelling into the chamber (17) are converted into protonated molecular cations or molecular anions without fragmentation of sample ions whereby to increase the sample ion current and therefore the sensitivity of the mass spectrometer system.


 
7. A mass spectrometer system as in claim 6, wherein a DC voltage is applied simultaneously between the first ion lens and the first multipole ion guide to increase the translational kinetic energy of the adduct ions entering the second interface chamber (17).
 


Ansprüche

1. Verfahren zum Betreiben eines Massenspektrometersystems einschließlich eines Massenanalysators (12), der bei atmosphärischem Druck ausgebildete Probenionen analysiert, und in dem sich Probenionen und Lösemittelmoleküle vereinigen, um Addukt-Ionen unter Reduktion von Probenionen auszubilden, wobei das System eine erste und zweite Mehrpol-Ionenführung (27, 28) enthält, die in einer seriellen ersten und zweiten evakuierten Kammer (16, 17) angeordnet sind, wobei eine erste Ionenlinse (24) die erste evakuierte Kammer (16, 17) definiert und eine zweite Ionenlinse (18) die erste evakuierte Kammer (16) und die zweite evakuierte Kammer (17) trennt, um Analytionen in den Massenanalysator (12) zu führen, wobei der Druck in der ersten Kammer unter 66,67 Pa (500 mTorr) liegt und der Druck in der zweiten Kammer unter 0,13 Pa (1 mTorr) liegt, wobei das Verfahren durch den folgenden Schritt gekennzeichnet ist:

Anlegen einer DC-Offsetspannung zwischen der zweiten Ionenlinse (18) und der zweiten Mehrpol-Ionenführung (28) mit einer Amplitude zwischen 10 Volt und 30 Volt, um den Addukt-Ionen eine kinetische Translationsenergie in einer Menge zu geben, die sich eignet, um die Addukt-Ionen in der zweiten Kammer und unter dem Druck davon zu dissoziieren, ohne Probenionen zu fragmentieren, um den Probenionenstrom und die Empfindlichkeit des Massenspektrometersystems zu vergrößern.


 
2. Verfahren nach Anspruch 1, wobei der Druck in der ersten Kammer unter 33,33 Pa (250 mTorr) und in der zweiten Kammer unter 0,09 Pa (0,7 mTorr) liegt.
 
3. Verfahren nach Anspruch 1, wobei der Druck in der ersten Kammer unter 23,33 Pa (175 mTorr) und in der zweiten Kammer unter 0,07 Pa (0,5 mTorr) liegt.
 
4. Verfahren nach Anspruch 2 oder 3, bei dem die Offsetspannung ±10 Volt beträgt.
 
5. Verfahren nach Anspruch 1 bis 3, wobei eine DC-Offsetspannung gleichzeitig zwischen der ersten Ionenlinse (24) und der ersten Mehrpol-Ionenführung (27) angelegt wird.
 
6. Massenspektrometersystem einschließlich einem Massenanalysator (12), in einer Hochvakuumkammer angeordnet, um bei Atmosphärendruck ausgebildete Ionen zu analysieren und sie zu dem Analysator (12) zu lenken durch Zwischenvakuumkammern (13, 16, 17), in denen Probenionen und Lösemittelmoleküle Addukt-Ionen bilden unter Reduktion des Probenionenstroms, beinhaltend:

eine erste (16) und zweite (17) evakuierte Kammer direkt vor der Kammer des Massenanalysators (12), wobei die erste Kammer (16) einen höheren Druck als die zweite Kammer (17) aufweist,

eine erste Mehrpol-Ionenführung (27) in der ersten Kammer (16) zum Führen von Ionen in die zweite Kammer (17),

eine zweite Mehrpol-Ionenführung (28) in der zweiten Kammer (17) zum Führen von Ionen von der zweiten Kammer (17) in die Hochvakuumkammer zur Massenanalyse,

eine erste Ionenlinse (24), die die erste evakuierte Kammer (16, 17) definiert,

eine zweite Ionenlinse (18), die die erste evakuierte Kammer (16) und die zweite evakuierte Kammer (17) trennt,

Mittel, die dafür ausgelegt sind, einen Druck in der ersten Kammer unter 66,67 Pa (500 mTorr) und einen Druck in der zweiten Kammer unter 0,13 Pa (1 mTorr) zu halten, und gekennzeichnet durch

Mittel, die dafür ausgelegt sind, eine DC-Offsetspannung zwischen der zweiten Linse (18) und der zweiten Mehrpol-Ionenführung (28) mit einer Amplitude zwischen 10 Volt und 30 Volt anzulegen, um die kinetische Translationsenergie der in die zweite Kammer (17) eintretenden Addukt-Ionen um ein entsprechendes Ausmaß zu vergrößern, so dass bei dem Vakuumdruck der zweiten Kammer (17) sich in die Kammer (17) bewegende Addukt-Ionen in protonierte Molekülkationen oder Molekülanionen ohne Fragmentierung von Probenionen umgewandelt werden, um dadurch den Probenionenstrom und deshalb die Empfindlichkeit des Massenspektrometersystems zu vergrößern.


 
7. Massenspektrometersystem nach Anspruch 6, wobei eine DC-Spannung gleichzeitig zwischen der ersten Ionenlinse und der ersten Mehrpol-Ionenführung angelegt wird, um die kinetische Translationsenergie der in die zweite Schnittstellenkammer (17) eintretenden Addukt-Ionen zu vergrößern.
 


Revendications

1. Procédé d'utilisation d'un système de spectromètre de masse qui présente un analyseur de masse (12) qui analyse des ions d'échantillon formés à pression atmosphérique et dans lequel certains ions d'échantillon et certaines molécules de solvant se combinent pour former des ions de réaction avec une réduction des ions d'échantillon,
ledit système comprenant un premier et un deuxième guide multipôle d'ions (27, 28) disposés dans une première et une deuxième chambre sous vide (16, 17) raccordées en série,
une première lentille (24) à ions définissant la première chambre sous vide (16, 17) et une deuxième lentille (18) à ions séparant la première chambre sous vide (16) de la deuxième chambre sous vide (17) pour amener les ions d'analyte dans ledit analyseur de masse (12),
la pression dans la première chambre étant inférieure à 66,67 Pa (500 mTorrs) et la pression dans la deuxième chambre étant inférieure à 0,13 Pa (1 mTorr),
le procédé étant caractérisé par l'étape qui consiste à :

appliquer entre la deuxième lentille (18) à ions et le deuxième guide multipôle (28) à ions une tension continue de décalage d'une amplitude comprise entre 10 volts et 30 volts de manière à délivrer auxdits ions de réaction un niveau d'énergie cinétique de translation qui permet de dissocier les ions de réaction dans la deuxième chambre à la pression de cette dernière sans fragmenter les ions d'échantillon, pour augmenter le courant d'ions d'échantillon et la sensibilité du système de spectromètre de masse.


 
2. Procédé selon la revendication 1, dans lequel la pression qui règne dans la première chambre est inférieure à 33,33 Pa (250 mTorrs) et dans la deuxième chambre inférieure à 0,09 Pa (0,7 mTorr).
 
3. Procédé selon la revendication 1, dans lequel la pression qui règne dans la première chambre est inférieure à 23,33 Pa (175 mTorrs) et dans la deuxième chambre inférieure à 0,07 Pa (0,5 mTorr).
 
4. Procédé selon les revendications 2 ou 3, dans lequel la tension de décalage est de ± 10 volts.
 
5. Procédé selon les revendications 1 à 3, dans lequel une tension continue de décalage est appliquée simultanément entre la première lentille (24) à ions et le premier guide multipôle (27) à ions.
 
6. Système de spectromètre de masse comprenant un analyseur de masse (12) disposé dans une chambre sous vide poussé pour analyser des ions formés à pression atmosphérique et envoyés vers l'analyseur (12) par l'intermédiaire de chambres (13, 16, 17) à vide intermédiaire dans lesquelles des ions d'échantillon et des molécules de solvant forment des ions de réaction avec une réduction du courant d'ions d'échantillon, le système comprenant :

une première (16) et une deuxième (17) chambre sous vide qui précèdent directement la chambre de l'analyseur de masse (12), la première chambre (16) étant à une pression plus élevée que la deuxième chambre (17),

un premier guide multipôle (27) à ions prévu dans la première chambre (16) pour envoyer les ions dans ladite deuxième chambre (17),

un deuxième guide multipôle (28) à ions prévu dans la deuxième chambre (17) pour envoyer les ions de la deuxième chambre (17) dans la chambre à vide poussé pour l'analyse de masse,

une première lentille (24) à ions définissant la première chambre sous vide (16, 17),

une deuxième lentille (18) à ions qui sépare la première chambre sous vide (16) de la deuxième chambre sous vide (17),

des moyens agencés pour maintenir dans la première chambre une pression inférieure à 66,67 Pa (500 mTorrs) et dans la deuxième chambre une pression inférieure à 0,13 Pa (1 mTorr),
le système étant caractérisé par

des moyens agencés pour appliquer entre la deuxième lentille (18) et le deuxième guide multipôle (28) à ions une tension continue de décalage d'une amplitude comprise entre 10 volts et 30 volts de manière à augmenter d'un niveau approprié l'énergie cinétique de translation des ions de réaction qui pénètrent dans la deuxième chambre (17), de telle sorte qu'à la dépression qui règne dans la deuxième chambre (17), les ions de réaction qui se déplacent dans la chambre (17) soient convertis en cations moléculaire protonés ou en anions moléculaires sans fragmentation des ions d'échantillon, pour ainsi augmenter le courant d'ions d'échantillon et donc la sensibilité du système de spectromètre de masse.


 
7. Système de spectromètre de masse selon la revendication 6, dans lequel une tension continue est appliquée simultanément entre la première lentille à ions et le premier guide multipôle à ions de manière à augmenter l'énergie cinétique de translation des ions de réaction qui pénètrent dans la deuxième chambre d'interface (17).
 




Drawing



























REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description