(19)
(11)EP 1 167 174 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
31.08.2005 Bulletin 2005/35

(21)Application number: 01115936.5

(22)Date of filing:  29.06.2001
(51)International Patent Classification (IPC)7B62M 9/10

(54)

Bicycle sprocket with chain support projections

Tragelement für eine Fahrradkettenschaltung

Elément de support de chaîne pour un ensemble de pignons pour bicyclette


(84)Designated Contracting States:
DE FR GB IE IT NL

(30)Priority: 30.06.2000 US 215769 P
18.05.2001 US 859741

(43)Date of publication of application:
02.01.2002 Bulletin 2002/01

(73)Proprietor: SHIMANO INC.
Osaka 590-8577 (JP)

(72)Inventor:
  • Tetsuka, Toshio
    Sakai-shi, Osaka (JP)

(74)Representative: GROSSE BOCKHORNI SCHUMACHER 
Patent- und Rechtsanwälte Forstenrieder Allee 59
81476 München
81476 München (DE)


(56)References cited: : 
US-A- 5 413 534
US-A- 5 738 603
US-A- 6 007 442
US-A- 5 609 536
US-A- 5 971 878
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Field of the Invention



    [0001] This invention generally relates to a structure formed on a sprocket to aid in shifting of a bicycle chain. More specifically, the present invention relates to a sprocket assembly with more projections formed on a sprocket to aid in shifting the bicycle chain from a smaller sprocket to a larger sprocket.

    2. Background Information



    [0002] In a multi-stage sprocket assembly of a bicycle having a derailleur, a chain is movable by a shifting force of the derailleur from a small sprocket to a large sprocket. In a conventional sprocket assembly, a side surface of the chain contacts a side surface of the large sprocket, and the chain is supported by the large sprocket through a frictional force produced by the contact. With rotation of the large sprocket, the chain is raised radially outwardly of this sprocket to engage teeth of the sprocket.

    [0003] However, shifting of the chain in this manner requires a sufficient frictional force produced between the chain and the large sprocket to pick up the chain reliably with rotation of the sprocket. In other words, the derailleur must exert a strong force to press the chain upon the large sprocket.

    [0004] When a heavy drive load occurs during a shifting operation, the chain may slip from the large sprocket. This makes it very difficult to pick up the chain with the large sprocket, or results in a delay of chain shift. In order to overcome this problem, Shimano Inc., the assignee of this subject application, has developed a sprocket assembly with projections that aid in the shifting of the bicycle chain as disclosed in U.S. Patent No. 5,413,534 to Nagano. While the sprocket assembly disclosed in this Shimano patent operates very well in shifting the chain from a smaller sprocket to a larger sprocket, the projections on the larger sprocket sometimes causes a slight obstruction during the shifting. In other words, this obstruction caused by the projections can make the gear-changing operation unsteady and produce an unsatisfactory sensation to the rider.

    [0005] In view of the above, there exists a need for an improved sprocket assembly which overcomes the above mentioned problems in the prior art. This invention addresses this need in the prior art as well as other needs, which will become apparent to those skilled in the art from this disclosure.

    SUMMARY OF THE INVENTION



    [0006] One object of the present invention is to provide a sprocket assembly that provides a smooth shifting action between a small sprocket to a large sprocket.

    [0007] The foregoing objects of the present invention are basically attained by providing a sprocket assembly according to claim 1 of the present invention with improved projections on the larger sprocket.

    [0008] The foregoing objects of the present invention can also be attained by providing a sprocket assembly for a bicycle comprising a small sprocket and a large sprocket. The small sprocket has a plurality of circumferentially spaced teeth. The large sprocket has a plurality of circumferentially spaced teeth and at least one first chain support projection located on a side surface of the large sprocket that faces toward the small sprocket. The first chain support projection includes a contact surface for contacting a lower surface of an outer link plate of a chain shifted from the small sprocket to the large sprocket. The first chain support projection is oriented and sized to slip / pass between two consecutive outer link plates on one side of the chain in case of alignment with an inner link plate of the chain. The first chain support projection is disposed adjacent the teeth of the large sprocket to cause the contact surface to contact the chain engaged with the small sprocket and pick up the chain radially outward relative to a center of rotation of the large sprocket during a chain shift from the small sprocket to the large sprocket.

    [0009] These and other objects, features, aspects and advantages of the present invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses a preferred embodiment of the present invention.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] Referring now to the attached drawings which form a part of this original disclosure:

    Figure 1 is a partial side schematic view of a principal portion of a drive train for a bicycle having a two-stage sprocket assembly in accordance with the present invention;

    Figure 2 is an inside elevational view of the sprocket assembly having a chain shift aiding mechanism according to the present invention;

    Figure 3 is an enlarged partial inside elevational view of a principal portion of the sprocket assembly with the chain shift aiding mechanism shown in Figure 2;

    Figure 4(a) is an overhead schematic view showing a positional relationship between the sprockets and the chain shifted by the derailleur, but prior to the chain engaging the teeth of the large sprocket by the chain shift aiding mechanism shown in Figures 2 and 3;

    Figure 4(b) is an overhead schematic plan view showing a positional relationship between the sprocket and the chain after the chain engages a tooth of the large sprocket by the lifting action of the chain shift aiding mechanism shown in Figures 2 and 3;

    Figure 5 is an exploded top plan view of a portion of the large sprocket and the chain;

    Figure 6(a) is a schematic cross-sectional view of the sprockets and chain taken on line 6-6 of Figure 3;

    Figure 6(b) is a schematic cross-sectional view, similar to Figure 6(a), of the projections riveted to the large sprocket;

    Figure 7 is an enlarged side elevational view of a portion of the sprocket assembly with the chain engaging the chain shift aiding mechanism of the large sprocket;

    Figure 8(a) is a schematic view of the sprocket assembly showing the projections aligning with the inner links of the chain during rotation of the sprocket assembly;

    Figure 8(b) is a schematic view, similar to Figure 8(a) of the sprocket assembly, showing the projections sliding between the outer links of the chain during rotation of the sprocket assembly;

    Figure 8(c) is a schematic view, similar to Figures 8(a) and 8(b) of the sprocket assembly, showing the projections after passing the chain during rotation of the sprocket assembly; and

    Figure 9 is a side view of a principal portion of a bicycle having a three-stage sprocket assembly in a further embodiment of the invention.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0011] Referring initially to Figure 1, a principal portion of a drive train of a bicycle having a two multi-stage change speed apparatus is illustrated in accordance with a first embodiment of the present invention. The drawing shows crank arms 1 pivotally supporting pedals 3, a large sprocket S1, a small sprocket S2, a chain 4, a rear sprocket 5, and a front derailleur 6. As in a conventional drive mechanism of a bicycle, the pedals 3 supported by the crank arms 1 are tuned to drive the sprockets S1 and S2, and the drive is transmitted through the chain 4 to the rear sprocket 5. The derailleur 6 is operable to shift the chain 4 from one front sprocket to the other.

    [0012] As seen in Figures 2 and 3, the illustrated sprocket assembly has a large sprocket S1 and a small sprocket S2 with a chain shift aiding mechanism provided on the large front sprocket S1. This chain shift aiding mechanism aids in shifting of the chain 4 from the small sprocket S2 to the large sprocket S1. The chain shifting aiding mechanism includes a plurality of chain support projections 10 and 11 formed on a side surface 7 of the large sprocket S1 opposed to the small sprocket S2. In other words, the large sprocket S1 includes a plurality (four) of outer chain support projection 10 and a plurality (four) of inner chain support projections 11 formed on a side surface 7 opposed to an intermediate sprocket S2. These projections 10 and 11 allow the chain 4 to be shifted from the intermediate sprocket S2 to the large sprocket S1 easily and reliably.

    [0013] In the preferred embodiment, chain support projections 10 are elongated or non-circular members, as viewed in a direction perpendicular to the large sprocket S1, while the chain support projections 11 are substantially circular pins, as viewed in a direction substantially perpendicular to the large sprocket S1. In the preferred embodiment illustrated in the drawings, the outer chain support projections 10 are preferably elongated projections with a pair of convexly curved end contact surfaces 10a and a pair of flat side surfaces 10b. The distance between the curved end contact surfaces 10a forms the length of projection 10, which is preferably approximately 6.0 mm. The distance between the pair of flat side surfaces 10b forms the width of the projection 10, which is preferably approximately 3.9 mm. The longitudinal axis A of projections 10 are substantially perpendicular to the chain plate P as seen in Figure 7.

    [0014] Each of these chain support projections 10 and 11 can be integrally formed with the chain ring of sprocket S1 as seen in Figure 6(a) or can be fastened to the large sprocket S1 through a rivet or other fastener 8, similar to U.S. Patent No. 5,413,534, as seen in Figure 6(b).

    [0015] As seen in Figure 6(b), when the projections 10 and 11 are fastened to the large sprocket S1, the edges of the projections can be tapered or inclined towards the large sprocket S1. In the case of the projections 10, the contact surfaces 10a are axially tapered towards the center axes of the projections 10, respectively. In the case of the projections 11, the circumferential outer surfaces are axially tapered towards the center axes of the projections 11, respectively.

    [0016] As shown in Figure 2, each of the four outer chain support projections 10 is formed in proximal regions of one of the chain driving teeth 12 of the large sprocket S1. The four inner chain support projections 11 are formed radially inwardly of the four outer chain support projections 10. More specifically, each adjacent pair of outer and inner chain support projections 10 and 11 are located so that the chain path formed by the chain links that contact and extend between projections 10 and 11 is a substantially straight chain path. For example, in the illustrated embodiment, chain links 9a, 9b and 9c that are supported by and between projections 10 and 11 of Figure 7 to form a substantially straight chain path as compared to the prior art shown in Figure 13 of U.S. Patent No. 5,413,534. This straight chain path is due to the radial spacing between projections 10 and 11. More specifically, the inner support projection 11 of the present invention is set at a smaller diameter relative to the inner projection of the prior art patent. Of course, the precise diameters or positions of projections 10 and 11 depend upon the size of the sprocket. In any event, an angle of preferably about 10° or less is formed by the intersection of a first plane passing through the pivot points of link 9a and a second plane passing through the pivot points of link 9c.

    [0017] As shown in Figures 2, 6(a) and 7, the chain support projections 10 and 11 are fitted in recesses 18 formed in the large sprocket S1. This construction is provided in order that the large sprocket S1 and small sprocket S2 have a small distance therebetween although the chain support projections 10 and 11 project to a large extent.

    [0018] Basically, four pairs of inner and outer chain support projections 10 and 11 are formed on the large sprocket S1. The adjacent pairs of inner and outer chain support projections 10 and 11 are designed such that one pair is arranged to align with the outer chain link plates 4a, while the other pair of inner and outer chain link support portions 10 and 11 are arranged to be aligned with inner chain link plates 4b. In other words, two of the pairs of inner and outer chain support portions 10 and 11 are spaced 180° apart, and align with the outer chain link plates 4a. The other two of the pairs of inner and outer chain support portions 10 and 11 that are 180° apart and align with the inner chain link plates 4b. Stated differently, the outer chain support projections 10 of adjacent pairs of support projections 10 and 11 are spaced apart by a distance that is substantially equal to a length of an odd number (three) of contiguous chain link plates of chain 4. Similarly, the inner chain support projections 11 of adjacent pairs of support projections 10 and 11 are spaced apart by a distance that is substantially equal to a length of an odd number (three) of chain link plates. The inner and outer chain support projections 10 and 11 of each pair of projections 10 and 11 are spaced apart from each other by a distance that is substantially equal to a length of an even number (two) of chain link plates. Thus, the chain support projections 10 and 11 are located either to pass between the outer link plates 4a of the chain 4, or to contact the outer link plates 4a of the chain 4 after the chain 4 has been shifted by the derailleur 6 from the small sprocket S2 to the large sprocket S1. As seen from Figures 4(a), 4(b) and 6(a), the chain support projections 10 and 11 are operable only to pick up the chain 4 without meshing with the chain 4.

    [0019] The four chain support projections 11 are preferably located radially inwardly of the four outer chain support projections 10. Moreover, the four inner chain support projections 11 are preferably located circumferentially forward of the four outer chain support projections 10 relative to the driving direction F of rotation of the large sprocket S1. The chain support projections 10 and 11 are sized and shaped such that they can pass between a pair of outer link plates 4a and along the inner link plates 4b without contacting the inner link plates 4b when they are aligned with the inner link plates 4b. In other words, the chain support projections 10 have a width D1 as measured parallel to the chain path P during a gear changing operation. The inner chain support projections 11 have a diameter or width D2 as measured in a direction parallel to the chain path P during a chain gear changing operation. The ends of the adjacent outer link plates 4a are spaced apart by a distance D3, which is larger than the width or diameters D1 and D2 of the chain support projections 10 and 11, respectively, as seen in Figures 5 and 7.

    [0020] The four inner chain support projections 11 are preferably circular in cross-section and smaller than the width D1 of the outer chain support projections 10. Of course, it will be apparent to those skilled in the art from this disclosure that other shapes are possible so long as they carry out the essence of the present invention. The inner chain support projections 11 are positioned near to the chain path P which extends from the small sprocket S2 to the large sprocket S1 for facilitating the gear changing operations 12 a of the larger sprocket S1.

    [0021] The inner projections 11 are located outside the gear changing operation when the inner link plates 4b are aligned with the inner chain support projections 11. In other words, the inner and outer chain support projections 10 and 11 do not engage the chain 4 when the inner link plates 4b are aligned with the projections 10 and 11. The gear change is completed at the next gear position.

    [0022] Conventional projections, on the other hand, engage the chain even when the projections are aligned with the inner link. In other words, the projections engage the chain even though they are not aligned in a position for causing a gear changing operation. Thus, in the prior art, the projection causes an obstruction making the gear changing operation unsteady, and produces an unsatisfactory sensation. In the present invention, on the other hand, a smooth gear changing operation is performed by virtue of the shape of the chain support projections 10 and 11 which slip easily between the outer link of the chain and by virtue of the angle of this second projection.

    [0023] Positions of the chain support projections 10 and 11 are determined according to a size of the chain 4 and shape of driving teeth 12. One of these teeth, e.g. tooth 12a, is the first tooth that the chain 4 begins to engage when the chain 4 contacts one of the support projections 11. Similarly, the chain 4 begins to engage the second drive tooth 12b upon contact with the support projection 10. Thus, the chain support projections 10 and 11 are displaced from the respective drive teeth toward a sprocket axis and in a driving direction F shown in Figure 3.

    [0024] As best seen in Figure 7, the chain path P as used herein means the longitudinal axis of the portion of chain 4 that extends between the roller surface of chain 4 that contacts tooth 12b of the large sprocket S1 and the point where chain 4 leaves the small sprocket S2.

    [0025] Each of the chain support projections 10 and 11 arranged in the above positions is operable, with rotation of the large sprocket S1, to pick up the chain 4 shifted by the derailleur 6, and move the chain 4 toward one of the drive teeth 12. When the sprockets S1 and S2 are rotated with the derailleur 6 being operated, one of the inner chain support projections 11 and one of the outer chain support projections 10 revolving with the large sprocket S1 move to a position under the chain 4 and contacts pair of outer link plates 4a of the chain 4 as shown in Figures 4(b) and 7.

    [0026] Specifically, rotation of the large sprocket S 1 causes one of the inner chain support projections 11 to initially pick up the chain 4 radially outwardly of the large sprocket S1. At this time, the outer chain support projection 10 moves under and engages the raised chain 4 without meshing with the chain 4. By the raising action of the chain support projections 10 and 11 and the shifting action of the derailleur 6, the chain 4 is meshed with a drive tooth 12 of the large sprocket S 1 which contacts the chain 4 before any other teeth. In this way, the chain 4 is shifted from the intermediate sprocket S2 to the large sprocket S1 easily and reliably.

    [0027] With further rotation of the large sprocket S1, the shifting force of the derailleur 6 causes the chain 4 to engage one of the drive teeth 12, and to disengage from the chain support projections 10 and 11. This completes a shift of the chain 4 from the small sprocket S2 to the large sprocket S1.

    [0028] Position of the inner chain support projections 11 are determined according to a size and shape of the chain 4. As seen from Figure 2, the inner chain support projections 11 are displaced from the outer chain support projection 10 toward a sprocket axis and in a rotating direction F of the sprockets as shown in Figure 2.

    [0029] The outer chain support projections 10 also are disposed in a position determined according to the size and shape of the chain 4. The outer chain support projections 10 are displaced from the drive tooth 12 radially toward the axis of the large sprocket S1 and in the rotating direction F of the sprockets.

    [0030] The chain support projections 10 and 11 are hardened to be resistant to friction with the chain 4. In the above embodiment, the chain support projections 10 and 11 are integrally formed as part of the large sprocket S1. However, these projections 10 and 11 can be formed as separate components from the large sprocket S1. Preferably the sprocket S1 is formed of steel, with the chain support projections 10 and 11 being embossed by press working the sprocket and hardening the embossed projections to increase wear-resistant. The hardening treatment may be omitted, depending on the wear resistance, hardness and other properties of a material used for forming the sprocket.

    [0031] Another embodiment will be described with reference to Figure 9, which shows a three-stage sprocket assembly. This sprocket assembly includes a large sprocket S1, an intermediate sprocket S1A and a small sprocket S2A. As in a conventional drive mechanism of a bicycle, crank arms 1 are turned to transmit drive from the sprockets S1, S1A and S2A through a chain 4 to a rear sprocket 5. A derailleur 6 is operable to provide three speeds by shifting the chain 4 among the sprockets S1, S1A and S2A. Basically, in this embodiment, the large sprocket S1 and the intermediate sprocket S1A are both provided with protrusions such as in the first embodiment. In other words, sprocket S1 of this embodiment is identical to the sprocket of one of the first embodiments. The intermediate sprocket S1A is identical to the small sprocket S2 of the first embodiment but has a plurality of protrusions similar to the large sprocket S1. The small sprocket S2A is substantially identical to sprocket S2 of the first embodiment, except that sprocket S2A has a smaller diameter than the sprocket S2 of the first embodiment. In view of the similarities between this embodiment and the first embodiment, this embodiment will not be discussed or illustrated in detail herein.

    [0032] Whereas in all of the described embodiments, a plurality of chain support projections and a plurality of chain shift teeth are provided, a shifting operation is carried out quickly with increased chances of the chain 4 engaging a chain support projection and chain shift tooth in the course of rotation of the sprockets. In any event, only one chain support projection or chain shift tooth may be provided. Moreover, the chain support projections and chain shift teeth can be provided on the intermediate sprocket only or on both the large sprocket and intermediate sprocket.

    [0033] The terms of degree such as "substantially", "about" and "approximately" as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. These terms should be construed as including a deviation of ± 5% of the modified term if this would not negate the meaning of the word it modifies.

    [0034] While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. Furthermore, the foregoing description of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.


    Claims

    1. A sprocket assembly for a bicycle comprising:

    a small sprocket (S2) having a plurality of circumferentially spaced teeth; and

    a large sprocket (S1) having a plurality of circumferentially spaced teeth (12, 12a, 12b) and at least one non-integral first chain support projection (10) fastened to said large sprocket, and at least one non-integral second chain support projection (11) fastened to said large sprocket, said first and second chain support projections being fastened on a side surface (7) of said large sprocket (S1) that faces toward said small sprocket (S2),

    said first chain support projection (10) including a contact surface (10a) being arranged, oriented and sized relative to said teeth (12) of said large sprocket (S1) to contact a lower surface of an outer link plate (4a) of a chain (4)

    said first chain support projection (10) being disposed adjacent said teeth (12) of said large sprocket (S1) being able to cause said contact surface (10a) to contact a chain (4) engaged with said small sprocket (S2) and being able to pick up a chain radially outward relative to a center of rotation of said large sprocket (S1) during a chain shift from said small sprocket (S2) to said large sprocket (S1),

    said second chain support projection (11) including a contact surface (11a) arranged to contact a lower surface of the chain (4) shifted from said small sprocket (S2) to said large sprocket (S1),

    said second chain support projection (11) being located relative to the sprocket rotation axis at a smaller radial position than that of said first chain support projection (10) so that chain links of a chain (4) contacting and being between said first (10) and second (11) chain support projections are able to form a substantially tangential with a chain meshed on the small sprocket S1,

    characterized in that said first chain support projection (10) being arranged to pass between two consecutive outer link plates (4a) on one side of a chain in case of alignment with an inner link plate (4b) of a chain when shifted from said small sprocket (S2) to said large sprocket (S1).
     
    2. The sprocket assembly according to claim 1, wherein
    said large sprocket (S2) is formed of aluminum.
     
    3. The sprocket assembly according to any of the previous claims, wherein
    said contact surface (10a) of said first chain support projection (10) is a convexly curved surface (10a) that is located adjacent one of said teeth (12) of said large sprocket (S1).
     
    4. The sprocket assembly according to any of the previous claims, wherein
    said first chain support projection (10) is formed as an elongated member with its length having an axis upwards and substantially perpendicular to a chain path during a gear changing operation.
     
    5. The sprocket assembly according to any of the previous claims, wherein
    said first chain support projection (10) has a non-circular projection as viewed in a direction perpendicular to said large sprocket (S1).
     
    6. The sprocket assembly according to any of the previous claims, wherein
    said first chain support projection (10) has a length that is greater than its width that is perpendicular to the length and substantially parallel to the sprocket plane.
     
    7. The sprocket assembly according to claim 6, wherein
    said length of said first chain support projection (10) is approximately 6.0 mm, and said width of said first chain support projection (10) is approximately 3.9 mm.
     
    8. The sprocket assembly according to any of the previous claims, wherein
    said first (10) and second (11) chain support projections extend axially from said large sprocket (S1) towards said small sprocket (S2) by approximately 1.2 mm.
     
    9. The sprocket assembly according to any of claims 6 to 8, wherein
    said first chain support projection (10) has a pair of substantially convexly curved surfaces (10a) defining said length of said first chain support projection (10).
     
    10. The sprocket assembly according to any of claims 6 to 9, wherein
    said first chain support projection (10) has a pair of substantially flat surfaces (10b) defining said width of said first chain support projection (10).
     
    11. The sprocket assembly according to any of claims 6 to 10, wherein
    said first chain support projection (10) extend axially from said large sprocket (S1) towards said small sprocket (S2) by approximately 1.2 mm.
     
    12. The sprocket assembly according to any of the previous claims, wherein
    said contact surface (10a) of said first chain support projection (10) is inclined in an axial direction of said large sprocket (S1).
     
    13. The sprocket assembly according to any of the previous claims, wherein
    said first (10) and second (11) chain support projections are spaced apart by a distance that is substantially equal to a length of an even number of chain link plates (4a, 4b).
     
    14. The sprocket assembly according to any of the previous claims, wherein
    said large sprocket (S1) includes a plurality of said first (10) and second (11) chain support projections.
     
    15. The sprocket assembly according to any of the previous claims, wherein
    said large sprocket (S1) includes four pairs of said first (10) and second (11) chain support projections.
     
    16. The sprocket assembly according to any of the previous claims, wherein
    said second chain support projection (11) has a circular configuration as viewed in a direction perpendicular to said large sprocket (S1).
     


    Ansprüche

    1. Kettenradbaugruppe für ein Fahrrad, aufweisend:

    ein kleines Kettenrad (S2), welches eine Mehrzahl von in Umfangsrichtung mit Abstand zueinander angeordneten Zähnen aufweist; und

    ein großes Kettenrad (S1), welches eine Mehrzahl von in Umfangsrichtung mit Abstand zueinander angeordneten Zähnen (12, 12a, 12b) und mindestens einen nicht integralen ersten Kettentragevorsprung (10), der am großen Kettenrad befestigt ist, sowie mindestens einen nicht integralen zweiten Kettentragevorsprung (11) aufweist, der an dem großen Kettenrad befestigt ist, wobei die ersten und zweiten Kettentragevorsprünge an einer Seitenfläche (7) des großen Kettenrades (S1) befestigt sind, die in Richtung zum kleinen Kettenrad (S2) weist,

    wobei der erste Kettentragevorsprung (10) eine Kontaktfläche (10a) beinhaltet, deren Anordnung, Orientierung und Größe relativ zu den Zähnen (12) des großen Kettenrades (S1) so ist, dass sie mit einer Unterseite einer äußeren Kettengliedplatte (4a) einer Kette 4 in Kontakt kommt,
    wobei der erste Kettentragevorsprung (10), der benachbart zu den Zähnen (12) des großen Kettenrades (S1) angeordnet ist, in der Lage ist, zu bewirken, dass die Kontaktfläche (10a) mit einer Kette (4), die sich in Eingriff mit dem kleinen Kettenrad (S2) befindet, in Kontakt kommt, und in der Lage ist, eine Kette in radialer Richtung nach außen bezüglich eines Rotationsmittelpunktes des großen Kettenrades (S1) hochzuheben, während ein Umlegevorgang der Kette vom kleinen Kettenrad (S2) auf das große Kettenrad (S1) erfolgt,
    wobei der zweite Kettentragevorsprung (11) eine Kontaktfläche (11a) beinhaltet, die angeordnet ist, um mit einer Unterseite einer Kette (4) in Kontakt zu kommen, die von dem kleinen Kettenrad (S2) auf das große Kettenrad (S1) umgelegt wird,
    wobei der zweite Kettentragevorsprung (11) sich bezüglich der Kettenrad-Rotationsachse auf einer kleineren Radialposition als der erste Kettentragevorsprung (10) befindet, so dass Kettenglieder einer Kette (4), die mit den ersten (10) und zweiten (11) Kettentragevorsprüngen in Kontakt sind und sich zwischen diesen befinden, in der Lage sind, im Wesentlichen eine Tangente zu einer auf dem kleinen Kettenrad (S1) in Verzahnungseingriff befindlichen Kette zu bilden,
    dadurch gekennzeichnet, dass der erste Kettentragevorsprung (10) so angeordnet ist, dass er sich zwischen zwei aufeinander folgenden äußeren Kettengliedplatten (4a) auf der einen Seite einer Kette vorbeibewegt, im Fall eines Fluchtens mit einer inneren Kettengliedplatte (4b) einer Kette, wenn diese von dem kleinen Kettenrad (S2) auf das große Kettenrad (S1) umgelegt wird.
     
    2. Kettenradbaugruppe nach Anspruch 1, bei welcher
    das große Kettenrad (S2) aus Aluminium besteht.
     
    3. Kettenradbaugruppe nach einem der vorhergehenden Ansprüche, bei welcher die Kontaktfläche (10a) des ersten Kettentragevorsprungs (10) eine konvex gekrümmte Fläche (10a) ist, die sich benachbart zu einem der Zähne (12) des großen Kettenrades (S1) befindet.
     
    4. Kettenradbaugruppe nach einem der vorhergehenden Ansprüche, bei welcher der erste Kettentragevorsprung (10) als längliches Element ausgebildet ist, wobei dessen Länge eine Achse aufweist, die nach oben und im Wesentlichen senkrecht zu einem Kettenweg während eines Gangwechselvorgangs verläuft.
     
    5. Kettenradbaugruppe nach einem der vorhergehenden Ansprüche, bei welcher der erste Kettentragevorsprung (10), gesehen in einer Richtung senkrecht zum großen Kettenrad (S1), einen nicht kreisförmigen Vorsprung aufweist.
     
    6. Kettenradbaugruppe nach einem der vorhergehenden Ansprüche, bei welcher der erste Kettentragevorsprung (10) eine Länge aufweist, die größer ist als seine Breite, welche senkrecht zur Länge und im Wesentlichen parallel zur Kettenradebene verläuft.
     
    7. Kettenradbaugruppe nach Anspruch 6, bei welcher
    die Länge des ersten Kettentragevorsprungs (10) ungefähr 6,0 mm beträgt und die Breite des ersten Kettentragevorsprungs (10) ungefähr 3,9 mm beträgt.
     
    8. Kettenradbaugruppe nach einem der vorhergehenden Ansprüche, bei welcher die ersten (10) und die zweiten (11) Kettentragevorsprünge sich um ungefähr 1,2 mm in axialer Richtung vom großen Kettenrad (S1) in Richtung zum kleinen Kettenrad (S2) erstrecken.
     
    9. Kettenradbaugruppe nach einem der Ansprüche 6 bis 8, bei welcher
    der erste Kettentragevorsprung (10) ein Paar von im Wesentlichen konvex gekrümmten Flächen (10a) aufweist, welche die Länge des ersten Kettentragevorsprungs (10) definieren.
     
    10. Kettenradbaugruppe nach einem der Ansprüche 6 bis 9, bei welcher
    der erste Kettentragevorsprung (10) ein Paar von im Wesentlichen ebenen Flächen (10b) aufweist, welche die Breite des ersten Kettentragevorsprungs (10) definieren.
     
    11. Kettenradbaugruppe nach einem der Ansprüche 6 bis 10, bei welcher sich der erste Kettentragevorsprung (10) um ungefähr 1,2 mm in axialer Richtung vom großen Kettenrad (S1) in Richtung zum kleinen Kettenrad (S2) erstreckt.
     
    12. Kettenradbaugruppe nach einem der vorhergehenden Ansprüche, bei welcher die Kontaktfläche (10a) des ersten Kettentragevorsprungs (10) in einer axialen Richtung des großen Kettenrades (S1) geneigt ist.
     
    13. Kettenradbaugruppe nach einem der vorhergehenden Ansprüche, bei welcher die ersten (10) und die zweiten (11) Kettentragevorsprünge um einen Abstand voneinander entfernt angeordnet sind, der im Wesentlichen so groß ist wie eine Länge einer geraden Anzahl von Kettengliedplatten (4a, 4b) ist.
     
    14. Kettenradbaugruppe nach einem der vorhergehenden Ansprüche, bei welcher das große Kettenrad (S1) eine Mehrzahl von ersten (10) und zweiten (11) Kettentragevorsprüngen beinhaltet.
     
    15. Kettenradbaugruppe nach einem der vorhergehenden Ansprüche, bei welcher das große Kettenrad (S1) vier Paare von ersten (10) und zweiten (11) Kettentragevorsprüngen beinhaltet.
     
    16. Kettenradbaugruppe nach einem der vorhergehenden Ansprüche, bei welcher der zweite Kettentragevorsprung (11), in Richtung senkrecht zum großen Kettenrad (S1) gesehen, eine kreisförmige Konfiguration aufweist.
     


    Revendications

    1. Ensemble de pignons pour bicyclette comprenant :

    un petit pignon (S2) doté d'une pluralité de dents espacées de manière circonférentielle ; et

    un grand pignon (S1) doté d'une pluralité de dents espacées de manière circonférentielle (12, 12a, 12b) et au moins un premier élément de support de chaîne non solidaire (10) fixé sur ledit grand pignon, et au moins un second élément de support de chaîne non solidaire (11) fixé sur ledit grand pignon, lesdits premier et second éléments de support de chaîne étant fixés sur une surface latérale (7) dudit grand pignon (S1) qui est orienté en face dudit petit pignon (S2),

    ledit premier élément de support de chaîne (10) comprenant une surface de contact (10a) qui est orientée et dimensionnée par rapport auxdites dents (12) dudit grand pignon (S1) pour être en contact avec une surface inférieure d'une plaque de chaîne externe (4a) d'une chaîne (4),

    ledit premier élément de support de chaîne (10) étant disposé de manière adjacente auxdites dents (12) dudit grand pignon (S1) qui est capable d'amener ladite surface de contact (10a) à entrer en contact avec une chaîne (4) mise en prise avec ledit petit pignon (S2) et qui est capable de saisir une chaîne radialement vers l'extérieur par rapport à un centre de rotation dudit grand pignon (S1) pendant un déplacement de la chaîne dudit petit pignon (S2) audit grand pignon (S1),

    ledit second élément de support de chaîne (11) comprenant une surface de contact (11a) agencée pour entrer en contact avec une surface inférieure d'une chaîne (4) déplacée dudit petit pignon (S2) audit grand pignon (S1),

    ledit second élément de support de chaîne (11) étant situé par rapport à l'axe de rotation du pignon à une position radiale plus petite que celle dudit premier élément de support de chaîne (10) de sorte que les maillons de chaîne d'une chaîne (4) qui sont en contact et se trouvent entre lesdits premier (10) et second (11) éléments de support de chaîne, peuvent former une partie sensiblement tangentielle avec une chaîne engrenée sur le petit pignon S1,

    caractérisé en ce que ledit premier élément de support de chaîne (10) qui est agencé pour passer entre deux plaques de chaîne externes (4a) consécutives d'un côté d'une chaîne en cas d'alignement avec une plaque de chaîne interne (4b) d'une chaîne lorsqu'elle est déplacée dudit petit pignon (S2) audit grand pignon (S1).
     
    2. Ensemble de pignons selon la revendication 1, dans lequel ledit grand pignon (S2) est réalisé à partir d'aluminium.
     
    3. Ensemble de pignons selon l'une quelconque des revendications précédentes, dans lequel ladite surface de contact (10a) dudit premier élément de support de chaîne (10) est une surface incurvée de manière convexe (10a) qui est située de manière adjacente à l'une desdites dents (12) dudit grand pignon (S1).
     
    4. Ensemble de pignons selon l'une quelconque des revendications précédentes, dans lequel ledit premier élément de support de chaîne (10) est formé comme un élément allongé dont sa longueur a un axe vers le haut et sensiblement perpendiculaire à un passage de chaîne pendant une opération de changement de vitesse.
     
    5. Ensemble de pignons selon l'une quelconque des revendications précédentes, dans lequel ledit premier élément de support de chaîne (10) comprend un élément non circulaire lorsqu'il est observé dans une direction perpendiculaire audit grand pignon (S1).
     
    6. Ensemble de pignons selon l'une quelconque des revendications précédentes, dans lequel ledit premier élément de support de chaîne (10) a une longueur qui est supérieure à sa largeur qui est perpendiculaire à la longueur et sensiblement parallèle au plan du pignon.
     
    7. Ensemble de pignons selon la revendication 6, dans lequel ladite longueur dudit premier élément de support de chaîne (10) est approximativement de 6,0 mm et ladite largeur dudit premier élément de support de chaîne (10) est approximativement de 3,9 mm.
     
    8. Ensemble de pignons selon l'une quelconque des revendications précédentes, dans lequel lesdits premier (10) et second éléments de support de chaîne s'étendent de manière axiale dudit grand pignon (S1) vers ledit petit pignon (S2) sur approximativement 1,2 mm.
     
    9. Ensemble de pignons selon l'une quelconque des revendications 6 à 8, dans lequel ledit premier élément de support de chaîne (10) comprend une paire de surfaces incurvées (10a) de manière sensiblement convexe définissant ladite longueur dudit premier élément de support de chaîne (10).
     
    10. Ensemble de pignons selon l'une quelconque des revendications 6 à 9, dans lequel ledit premier élément de support de chaîne (10) comprend une paire de surfaces sensiblement plates (10b) définissant ladite largeur dudit premier élément de support de chaîne (10).
     
    11. Ensemble de pignons selon l'une quelconque des revendications 6 à 10, dans lequel ledit premier élément de support de chaîne (10) s'étend de manière axiale dudit grand pignon (S1) vers ledit petit pignon (S2) sur approximativement 1,2 mm.
     
    12. Ensemble de pignons selon l'une quelconque des revendications précédentes, dans lequel ladite surface de contact (10a) dudit premier élément de support de chaîne (10) est inclinée dans une direction axiale dudit grand pignon (S1).
     
    13. Ensemble de pignons selon l'une quelconque des revendications précédentes, dans lequel lesdits premier (10) et second (11) éléments de support de chaîne sont espacés par une distance qui est sensiblement égale à une longueur d'un nombre pair de plaques de chaîne (4a, 4b).
     
    14. Ensemble de pignons selon l'une quelconque des revendications précédentes, dans lequel ledit grand pignon (S1) comprend une pluralité desdits premier (10) et second (11) éléments de support de chaîne.
     
    15. Ensemble de pignons selon l'une quelconque des revendications précédentes, dans lequel ledit grand pignon (S1) comprend quatre paires desdits premier (10) et second (11) éléments de support de chaîne.
     
    16. Ensemble de pignons selon l'une quelconque des revendications précédentes, dans lequel ledit second élément de support de chaîne (11) a une configuration circulaire lorsqu'il est observé dans une direction perpendiculaire audit grand pignon (S1).
     




    Drawing