(19)
(11)EP 1 292 979 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
19.08.2009 Bulletin 2009/34

(21)Application number: 01948582.0

(22)Date of filing:  21.06.2001
(51)International Patent Classification (IPC): 
H01L 21/768(2006.01)
(86)International application number:
PCT/US2001/019876
(87)International publication number:
WO 2001/099183 (27.12.2001 Gazette  2001/52)

(54)

METHOD FOR A DIRECT BURIED STRAP FOR SAME LEVEL INTERCONNECTIONS FOR SEMICONDUCTOR DEVICES

VERFAHREN FÜR EINEN DIREKTEN VERGRABENEN VERBINDUNGSSTREIFEN FÜR LEITENDE VERBINDUNGEN IM SELBEN NIVEAU FÜR HALBLEITERVORRICHTUNGEN

PROCEDE SERVANT A CREER UNE BARRETTE CONTINUE ENTERREE POUR DES INTERCONNEXIONS DE CONTACT AU MEME NIVEAU DANS DES COMPOSANTS A SEMI-CONDUCTEUR


(84)Designated Contracting States:
DE FR IT

(30)Priority: 21.06.2000 US 598790

(43)Date of publication of application:
19.03.2003 Bulletin 2003/12

(73)Proprietor: Infineon Technologies AG
85579 Neubiberg (DE)

(72)Inventors:
  • STETTER, Michael
    D-81545 München (DE)
  • GRELLNER, Frank
    F-91630 Marolles en Hurepoix (FR)

(74)Representative: Viering, Jentschura & Partner 
Postfach 22 14 43
80504 München
80504 München (DE)


(56)References cited: : 
US-A- 5 266 156
US-A- 5 621 232
US-A- 5 387 535
  
  • PATENT ABSTRACTS OF JAPAN vol. 1997, no. 11, 28 November 1997 (1997-11-28) & JP 09 181306 A (MITSUBISHI ELECTRIC CORP), 11 July 1997 (1997-07-11)
  • PATENT ABSTRACTS OF JAPAN vol. 2000, no. 01, 31 January 2000 (2000-01-31) -& JP 11 284184 A (SEIKO EPSON CORP), 15 October 1999 (1999-10-15)
  • PATENT ABSTRACTS OF JAPAN vol. 2000, no. 01, 31 January 2000 (2000-01-31) -& JP 11 284185 A (SEIKO EPSON CORP), 15 October 1999 (1999-10-15)
  • DATABASE WPI Section Ch, Week 200130 Derwent Publications Ltd., London, GB; Class L03, AN 2000-683744 XP002192571 & KR 258 347 B (SAMSUNG ELECTRONICS CO LTD), 1 June 2000 (2000-06-01) -& US 6 165 900 A (SAMSUNG ELECTRONIC CO LTD) 26 December 2000 (2000-12-26)
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND


1. Technical Field



[0001] This disclosure relates to semiconductor fabrication and more particularly, to a method for making interconnections in a same metal level.

2. Description of the Related Art



[0002] An ever-present need in the semiconductor industry is to provide more densely populated chips while maintaining or increasing yield. Semiconductor devices having memory cells, for example, static random access (SRAM) cells, are always subject to efforts for reducing the cell size as much as possible without decreasing the yield. One element, which consumes real estate in a memory cell, is the cross-coupling between inverters. Cross-coupling of an inverter includes connecting a source or drain region of a transistor to a gate of the transistor. In a physical layout of the transistor, e.g., on a semiconductor chip, this means that a source/drain diffusion region is connected to a gate conductor.

[0003] Since, the gate has to be electrically connected to the diffusion, an electrical link is provided which includes a first contact to the diffusion, a metal line in an upper metal layer connected to the first contact and to a second contact, and the second contact connects to the gate conductor. This connection scheme requires, contacts to reach upper metal layers (e.g., M1). Further, the contacts and diffusion regions are lithographically formed and include dimensions limited by lithography and processing which tend to increase their size and result in area costs.

[0004] Therefore, a need exists for a direct strap and a method for forming the same which provide an interconnection on a same level. A further need exists for the buried strap to enable a reduction in cell size and permit the area above the cell to be available for routing of upper metal lines.

[0005] US 5,266,156 A discloses a method in which polysilicon is deposited on a semiconductor wafer surface and removed except for a portion of the semiconductor wafer surface. A cobalt layer is deposited later and annealed to form cobalt silicide from said polysilicon and scied cobalt. After removal of unreacted cobalt, cobalt silicide straps are obtained.

SUMMARY OF THE INVENTION



[0006] A method for forming a direct buried strap for a semiconductor device, in accordance with the present invention, includes forming a gate stack on a semiconductor substrate, and forming a protective layer on sidewalls of the gate stack. The protective layer extends horizontally over a portion of the semiconductor substrate adjacent to the gate stack. A conductive layer is formed from a metal capable of forming a silicide over the protective layer and in contact with a gate conductor of the gate stack and in contact with a diffusion region formed in the semiconductor substrate adjacent to the gate conductor. A dielectric layer is formed over the conductive layer, and the dielectric layer is patterned to expose a portion of the conductive layer. The portion of the conductive layer which is exposed includes a portion of the conductive layer over the gate conductor and over a portion of the substrate adjacent to the gate conductor. The exposed areas of the conductive layer are silicided including depositing silicon on the conductive layer to form a direct buried strap and a silicided diffusion region in the substrate. The direct buried strap electrically connects the gate conductor to the diffusion region in a same level of the semiconductor device.

[0007] The step of siliciding includes either the step of depositing silicon on the conductive layer in a temperature range of between about 20°C and about 400°C, followed by a step of performing a rapid thermal anneal (RTA), or the step of depositing silicon on the conductive layer in a temperature range of between about 400°C and about 700°C.

[0008] The step of patterning the dielectric layer to expose a portion of the conductive layer may include the step of protecting a second portion of the conductive layer from siliciding by employing the dielectric layer as a mask. The method may include stripping the dielectric layer after siliciding, and stripping the second portion of the conductive layer.

[0009] The substrate may include silicon and the second portion of the conduction layer may include a third portion which contacts a portion of the substrate and the step of annealing the third portion of the conductive layer and the portion of the substrate in contact with the third portion to form a silicided junction may be included. The method may include the steps of forming a second dielectric layer over the gate conductor and the silicided diffusion region, and forming metal layers over the second dielectric layer wherein the gate conductor is connected to the silicided diffusion region while avoiding interconnection to other metal layers. The conductive layer may include one of Tungsten, Cobalt and Titanium.

[0010] These and other objects, features and advantages of the present invention will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS



[0011] This disclosure will present in detail the following description of preferred embodiments with reference to the following figures wherein:

FIG. 1 is a cross-sectional view of a semiconductor device showing a conductive layer deposited over a gate stack in accordance with the present invention;

FIG. 2 is a cross-sectional view of the semiconductor device of FIG. 1 showing a sacrificial dielectric layer patterned over the gate stack in accordance with the present invention;

FIG. 3 is a cross-sectional view of the semiconductor device of FIG. 2 showing silicon exposure of a direct buried strap portion of a conductive layer in accordance with the present invention;

FIG. 4 is a cross-sectional view of the semiconductor device of FIG. 3 showing the direct buried strap and diffusion regions formed in accordance with the present invention; and

FIG. 5 is a cross-sectional view of the semiconductor device of FIG. 4 showing an etch stop layer, an interlevel dielectric layer and a metal layer.


DETAILED DESCRIPTION OF PREFERRED EMBODIMENT



[0012] The present invention is defined in the claims and relates to semiconductor fabrication, and more particularly to a method providing a direct strap which connects components in a same level. For example, in cross-coupled transistors, such as field effect transistors integrated on a semiconductor chip, the invention provides a connection between a gate and a diffusion region of the transistor without making a connection to upper metal layers. Further, the connection may be made without the formation of conventional contacts on the gate conductor or on a diffusion region for the source/drain of the transistor. Advantageously, the present invention provides an option which can be taken in or out of a processing sequence without any impact on the process itself.

[0013] Referring now in specific detail to the drawings in which like reference numerals identify similar or identical elements throughout the several views, and initially to FIG. 1, a partial cross-section of a semiconductor device 100 is shown. Device 100 may include a semiconductor memory device, such as a static random access memory device, a dynamic random access memory device or other memory device. Device 100 may also include an embedded memory device, a logic device or other semiconductor devices. Device 100 includes a substrate 102, for example, a monocrystalline silicon substrate. Gate stack 106 is formed by patterning and etching conductive layers. The conductive layers may include, for example, doped polysilicon 107 and/or a metal silicide 105, such as, for example, tungsten silicide. Gate stack 106 preferably includes a protective dielectric layer 108. In a preferred embodiment, dielectric layer 108 may include a nitride, such as silicon nitride. Protective dielectric layer 108 is removed from at least a portion of a top surface 110 of gate stack 106 to provide access to conductive layers therein. Protective dielectric layer 108 preferably covers vertical walls of gate stack 106. Protective dielectric layer 108 extends horizontally outward from gate stack 106 in contact with substrate 102 in portions 109. Portions 109 may extend outward a distance of between about 5 nm and about 100 nm from gate stack 106. Protective dielectric layer 108 provides an improved transition for a direct buried strap between gate stack 106 and substrate 102. Sharp corners between the monocrystalline Si substrate 102 and the polysilicon 105 of the gate stack 106 are eliminated. These corner transitions are an important factor affecting reliability of the direct strap. Sharp corners or transitions can result in high yield losses. Advantageously, the present invention employs portions 109 to provide transitions to desensitize the substrate 102 to gate stack 106 transition region. This significantly improves reliability.

[0014] Diffusion regions 104 (or 104'shown in phantom lines to show an alternate placement of the diffusion region) are formed in substrate 102 by, for example, ion implantation. Diffusion regions 104 may be formed next to or even below a gate stack 106. Diffusion regions 104 (or 104') may include a source or drain region as is known in the art.

[0015] After cleaning a surface 111, a conductive layer 112, i.e. a metal capable of forming a silicide, such as W, Co or Ti, is formed over gate stack 106 and diffusion regions 104 (or 104'). Conductive layer 112 advantageously contacts a gate conductor of gate stack 106 and substrate 102 in regions 104. Conductive layer 112 may include a thickness from between about 5 nm to about 50 nm. A sacrificial dielectric layer 113, such as, for example, TiN, is deposited to protect conductive layer 112 from oxidation.

[0016] Conductive layer 112 and layer 113 are formed over gate stacks 106 before any resist patterning. Otherwise, problems may arise due to incomplete resist strip or overdone resist strip of the gate conductor. This would cause reliability problems resulting in a yield risk for the structure.

[0017] Referring to FIG. 2, a resist layer 116 is deposited over gate stack 106 and patterned to expose a portion of sacrificial dielectric layer 113. Resist layer 116 may include an antireflection layer (ARC) 118 to improve resist exposure and development. Resist layer 116 may include a photoresist material sensitive to ultraviolet light. Sacrificial dielectric layer 113 is removed selective to conductive layer 112 in areas exposed by the removal (development) of resist layer 116. Sacrificial dielectric layer 113 is preferably removed from a portion of top surface 110 and an area (over diffusion region 104) adjacent to gate stack 106. The removal of sacrificial dielectric layer 113 is preferably performed using an etch process which is selective to both resist layer 116 and conductive layer 112, for example an SC1 (e.g., an ammonium hydroxide/hydrogen peroxide solution) etch process. Dielectric layer 113 is used to form a mask as part of the salicide (e.g., self-aligned silicide) process for formation of a direct strap and silicided junctions as will be described below. Layer 113 is employed to mask portions of the structure during the siliciding process described below.

[0018] Referring to FIG. 3, resist layer 116 is stripped away. A silylation process is performed which deposits silicon on exposed portions of conductive layer 112 (portions of conductive layer 112 not covered by sacrificial dielectric layer 113). A "cold" process or a "hot" process may be employed to perform the deposition of Si. In the cold process, Si is deposited at a temperature of between about 20°C. and about 400°C followed by a rapid thermal anneal (RTA). The RTA drives Si into conductive layer 112, and the metal of conductive layer 112 is driven into substrate 102 to form junctions 114 (114a and 114b). In the hot process, Si is deposited at a temperature of between about 400°C and about 700°C and not followed by a rapid thermal anneal (RTA). The RTA or hot deposition of Si drives Si into conductive layer 112, and the metal of conductive layer 112 is driven into substrate 102 to form junctions 114 and a direct buried strap 120. Excess silicon buildup is stripped from all surfaces by employing a wet etch process, for example.

[0019] Direct buried strap 120 and junctions 114 are now silicided as shown in FIG. 4. In a preferred embodiment, direct buried strap 120 and junctions 114 include Cobalt silicide (e.g., CoSi2), Titanium silicide, Tungsten silicide, or other silicides.

[0020] Referring to FIG. 4, sacrificial dielectric layer 113 (FIG. 2) is removed exposing a remaining portion of conductive layer 112 (FIG. 2). The remaining portion of conductive layer 112 which was protected from silylation by sacrificial dielectric layer 113 is removed selective to direct buried strap 120, junctions 114 and protective dielectric layer 108. This advantageously leaves direct buried strap 120 as a same level interconnect between gate stack 106 and junction 114a (and diffusion region 104 corresponding to junction 114a). A rapid thermal anneal (RTA) may now be performed to form a more stable and uniform silicide in direct buried strap 120 and junctions 114.

[0021] Referring to FIG. 5, an etch stop layer 122 deposition may be performed over junctions 114 and gate stack 106. Etch stop layer 122 is preferably formed from a nitride, such as silicon nitride. Etch stop layer 122 may be included to protect the silicided structures, e.g., junctions 114 and direct buried strap 120 during processing steps which follow, for example, contact formation.

[0022] A dielectric layer 130 is deposited over gate stack 106 and junctions 114. Dielectric layer 130 is employed as a contact dielectric through which contacts may be formed. Dielectric layer 130, may include an oxide, such as silicon oxide, or a glass, such as boro-phosphorous silicate glass (BPSG) or equivalents. After deposition of layer 130, a planarization process is preferably performed on a top surface 132 of layer 130. In one embodiment, a chemical-mechanical polishing (CMP) process is employed to planarize surface 132. Surface 132 is employed to support upper structures for the semiconductor device. Metal lines 134 are formed in upper layers of the structure. In accordance with the present invention, metal lines 134 may be routed directly over gate stack 106 and junctions 114 since direct buried strap 120 is formed. Instead of a contact going from gate stack 106 to metal line 134 and another contact going from metal line 134 to junction 114a, direct buried strap 120 provides a same level interconnection for cross-coupling a transistor 136 formed by junctions 114 (and diffusion regions 104) and gate stack 106. Processing may continue as is known in the art.

[0023] By providing direct buried strap 120, an area gain is achieved. By eliminating the need for additional contacts and by providing metal line routing directly over transistor 136, an area savings of between about 10% and about 30% is achieved. This permits higher memory cell or component density for semiconductor devices, or permits memory cells, capacitors or other components to be larger in size while maintaining cell density. The area density of random logic is capable of being increased due to the implementation of the present invention. Further, misalignment issues for conventional contacts are advantageously avoided since direct buried strap 120 is automatically aligned during the formation process. The conventional contacts are inherently subject to misalignment issues because the contacts have to hit both the gate and the diffusion regions.

[0024] The present invention may be employed as a process option, which may be incorporated into a process sequence without affecting a base process. Direct buried straps 120 being implemented as a process option is advantageous over the conventional local interconnect approach, which is not compatible with foundry technologies. In the conventional process, a special separate process library is necessary for implementation. This inhibits the use of products in industry standard designs.

[0025] The present invention includes process steps which are performed on sacrificial dielectric layer 113 which covers conductive layer 112. There is no influence on device parameters, such as width of protective dielectric layer 108 on side walls of gate stack 106, shallow trench isolation (STI) divots or substrate 102 quality in active areas (e.g., junctions 114).

[0026] Having described preferred embodiments for a method for forming a direct buried strap for same level contact interconnections for semiconductor devices (which are intended to be illustrative and not limiting), it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments of the invention disclosed which are within the appended claims.


Claims

1. A method for forming a direct strap for a semiconductor device comprising the steps of:

forming a gate stack (106) on a semiconductor substrate (102);

forming a protective layer (108, 109) on sidewalls of the gate stack (106), the protective layer (108, 109) extending horizontally over a portion (104') of the semiconductor substrate (102) adjacent to the gate stack (106);

forming a conductive layer (112) from a metal capable of forming a silicide, over the protective layer (108, 109) and in contact with a gate conductor (107) of the gate stack (106) and in contact with a diffusion region (104) formed in the semiconductor substrate adjacent to the gate conductor;

forming a dielectric layer (113) over the conductive layer (112);

patterning the dielectric layer (113) to expose a portion of the conductive layer (112), the portion of the conductive layer (112) which is exposed includes a portion of the conductive layer over the gate conductor (107) and over a portion of the substrate (102) adjacent to the gate conductor; and

siliciding the exposed areas of the conductive layer (112) including depositing silicon on the conductive layer (112) to form a direct strap (120) and a silicided diffusion region (104, 114a), the direct strap (120) electrically connecting the gate conductor (107) to the diffusion region (104) in a same connection level of the semiconductor device,

wherein the silicon is deposited on the conductive layer (112) in a temperature range of between 20°C and 400°C, and thereafter the conductive layer (112) is silicided by performing a rapid thermal anneal (RTA).
 
2. A method for forming a direct strap for a semiconductor device comprising the steps of:

forming a gate stack (106) on a semiconductor substrate (102);

forming a protective layer (108, 109) on sidewalls of the gate stack (106), the protective layer (108, 109) extending horizontally over a portion (104') of the semiconductor substrate (102) adjacent to the gate stack (106);

forming a conductive layer (112) from a metal capable of forming a silicide, over the protective layer (108, 109) and in contact with a gate conductor (107) of the gate stack (106) and in contact with a diffusion region (104) formed in the semiconductor substrate adjacent to the gate conductor;

forming a dielectric layer (113) over the conductive layer (112);

patterning the dielectric layer (113) to expose a portion of the conductive layer (112), the portion of the conductive layer (112) which is exposed includes a portion of the conductive layer over the gate conductor (107) and over a portion of the substrate (102) adjacent to the gate conductor; and

siliciding the exposed areas of the conductive layer (112) including depositing silicon on the conductive layer (112) to form a direct strap (120) and a silicided diffusion region (104, 114a), the direct strap (120) electrically connecting the gate conductor (107) to the diffusion region (104) in a same connection level of the semiconductor device,

wherein the silicon is deposited on the conductive layer (112) in a temperature range of between 400°C and 700°C, thereby siliciding the conductive layer (112).
 
3. The method as recited in claim 1 or 2, wherein the step of patterning the dielectric layer (113) to expose a portion of the conductive layer (112) includes the step of protecting a second portion of the conductive layer (112) from siliciding by employing the dielectric layer (113) as a mask and further comprising the steps of:

stripping the dielectric layer (113) after siliciding; and stripping the second portion of the conductive layer (112).


 
4. The method as recited in claim 3, wherein the substrate includes silicon and the second portion of the conductive layer (112) includes a third portion which contacts a portion of the substrate (102) and further comprising the step of annealing the third portion of the conductive layer (112) and the portion of the substrate (102) in contact with the third portion to form a silicided junction (114b).
 
5. The method as recited in one of claims 1 to 4, further comprising the steps of:

forming a second dielectric layer over the gate conductor (107) and the silicided diffusion region (104, 114a); and

forming metal layers over the second dielectric layer wherein the gate conductor (107) is connected to the silicided diffusion region (104) while avoiding interconnection to other metal layers.


 
6. The method as recited in one of claims 1 to 5, wherein the metal capable of forming a silicide includes one of Tungsten, Cobalt and Titanium.
 


Ansprüche

1. Verfahren zur Bildung einer direkten Brückenverbindung für ein Halbleiterbauelement, mit den folgenden Schritten:

Bilden eines Gatestapels (106) auf einem Halbleitersubstrat (102);

Bilden einer Schutzschicht (108, 109) auf Seitenwänden des Gatestapels (106), wobei sich die Schutzschicht (108, 109) horizontal zwischen einem Teil (104') des Halbleitersubstrats (102) neben dem Gatestapel (106) erstreckt;

Bilden einer leitfähigen Schicht (112) aus einem zur Bildung eines Silizids fähigen Metall über der Schutzschicht (108, 109) und in Kontakt mit einem Gateleiter (107) des Gatestapels (106) und in Kontakt mit einer in dem Halbleitersubstrat gebildeten Diffusionsregion (104) neben dem Gateleiter;

Bilden einer dielektrischen Schicht (113) über der leitfähigen Schicht (112);

Strukturieren der dielektrischen Schicht (113), um einen Teil der leitfähigen Schicht (112) freizulegen, wobei der Teil der leitfähigen Schicht (112), der freigelegt wird, einen Teil der leitfähigen Schicht über dem Gateleiter (107) und über einem Teil des Substrats (102) neben dem Gateleiter enthält; und

Silizidieren der freigelegten Bereiche der leitfähigen Schicht (112), einschließlich einer Abscheidung von Silizium auf der leitfähigen Schicht (112), um eine direkte Brückenverbindung (120) und eine silizidierte Diffusionsregion (114a) zu bilden, wobei die direkte Brückenverbindung (120) den Gateleiter (107) in derselben Verbindungsebene des Halbleiterbauelements elektrisch mit der Diffusionsregion (104) verbindet,

wobei das Silizium in einem Temperaturbereich von zwischen 20°C und 400°C auf der leitfähigen Schicht (112) abgeschieden wird und die leitfähige Schicht (112) danach durch Ausführen einer schnellen thermischen Ausheilung (RTA) silizidiert wird.


 
2. Verfahren zur Bildung einer direkten Brückenverbindung für ein Halbleiterbauelement, mit den folgenden Schritten:

Bilden eines Gatestapels (106) auf einem Halbleitersubstrat (102);

Bilden einer Schutzschicht (108, 109) auf Seitenwänden des Gatestapels (106), wobei sich die Schutzschicht (108, 109) horizontal zwischen einem Teil (104') des Halbleitersubstrats (102) neben dem Gatestapel (106) erstreckt;

Bilden einer leitfähigen Schicht (112) aus einem zur Bildung eines Silizids fähigen Metall über der Schutzschicht (108, 109) und in Kontakt mit einem Gateleiter (107) des Gatestapels (106) und in Kontakt mit einer in dem Halbleitersubstrat gebildeten Diffusionsregion (104) neben dem Gateleiter;

Bilden einer dielektrischen Schicht (113) über der leitfähigen Schicht (112);

Strukturieren der dielektrischen Schicht (113), um einen Teil der leitfähigen Schicht (112) freizulegen, wobei der Teil der leitfähigen Schicht (112), der freigelegt wird, einen Teil der leitfähigen Schicht über dem Gateleiter (107) und über einem Teil des Substrats (102) neben dem Gateleiter enthält; und

Silizidieren der freigelegten Bereiche der leitfähigen Schicht (112), einschließlich einer Abscheidung von Silizium auf der leitfähigen Schicht (112), um eine direkte Brückenverbindung (120) und eine silizidierte Diffusionsregion (114a) zu bilden, wobei die direkte Brückenverbindung (120) den Gateleiter (107) in derselben Verbindungsebene des Halbleiterbauelements elektrisch mit der Diffusionsregion (104) verbindet,

wobei das Silizium in einem Temperaturbereich von zwischen 400°C und 700°C auf der leitfähigen Schicht (112) abgeschieden wird, um dadurch die leitfähige Schicht (112) zu silizidieren.


 
3. Verfahren nach Anspruch 1 oder 2, wobei der Schritt des Strukturieren der dielektrischen Schicht (113), um einen Teil der leitfähigen Schicht (112) freizulegen, den Schritt des Schützens eines zweiten Teils der leitfähigen Schicht (112) vor Siliizidierung durch Verwendung der dielektrischen Schicht (113) als Maske umfasst, und ferner mit den folgenden Schritten:

Entfernen der dielektrischen Schicht (113) nach der Siliizidierung; und

Entfernen des zweiten Teils der leitfähigen Schicht (112).


 
4. Verfahren nach Anspruch 3, wobei das Substrat Silizium umfasst und der zweite Teil der leitfähigen Schicht (112) einen dritten Teil umfasst, der einen Teil des Substrats (102) kontaktiert, und ferner mit dem Schritt des Ausheilens des dritten Teils der leitfähigen Schicht (112) und des Teils des Substrats (102) in Kontakt mit dem dritten Teil, um einen silizidierten Übergang (114b) zu bilden.
 
5. Verfahren nach einem der Ansprüche 1 bis 4, ferner mit den folgenden Schritten:

Bilden einer zweiten dielektrischen Schicht über dem Gateleiter (107) und der silizidierten Diffusionsregion (114a); und

Bilden von Metallschichten über der zweiten dielektrischen Schicht, wobei der Gateleiter (107) mit der silizidierten Diffusionsregion (104) verbunden wird, während eine Verbindung zu anderen Metallschichten vermieden wird.


 
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei das zur Bildung eines Silizids fähige Metall Wolfram oder Kobalt oder Titan umfasst.
 


Revendications

1. Procédé de formation d'une barrette continue pour un dispositif à semi-conducteur comprenant les stades dans lesquels :

on forme une pile ( 106 ) de grille sur un substrat (102) semi-conducteur ;

on forme une couche ( 108, 109 ) protectrice sur des parois latérales de la pile ( 106 ) de grille, la couche ( 108, 109 ) protectrice s'étendant horizontalement sur une partie ( 104' ) du substrat ( 102 ) semi-conducteur voisine de la pile ( 106 ) de grille ;

on forme une couche ( 112 ) conductrice en un métal apte à former un siliciure sur la couche ( 108, 109 ) protectrice et en contact avec un conducteur ( 107 ) de grille de la pile ( 106 ) de grille et en contact avec une région ( 104 ) de diffusion formée dans le substrat semi-conducteur au voisinage du conducteur de grille ;

on forme une couche ( 113 ) diélectrique sur la couche ( 112 ) conductrice ;

on structure la couche ( 113 ) diélectrique pour mettre à nu une partie de la couche ( 112 ) conductrice, la partie de la couche ( 112 ) conductrice qui est mise à nu comprenant une partie de la couche conductrice au-dessus du conducteur ( 107 ) de grille et au-dessus d'une partie du substrat ( 102 ) voisine du conducteur de grille ; et

on siliciure les zones mises à nu de la couche ( 112 ) conductrice en y incluant le dépôt de silicium sur la couche ( 112 ) conductrice pour former une barrette ( 120 ) et une région ( 114a ) siliciurée de diffusion, la barrette ( 120 ) continue reliant électriquement le conducteur ( 107 ) de grille à la région ( 104 ) de diffusion dans un même niveau de connexion du dispositif à semi-conducteur,

dans lequel on dépose le silicium sur la couche ( 112 ) conductrice dans une plage de température entre 20°C et 400°C et on silicure ensuite la couche ( 112 ) conductrice en effectuant un recuit thermique rapide (RTA).
 
2. Procédé de formation d'une barrette continue pour un dispositif à semi-conducteur comprenant les stades dans lesquels :

on forme une pile ( 106 ) de grille sur un substrat (102) semi-conducteur ;

on forme une couche ( 108, 109 ) protectrice sur des parois latérales de la pile ( 106 ) de grille, la couche ( 108, 109 ) protectrice s'étendant horizontalement sur une partie ( 104' ) du substrat ( 102 ) semi-conducteur voisine de la pile ( 106 ) de grille ;

on forme une couche ( 112 ) conductrice en un métal apte à former un siliciure sur la couche ( 108, 109 ) protectrice et en contact avec un conducteur ( 107 ) de grille de la pile ( 106 ) de grille et en contact avec une région ( 104 ) de diffusion formée dans le substrat semi-conducteur au voisinage du conducteur de grille ;

on forme une couche ( 113 ) diélectrique sur la couche ( 112 ) conductrice ;

on structure la couche ( 113 ) diélectrique pour mettre à nu une partie de la couche ( 112 ) conductrice, la partie de la couche ( 112 ) conductrice qui est mise à nue comprenant une partie de la couche conductrice au-dessus du conducteur ( 107 ) de grille et au-dessus d'une partie du substrat ( 102 ) voisine du conducteur de grille ; et

on siliciure les zones mises à nu de la couche ( 112 ) conductrice en y incluant le dépôt de silicium sur la couche ( 112 ) conductrice pour former une barrette ( 120 ) et une région ( 114a ) siliciurée de diffusion, la barrette ( 120 ) continue reliant électriquement le conducteur ( 107 ) de grille à la région ( 104 ) de diffusion dans un même niveau de connexion du dispositif à semi-conducteur,

dans lequel on dépose le silicium sur la couche ( 112 ) conductrice dans une plage de température comprise entre 400° C et 700° C en siliciurant ainsi la couche ( 112 ) conductrice.
 
3. Procédé suivant la revendication 1 ou 2, dans lequel le stade de structuration de la couche ( 113 ) diélectrique pour mettre à nu une partie de la couche ( 112 ) conductrice comprend le stade de protection d'une seconde partie de la couche ( 112 ) conductrice de la siliciuration en employant la couche ( 113 ) diélectrique comme un masque et comprenant, en outre, lés stades dans lesquels :

on enlève la couche ( 113 ) diélectrique après siliciuration ; et

on enlève la deuxième partie de la couche ( 112 ) conductrice.


 
4. Procédé suivant la revendication 3, dans lequel le substrat comprend du silicium et la deuxième partie de la couche ( 112 ) conductrice comprend une troisième partie qui est en contact avec une partie du substrat ( 102 ) et comprenant, en outre, le stade de recuit de la troisième partie de la couche ( 112 ) conductrice et de la partie du substrat ( 102 ) en contact avec la troisième partie pour former une jonction ( 114b ) siliciurée.
 
5. Procédé suivant l'une des revendications 1 à 4, comprenant, en outre, les stades dans lesquels :

on forme une deuxième couche diélectrique sur le conducteur ( 107 ) de grille et sur la région ( 114a ) siliciurée de diffusion ; et

on forme des couches métalliques sur la deuxième couche diélectrique, le conducteur ( 107 ) de grille étant relié à la région ( 104 ) siliciurée de diffusion tout en évitant une interconnection à d'autres couches métalliques.


 
6. Procédé suivant l'une des revendications 1 à 5,
dans lequel le métal apte à former un siliciure comprend l'un du tungstène, du cobalt et du titane.
 




Drawing














Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description