(19)
(11)EP 1 295 905 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.02.2012 Bulletin 2012/08

(21)Application number: 02256590.7

(22)Date of filing:  23.09.2002
(51)International Patent Classification (IPC): 
C08K 3/08(2006.01)
H01B 3/30(2006.01)
C08L 83/04(2006.01)

(54)

Use of Silicone rubber compositions for the sealing and encapsulation of electric and electronic parts

Verwendung von Silikonkautschukzusammensetzungen zum Versiegeln und Umhüllen von elektrischen und elektronischen Teilen

Utilisation des compositions de caoutchouc de silicone pour fermeture hermétique et encapsulation de pièces électriques et électroniques


(84)Designated Contracting States:
DE FR GB

(30)Priority: 25.09.2001 JP 2001291034

(43)Date of publication of application:
26.03.2003 Bulletin 2003/13

(73)Proprietor: Shin-Etsu Chemical Co., Ltd.
Chiyoda-ku, Tokyo (JP)

(72)Inventors:
  • Hara, Hiroyasu, Silicone-Electronics Materials
    Matsuida-machi, Usui-gun, Gunma-ken (JP)
  • Sugahara, Hideki, Silicone-Electronics Materials
    Matsuida-machi, Usui-gun, Gunma-ken (JP)
  • Inoue, Yoshifumi, Silicone-Electronics Materials
    Matsuida-machi, Usui-gun, Gunma-ken (JP)

(74)Representative: Stoner, Gerard Patrick et al
Mewburn Ellis LLP 33 Gutter Lane
London EC2V 8AS
London EC2V 8AS (GB)


(56)References cited: : 
EP-A- 0 367 562
GB-A- 1 179 127
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates to a method using silicone rubber compositions for the sealing and encapsulation of electric and electronic parts, for preventing or retarding corrosion of the electric and electronic parts by sulfur-containing gas.

    BACKGROUND



    [0002] Silicone rubber compositions are traditionally used for the sealing and encapsulation of electric and electronic parts for the purpose of preventing or retarding corrosion and degradation thereof. When electric and electronic parts are exposed to sulfur-containing gases such as sulfur gas and sulfur dioxide gas, conventional silicone rubbers fail to prevent or retard the sulfur-containing gas from reaching the electric and electronic parts. In particular, they are not effective for preventing or retarding corrosion of metal parts.

    [0003] The aim here is to employ new and useful silicone rubber compositions for encapsulating electronic or electric parts, so as to prevent or retard sulfur-containing gas from reaching the electric and electronic parts. The corresponding encapsulated parts are a further aspect of the invention.

    [0004] We propose the use of a silicone rubber composition which contains 0.5 to 90% by weight of a specified metal powder and is curable into an electrically non-conductive silicone rubber having a volume resistivity of at least 1x109 Ω·cm. Especially when the metal powder is copper or analogous metal which is sulfidable with a sulfur-containing gas, it is converted upon contact with the gas into a metal sulfide powder, to prevent or retard the sulfur-containing gas from reaching the electric and electronic parts.

    [0005] According to the invention, there is provided a method of preventing or retarding corrosion of electric and electronic parts by a sulfur-containing gas, said method comprising sealing and encapsulating said parts with a cured product of a silicone rubber composition as set out in claim 1.

    [0006] The metal powder is one which is sulfidable with a sulfur-containing gas into a metal sulfide powder which prevents or retards the sulfur-containing gas from reaching the electric and electronic parts. Most often, the metal powder is copper. The composition may also usefully contain silica filler.

    BRIEF DESCRIPTION OF THE DRAWING



    [0007] FIG. 1 schematically illustrates a corrosion test.

    FURTHER EXPLANATIONS; OPTIONS AND PREFERENCES



    [0008] The silicone rubber composition used in the invention contains (A) 0.5 to 90% by weight based on the entire composition of a metal powder and cures into a non-conductive silicone rubber. It is intended for the sealing and encapsulation of electric and electronic parts.

    [0009] The metal powder (A) is sulfidable with a sulfur-containing gas into a metal sulfide powder which prevents or retards the sulfur-containing gas from reaching the electric and electronic parts. Examples of such sulfidable metals include silver, copper, iron, nickel, aluminum, tin and zinc. Of these, copper powder is preferred for stability in the composition and economy.

    [0010] No particular limits need be imposed on the shape and properties of the metal powder in order for the metal powder to exert the desired effects although an atomized metal powder is preferred for the control of impurity and fluidity of the composition.

    [0011] The metal powder is added to the composition in a sufficient amount to prevent or retard the sulfur-containing gas from reaching the electric and electronic parts and specifically, 0.5 to 90% by weight to attain that object. From the standpoints of composition fluidity and cured composition's volume resistivity, the preferred amount is 1 to 70%, and especially 2 to 50% by weight based on the entire composition.

    [0012] As described above, in use, the metal powder is sulfided with a sulfur-containing gas into a metal sulfide powder which can prevent or retard the sulfur-containing gas from reaching the electric and electronic parts. If the cured silicone rubber becomes conductive (i.e., having a volume resistivity of less than 1×109 Ω·cm), it is unsatisfactory as an electric and electronic part sealant or encapsulant. It is then necessary to acquire a volume resistivity above the specific level. The type and amount of the metal powder must be selected such that the cured silicone rubber composition may have a volume resistivity of at least 1×109 Ω·cm, especially at least 1×1010 Ω·cm.

    [0013] The silicone rubber compositions used herein are selected from compositions of addition reaction curing type. Compositions of the addition reaction curing type are preferred because the process time on use can be shortened. The silicone rubber compositions used in the invention contain (B) an organopolysiloxane containing at least two alkenyl radicals in a molecule, (C) an organohydrogenpolysiloxane containing at least two hydrogen atoms each attached to a silicon atom in a molecule, and (D) a platinum group metal catalyst. In the silicone rubber composition, (E) at least 0.2 part by weight of finely divided silica per 100 parts by weight of the organopolysiloxane (B) is preferably added for preventing any reduction of volume resistivity by the inclusion of the metal powder and maintaining the composition non-conductive. Optionally, (F) an adhesive agent having at least one functional radical selected from among an epoxy, alkoxysilyl, carbonyl and phenyl radical is added for enhancing the adhesion of the composition to electric and electronic parts or casings thereof. Suitable respective components are described below in detail.

    (B) Alkenyl-containing organopolysiloxane



    [0014] The alkenyl-containing organopolysiloxane used herein is an organopolysiloxane containing at least two alkenyl radicals in a molecule. It is generally a linear organopolysiloxane whose backbone is basically composed of recurring diorganosiloxane units and which is blocked at either end with a triorganosiloxy radical, although it may also be branched (containing a branched structure as part of its molecular structure) or cyclic one. For the mechanical strength and other physical properties of the cured composition, a linear diorganopolysiloxane is preferred. The alkenyl radicals may be located solely at both ends of the molecular chain or at both ends and intermediate positions of the molecular chain. Typical alkenyl-containing organopolysiloxanes are diorganopolysiloxanes of the following general formula (1).



    [0015] Herein, R1 is independently a substituted or unsubstituted monovalent hydrocarbon radical free of aliphatic unsaturation, X is alkenyl, n is an integer of 0, 1 or greater, and m is an integer of 0, 1 or greater.

    [0016] Illustrative, non-limiting examples of the substituted or unsubstituted monovalent hydrocarbon radical free of aliphatic unsaturation represented by R1 include alkyl radicals such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl and dodecyl; cycloalkyl radicals such as cyclopentyl, cyclohexyl and cycloheptyl; aryl radicals such as phenyl, tolyl, xylyl, naphthyl and biphenylyl; aralkyl radicals such as benzyl, phenylethyl, phenylpropyl and methylbenzyl; and substituted ones of the foregoing radicals in which some or all of the hydrogen atoms attached to carbon atoms are substituted with halogen atoms (e.g., fluorine, chlorine and bromine), cyano radicals or the like, such as chloromethyl, 2-bromoethyl, 3-chloropropyl, 3,3,3-trifluoropropyl, chlorophenyl, fluorophenyl, cyanoethyl, and 3,3,4,4,5,5,6,6,6-nonafluorohexyl. Typical are those of 1 to 10 carbon atoms, especially 1 to 6 carbon atoms. Preferred are substituted or unsubstituted alkyl radicals of 1 to 3 carbon atoms such as methyl, ethyl, propyl, chloromethyl, bromoethyl, 3,3,3-trifluoropropyl, and cyanoethyl and substituted or unsubstituted phenyl radicals such as phenyl, chlorophenyl and fluorophenyl.

    [0017] Examples of the alkenyl radical represented by X include those of about 2 to about 8 carbon atoms, such as vinyl, allyl, propenyl, isopropenyl, butenyl, hexenyl and cyclohexenyl. Of these, lower alkenyl radicals such as vinyl and allyl are preferred.

    [0018] In formula (1), n is an integer of 0, 1 or greater, and m is an integer of 0, 1 or greater. Preferably n and m are integers satisfying 10 ≤ n+m ≤ 10,000, more preferably 50 ≤ n+m ≤ 2,000 and 0 ≤ m/(n+m) ≤ 0.2.

    [0019] Preferably, the alkenyl-containing organopolysiloxanes have a viscosity of about 10 to 1,000,000 centistokes (cSt) at 25°C, more preferably about 100 to 500,000 cSt at 25°C.

    (C) Organohydrogenpolysiloxane



    [0020] The organohydrogenpolysiloxane used herein has at least two, preferably at least three hydrogen atoms each attached to a silicon atom (i.e., SiH radicals) per molecule. It may be linear, branched or cyclic, or resinous one of three-dimensional network structure is also acceptable. Typical organohydrogenpolysiloxanes have the following average compositional formula (2).

            HaR2bSiO(4-a-b)/2     (2)

    Herein R2 independently stands for substituted or unsubstituted monovalent hydrocarbon radicals free of aliphatic unsaturation, a and b are numbers in the range: 0 < a < 2, 0.8 ≤ b ≤ 2 and 0.8 < a+b ≤ 3, and preferably 0.05 ≤ a ≤ 1, 1.5 ≤ b ≤ 2, and 1.8 ≤ a+b ≤ 2.7.

    [0021] Examples of the substituted or unsubstituted monovalent hydrocarbon radicals free of aliphatic unsaturation represented by R2 are as enumerated for R1 in formula (1), typically those of 1 to 10 carbon atoms, especially 1 to 7 carbon atoms, preferably lower alkyl radicals of 1 to 3 carbon atoms (e.g., methyl), phenyl and 3,3,3-trifluoropropyl. Examples of suitable organohydrogenpolysiloxanes include siloxane oligomers such as 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyltetracyclo-siloxane, and 1,3,5,7,8-pentamethylpentacyclosiloxane; both end trimethylsiloxy radical-blocked methylhydrogenpolysiloxane, both end trimethylsiloxy radical-blocked dimethylsiloxane-methylhydrogensiloxane copolymers, both end silanol radical-blocked methylhydrogenpolysiloxane, both end silanol radical-blocked dimethylsiloxane-methylhydrogensiloxane copolymers, both end dimethylhydrogensiloxy radical-blocked dimethylpolysiloxane, both end dimethylhydrogensiloxy radical-blocked methylhydrogenpolysiloxane, both end dimethylhydrogensiloxy radical-blocked dimethylsiloxane-methylhydrogensiloxane copolymers, silicone resins composed of R2(H)SiO1/2 units and SiO4/2 units and optionally, R3SiO1/2 units, R2SiO2/2 units, R(H)SiO2/2 units, (H)SiO3/2 units or RSiO3/2 units wherein R is a substituted or unsubstituted monovalent hydrocarbon radical as enumerated for R1. Also included are organohydrogenpolysiloxanes of the following formulae.







    [0022] Herein n is an integer of 0 to 200, preferably 0 to 100, m is an integer of 2 to 200, preferably 2 to 100, and n+m is 2 to 400, preferably 2 to 200.

    [0023] The organohydrogenpolysiloxane used herein may be prepared by well-known methods, for example, by co-hydrolysis of at least one chlorosilane selected from R2SiHCl2 and R22SiHCl wherein R2 is as defined above, or co-hydrolysis of a mixture of the foregoing chlorosilane and at least one chlorosilane selected from R23SiCl and R22SiCl2 wherein R2 is as defined above. A polysiloxane resulting from such co-hydrolysis may be equilibrated into an organohydrogenpolysiloxane which is also useful herein.

    [0024] An appropriate amount of the organohydrogenpolysiloxane (C) used gives 0.5 to 4 mol, preferably 1 to 2.5 mol of silicon-bonded hydrogen atoms (i.e., SiH radicals) in the organohydrogenpolysiloxane (C) available per mol of alkenyl radicals in the organopolysiloxane (B).

    (D) Platinum group metal catalyst



    [0025] The platinum group metal catalyst used herein serves to promote addition reaction between alkenyl groups in component (B) and silicon-bonded hydrogen atoms in component (C), Well-known catalysts for use in hydrosilylation reaction are useful. Examples include platinum group metal elements such as platinum (inclusive of platinum black), rhodium and palladium; platinum chloride, chloroplatinic acid and salts thereof such as H2PtCl4·nH2O, H2PtCl6·nH2O, NaHPtCl6·nH2O, KHPtCl6·nH2O, Na2PtCl6·nH2O, K2PtCl4·nH2O, PtCl4·nH2O, PtCl2, and Na2HPtCl4·nH2O wherein n is an integer of 0 to 6, preferably 0 or 6; alcohol-modified chloroplatinic acid (see USP 3,220,972); complexes of chloroplatinic acid with olefins (see USP 3,159,601, 3,159,662 and 3,775,452); platinum group metals such as platinum black and palladium on supports such as alumina, silica and carbon; rhodium-olefin complexes; chlorotris(triphenylphosphine)rhodium (Wilkinson catalyst); and complexes of platinum chloride, chloroplatinic acid or salts thereof with vinyl-containing siloxanes, especially vinyl-containing cyclic siloxanes.

    [0026] The catalyst (D) is used in a catalytic amount, typically in an amount to provide about 0.1 to 500 ppm, especially about 0.5 to 200 ppm of platinum group metal based on the weight of components (B) and (C) combined.

    (E) Finely divided silica



    [0027] Finely divided silica is an additive effective for maintaining electrical properties of the composition. Since the metal powder (A) tends to increase the conductivity of cured silicone rubber (or reduce the volume resistivity thereof), the electrical properties necessary as a sealant may be unsatisfactory as the amount of the metal powder added increases. If finely divided silica is added to this composition, silica particles bind to surfaces of metal particles, prevent metal particles from binding together, and eventually serve to maintain the volume resistivity of cured silicone rubber, that is, maintain the volume resistivity at or above 1×109 Ω·cm.

    [0028] Finely divided silicas are available in several forms including crystalline, fused and fumed silicas. For the above purpose, addition of fumed silica is most preferred.

    [0029] To achieve the desired effects, the finely divided silica (E) is preferably added in an amount of at least 0.2 part by weight per 100 parts by weight of the organopolysiloxane (B), For ease of handling of the composition on use, it is recommended to add 0.5 to 30 parts by weight of silica.

    (F) Adhesive agent



    [0030] An adhesive agent is preferably added although it is an optional component.

    [0031] The adhesive agent used herein is an organosilicon compound (such as silane or siloxane) having at least one functional radical selected from among an epoxy, alkoxysilyl, carbonyl and phenyl radical. Especially, an organosilane compound having at least one functional group selected from vinyl group, epoxy group, (meth)acryloxy and phenyl group and at least one alkoxysilyl group is preferred. A linear or cyclic organosiloxane oligomer having 4 to 20 silicon atoms and having at least one group selected from epoxy group and alkoxysilyl and at least one hydrogen atom directly attached to silicon atom (i.e., SiH group) is also preferably used. It is preferably a component that makes the inventive composition self-adhesive to metals or organic resins or both.

    [0032] Illustrative examples of the adhesive agent are given below.

            CH2=CHSi(OCH3)3,   C6H5Si(OCH3)3,

            CH2=CHSi(OC2H4OCH3)3 ,


















    Others



    [0033] In addition to components (A), (B), (C), (D), (E) and optionally (F), the inventive composition may contain other additives if necessary. Such additives include calcium carbonate; zinc carbonate; reinforcing inorganic fillers such as fumed titanium dioxide; reinforcing silicone resins; and non-reinforcing inorganic fillers such as calcium silicate, titanium dioxide, ferric oxide and carbon black. These inorganic fillers are usually used in amounts of 0 to 200 parts by weight per 100 parts by weight of the remaining components combined.

    Curable silicone rubber composition and Cured product



    [0034] Like conventional curable silicone rubber compositions, a composition for use in the invention may be of the two part type in which the components are divided into two parts which are to be combined and cured on use. However, it is preferred for ease of working on use that the composition be of one part type.

    [0035] Depending on the service conditions, the composition thus formulated may be prepared as a flowable composition or a thixotropic composition.

    [0036] The addition curing type silicone rubber composition may be cured by similar methods under similar conditions as are well known for conventional curable silicone rubber compositions. preferably it is curable at room temperature, but may be heated if desired.

    [0037] The silicone rubber composition is used for the sealing and encapsulation of electric and electronic parts in a similar manner to well-known sealants and encapsulants. The cured silicone rubber composition or silicone rubber has heat resistance and improved electrical insulation. When a sulfur-containing gas (e.g., sulfur gas, sulfur dioxide gas or sulfide gas) contacts the cured product, the metal powder dispersed in the cured product is sulfided with the sulfur-containing gas whereby the sulfur-containing gas is prevented or retarded from reaching the underlying electric and electronic parts. The electric and electronic parts are thus protected from the sulfur-containing gas.

    EXAMPLE



    [0038] Examples of the invention are given below by way of illustration and not by way of limitation.

    Examples & Comparative Examples



    [0039] Using the stock materials given below, silicone rubber compositions of the one part, addition reaction curing type were prepared to the formulation shown in Table 1.

    [0040] These compositions were cured under heating conditions of 120°C and one hour. The cured rubbers were measured for hardness and volume resistivity and subjected to a corrosion test as described below. The results are also shown in Table 1.

    Stock materials


    (a) Metal powder



    [0041] 
    1. (a-0) gold powder (flakes)
    2. (a-1) silver powder (flakes)
    3. (a-2-1) copper powder (flakes)
    4. (a-2-2) copper powder (atomized)
    5. (a-3) iron powder (atomized)
    6. (a-4) zinc powder (atomized)

    (b) Organopolysiloxane (abbreviated as polysiloxane)



    [0042] Vinyl-containing linear organopolysiloxane of the formula:

    wherein n is such a number that the siloxane has a viscosity of 1000 cSt at 25°C.

    (c) Organohydrogenpolysiloxane (abbreviated as hydrosiloxane)



    [0043] 


    (d) Toluene solution of platinum-divinyltetramethyl-disiloxane complex (abbreviated as platinum compound)



    [0044] platinum content: 0.5 wt%

    (e) Silica



    [0045] 
    1. (e-1) fumed silica, R8200 by Degussa
    2. (e-2) crystalline silica, Crystallite VXST by Tatsumori

    (f) Cure regulating agent



    [0046] 50% toluene solution of ethynyl cyclohexanol

    (g) Adhesive agent



    [0047] 

    Me is methyl.

    Corrosion test



    [0048] As shown in FIG. 1, a silver-plated copper plate 2 was placed in a glass vessel 1, a cured sheet 3 of the silicone rubber composition (0.8 mm thick) was placed over the vessel 1, and 0.10 g of sulfur powder 4 was rested on the sheet 3. The vessel 1 was closed with a metal cap 5. The vessel was held in a thermostat chamber at 70°C for several days while the degree of corrosion on the silver plating was visually observed at suitable intervals. The sample was rated "○" for no corrosion and "X" for corrosion observed as blackening.
    Table 1
    Components (pbw)Comparative ExampleExample
    12312345678910111213
    a-0 gold powder (flakes)   50                            
    a-1 silver powder (flakes)       50                        
    a-2-1 copper powder (flakes)         50                      
    a-2-2 copper powder (atomized)     500     1 10 50 100 300 500 500 500 500    
    a-3 iron powder (atomized)                             50  
    a-4 zinc powder (atomized)                               50
    b polysiloxane 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
    c hydrosiloxane 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
    d platinum compound 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
    e-1 fumed silica                     0.2 0.5 3      
    e-2 crystalline silica                           3    
    f cure regulating agent 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
    g adhesive agent 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
    Hardness* 20 24 55 23 25 20 22 25 30 33 52 56 32 33 24 23
    Corrosion test Initial
    after 6 hr × ×
    after 1 day × × × ×
    after 3 days × × × × × × × ×
    after 7 days × × o × × × × × o o o o o o × ×
    Volume resistivity (Ω·cm) 8× 1014 2× 1012 2× 106 2× 1013 3× 1013 7× 1014 2× 1014 6× 1012 5× 1011 3× 1010 3× 109 8× 1011 6× 1014 2× 1013 6× 1013 3× 1013
    * Hardness was measured by Durometer type A according to JIS K6249.


    [0049] As seen from the Table, Comparative Example 2 using gold, i.e., the metal powder which is not sulfidable with sulfur gas, fails to retard the corrosion of inside silver plating whereas the sulfidable metal powders as typified by copper within the scope of the invention are effective for retarding the corrosion. It is also evident that the inclusion of at least 0.2 part, preferably at least 0.5 part of silica fines is effective in preventing the volume resistivity from lowering.

    [0050] The silicone rubber compositions are used in the method of the invention in the encapsulation of electric and electronic parts as the effective means for preventing metals from corrosion with sulfur-containing gas.


    Claims

    1. A method of preventing or retarding corrosion of electric and electronic parts by a sulfur-containing gas, said method comprising sealing and encapsulating said parts with a cured product of a silicone rubber composition, wherein said composition comprises:

    (A) 0.5 to 90% by weight of metal powder wherein the metal is selected from silver, copper, iron, nickel, aluminium, tin and zinc;

    (B) organopolysiloxane containing at least two alkenyl radicals in a molecule;

    (C) organohydrogenpolysiloxane containing at least two hydrogen atoms each attached to a silicon atom in a molecule, the relative amounts of (B) and (C) being such that (C) provides 0.5 to 4 mol of silicon-bonded hydrogen atoms per mol of alkenyl radicals in (B); and

    (D) platinum group metal catalyst;

    the composition being curable to a non-conductive silicone rubber having a volume resistivity of at least 1 x 109 Ω·cm.
     
    2. The method of claim 1 wherein the metal powder is copper.
     
    3. The method of claim 1 wherein the metal powder is iron, tin or zinc.
     
    4. The method of claim 3 wherein said composition comprises 0.5 to 50% by weight of said metal powder.
     
    5. The method of any preceding claim wherein the metal powder in the cured product is sulfidable by sulfur-containing gas to a metal sulfide, which prevents or retards the sulfur-containing gas from reaching the electric and electronic parts.
     
    6. The method of any preceding claim wherein the composition also contains (E) at least 0.2 parts by weight of finely divided silica per 100 parts by weight of the organopolysiloxane (B).
     
    7. The method of any preceding claim wherein the composition also contains (F) an adhesive agent having at least one functional radical selected from the group consisting of an epoxy, alkoxysilyl, carbonyl and phenyl radical.
     
    8. The method of any preceding claim wherein the composition is of one part type.
     
    9. A method of manufacturing a product including electronic or electric parts or components, including employing a method according to any one of the preceding claims.
     
    10. An encapsulated electric or electronic component in which the encapsulating material is a cured silicone rubber composition, as produced by carrying out a method according to any of claims 1 to 8.
     


    Ansprüche

    1. Verfahren zur Vermeidung oder Verzögerung der Korrosion von elektrischen und elektronischen Teilen durch ein schwefelhältiges Gas, wobei das Verfahren das Verschließen und Verkapseln der Teile mit einem gehärteten Produkt einer Siliconkautschukzusammensetzung umfasst, worin die Zusammensetzung Folgendes umfasst:

    (A) 0,5 bis 90 Gew.-% Metallpulver, worin das Metall aus Silber, Kupfer, Eisen, Nickel, Aluminium, Zinn und Zink ausgewählt ist;

    (B) Organopolysiloxan, das pro Molekül zumindest zwei Alkenylreste enthält;

    (C) Organohydrogenpolysiloxan, das pro Molekül zumindest zwei, jeweils an ein Siliciumatom gebundene Wasserstoffatome enthält, wobei die relativen Mengen von (B) und (C) so sind, dass (C) 0,5 bis 4 mol siliciumgebundene Wasserstoffatome pro mol Alkenylreste in (B) bereitstellt; und

    (D) Metallkatalysator der Platingruppe;

    wobei die Zusammensetzung zu einem nicht leitfähigen Siliconkautschuk mit einem spezifischen Volumenwiderstand von zumindest 1 x 109 Ω·cm härtbar ist.
     
    2. Verfahren nach Anspruch 1, worin das Metallpulver Kupfer ist.
     
    3. Verfahren nach Anspruch 1, worin das Metallpulver Eisen, Zinn oder Zink ist.
     
    4. Verfahren nach Anspruch 3, worin die Zusammensetzung 0,5 bis 50 Gew.-% des Metallpulvers umfasst.
     
    5. Verfahren nach einem der vorangegangenen Ansprüche, worin das Metallpulver im gehärteten Produkt mit einem schwefelhältigen Gas zu einem Metallsulfid sulfidierbar ist, was das schwefelhältige Gas davon abhält, die elektrischen und elektronischen Teile zu erreichen oder diesen Vorgang verlangsamt.
     
    6. Verfahren nach einem der vorangegangenen Ansprüche, worin die Zusammensetzung auch (E) zumindest 0,2 Gewichtsteile feinverteilte Kieselerde pro 100 Gewichtsteile des Organopolysiloxans (B) enthält.
     
    7. Verfahren nach einem der vorangegangenen Ansprüche, worin die Zusammensetzung auch (F) einen Klebstoff, der zumindest ein aus der aus Epoxy-, Alkoxysilyl-, Carbonyl- und Phenylresten bestehenden Gruppe ausgewählten funktionellen Rest enthält.
     
    8. Verfahren nach einem der vorangegangenen Ansprüche, worin die Zusammensetzung vom Ein-Komponenten-Typ ist.
     
    9. Verfahren zur Herstellung eines elektronische oder elektrische Teile oder Komponenten umfassenden Produkts, das die Anwendung eines Verfahren nach einem der vorangegangenen Ansprüche umfasst.
     
    10. Verkapselte elektrische oder elektronische Komponente, worin das Verkapselungsmaterial eine gehärtete Siliconkautschukzusammensetzung ist, die durch Anwendung eines Verfahrens nach einem der Ansprüche 1 bis 8 hergestellt ist.
     


    Revendications

    1. Procédé pour empêcher ou retarder la corrosion de pièces électriques et électroniques par un gaz soufré, ledit procédé consistant à sceller et encapsuler lesdites pièces avec un produit durci d'une composition de caoutchouc siliconé, dans lequel ladite composition comprend :

    (A) 0,5 à 90 % en poids d'une poudre métallique, le métal étant choisi parmi l'argent, le cuivre, le fer, le nickel, l'aluminium, l'étain et le zinc ;

    (B) un organopolysiloxane contenant au moins deux radicaux alcényle par molécule ;

    (C) un organohydrogénopolysiloxane contenant au moins deux atomes d'hydrogène rattachés chacun à un atome de silicium par molécule, les quantités relatives de (B) et (C) étant telles que (C) apporte 0,5 à 4 moles d'atomes d'hydrogène liés au silicium par mole de radicaux alcényle dans (B) ; et

    (D) un catalyseur à base de métal du groupe du platine ;

    la composition étant durcissable en un caoutchouc siliconé non conducteur ayant une résistivité volumique d'au moins 1 x 109 Ω•cm.
     
    2. Procédé selon la revendication 1, dans lequel la poudre métallique est du cuivre.
     
    3. Procédé selon la revendication 1, dans lequel la poudre métallique est du fer, de l'étain ou du zinc.
     
    4. Procédé selon la revendication 3, dans lequel ladite composition comprend 0,5 à 50 % en poids de ladite poudre métallique.
     
    5. Procédé selon l'une quelconque des revendications précédentes, dans lequel la poudre métallique dans le produit durci peut subir une sulfuration par un gaz soufré pour former un sulfure métallique, qui empêche le gaz soufré d'atteindre les pièces électriques ou électroniques ou le ralentit.
     
    6. Procédé selon l'une quelconque des revendications précédentes, dans lequel la composition contient aussi (E) au moins 0,2 partie en poids de silice finement divisée pour 100 parties en poids de l'organopolysiloxane (B).
     
    7. Procédé selon l'une quelconque des revendications précédentes, dans lequel la composition contient aussi (F) un agent adhésif ayant au moins un radical fonctionnel choisi dans le groupe constitué par les radicaux époxy, alcoxysilyle, carbonyle et phényle.
     
    8. Procédé selon l'une quelconque des revendications précédentes, dans lequel la composition est du type en une seule partie.
     
    9. Procédé de fabrication d'un produit contenant des pièces ou composants électriques ou électroniques, comprenant l'emploi d'un procédé selon l'une quelconque des revendications précédentes.
     
    10. Composant électrique ou électronique encapsulé dans lequel le matériau d'encapsulation est une composition de caoutchouc siliconé durcie, telle que produite par la mise en application d'un procédé selon l'une quelconque des revendications 1 à 8.
     




    Drawing








    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description