(19)
(11)EP 1 347 012 B2

(12)NEW EUROPEAN PATENT SPECIFICATION
After opposition procedure

(45)Date of publication and mention of the opposition decision:
29.04.2020 Bulletin 2020/18

(45)Mention of the grant of the patent:
20.12.2006 Bulletin 2006/51

(21)Application number: 02011786.7

(22)Date of filing:  28.05.2002
(51)International Patent Classification (IPC): 
C08L 27/16(2006.01)
C08K 5/00(2006.01)
C08J 3/24(2006.01)

(54)

Curable Fluoroelastomers

Vernetzbare Fluorelastomere

Fluoroélastomères réticulables


(84)Designated Contracting States:
DE FR GB IT

(30)Priority: 22.03.2002 IT MI20010598

(43)Date of publication of application:
24.09.2003 Bulletin 2003/39

(73)Proprietor: Solvay Specialty Polymers Italy S.p.A.
20121 Milano (IT)

(72)Inventors:
  • Staccione, Anna
    20100 Milano (IT)
  • Albano, Margherita
    20100 Milano (IT)

(74)Representative: Vande Gucht, Anne et al
Solvay S.A. Département de la Propriété Industrielle Rue de Ransbeek, 310
1120 Bruxelles
1120 Bruxelles (BE)


(56)References cited: : 
EP-A- 0 684 276
DE-A- 19 844 188
US-A- 5 658 671
EP-A- 0 684 277
US-A- 5 285 002
US-A- 5 883 197
  
      


    Description


    [0001] The present invention relates to curable fluoroelastomers, able to give cured fluoroelastomers with improved sealing properties, i.e. improved compression set on O-ring, improved mechanical properties shown as improved combination of stress and elongation at break.

    [0002] More specifically the curable fluoroelastomers of the invention are cured by ionic route. The cured fluoroelastomers of the present invention are used in the preparation of O-rings, gaskets, shaft seals, fuel hoses, etc. The O-rings obtained with the curable invention compositions show an improved compression set value and an improved combination of stress at break and elongation at break. The shaft seals show an improved combination of stress at break and elongation at break. Besides the curable fluoroelastomers of the present invention crosslink in short times.

    [0003] It is well known that one of the most important applications of fluoroelastomers relates to the preparation of O-rings. They are obtained from fluoroelastomeric copolymers based on units deriving from vinylidenfluoride (VDF), hexafluoropropene (HFP), optionally tetrafluoroethylene (TFE).

    [0004] The fluoroelastomers used in said application must have high elastomeric properties at low and at high temperatures and must show a good processability so that they can be easily injection moulded with automatic cycles.

    [0005] The need was felt to have available curable VDF-based fluoroelastomers to prepare the above manufactured articles having the optimal combination of the mentioned properties.

    [0006] An object of the present invention are fluoroelastomers curable by ionic route based on vinylidenfluoride (VDF) comprising:
    1. a) 100 parts by weight of fluoroelastomer based on vinylidenfluoride (VDF) substantially polar end group free;
    2. b) from 0.05 to 5 phr of accelerant;
    3. c) from 0.5 to 15 phr of curing agent;
    4. d) from 1 to 40 phr of one or more inorganic acid acceptors;
    5. e) from 0 to 2.5 phr of one or more basic compounds;
    6. f) from 0 to 80 phr of reinforcing fillers.
    as further defined in Claim 1.

    [0007] The fluoroelastomers component a) comprise VDF copolymers containing at least another ethylenically unsaturated fluorinated comonomer. This can be selected for example from the following:
    • C2-C8 perfluoroolefins, such as hexafluoropropene (HFP), tetrafluoroethylene (TFE);
    • C2-C8 fluoroolefins containing hydrogen and/or chlorine and/or bromine and/or fluorine, such trifluoroethylene, pentafluoropropene, chlorotrifluoroethylene (CTFE), bromotrifluoroethylene;
    • fluorovinylethers (VE) preferably selected from:

      ∘ (per)fluoroalkylvinylethers (PAVE) CF2=CFORf wherein Rf is a C1-C6 (per)fluoroalkyl, for example trifluoromethyl, bromodifluoromethyl, pentafluoropropyl;

      ∘ perfluoro-oxyalkylvinylethers CF2=CFOX, wherein X is a C1-C12 perfluoro-oxyalkyl having one or more ether groups, for example perfluoro-2-propoxy-propyl;

      ∘ CF2=CFOCF2OCF2CF3 (A-III) and CF2=CFOCF2OCF2CF2OCF3 (A-IV).



    [0008] The fluoroelastomers object of the present invention can also contain units deriving from non fluorinated ethylenically unsaturated monomers, in particular non fluorinated C2-C8 olefins (Ol), such as ethylene and propylene.

    [0009] In the polymer also small amounts in the range 0.01-5% by moles of units deriving from a fluorinated bis-olefin, can be present. The bis-olefins described in European patent 661,304, herein incorporated by reference, can for example be used.

    [0010] Preferred compositions of the fluoroelastomers component
    1. a) are the following (% by moles):

      ∘ VDF 45-85%, HFP 15-45%, TFE 0-30%;

      ∘ VDF 20-30%, HFP 15-40%, TFE 0-30%, Ol 5-30%, PAVE 0-35%;

      ∘ VDF 60-75%, HFP 10-25%, VE 0-15%, TFE 0-20%.



    [0011] The fluoroelastomers component a) as said are substantially polar end group free. With end groups, all the groups present at the ends of the main polymer chain or of the optionally present side chains, are meant. With polar groups it is meant groups both of ionic type, such carboxylate -COO- and sulphate -OSO3- groups, and of non ionic type, such alcoholic -CH2OH, acylfluoride -COF, amidic -CONH2 groups, and so on. With "substantially polar group free" it is meant that the amount of polar end groups is lower than 3% by moles, preferably lower than 1% by moles with respect to the total amount of the end groups present in the polymer, still more preferably it is zero. It is meant that the amount of polar groups is zero when the amount of each type of polar end groups present is lower than the detectability limit according to the method reported in the Examples, i.e. lower than 1 mmole/Kg of polymer.

    [0012] The usable accelerant component b) is formed by an organic -onium derivative. The organic -onium derivatives usable for the invention generally contain at least one heteroatom, for example, N, P, S, O linked to organic or inorganic groups. The organic -onium compounds suitable to be used in the invention are for example those described in USP 3,655,727, USP 3,712,877, USP 3,857,807, USP 3,686,143, USP 3,933,732, USP 3,876,654, USP 4,233,421, USP 4,259,463, USP 4,882,390, USP 4,912,171, USP 5,591,804, EP 182,299, EP 120,462; West and Holcomb, "Fluorinated Elastomers", Kirk-Othmer; Encyclopedia of Chemical Technology, vol. 8, 3rd Ed. John Wiley & Sons, Inc., pp. 500-515 (1979).

    [0013] The organic -onium compounds which can be used belong for example to the following classes:
    1. A) compounds having general formula:

      wherein:

      Q has the following meanings: nitrogen, phosphor, arsenic, antimony, sulphur;

      XI is an organic or inorganic anion such for example halide, sulphate, acetate, phosphate, phosphonate, hydroxide, alkoxide, phenate, bisphenate;

      n is the valence of the XI ion;

      R2, R3, R4, R5, independently the one from the other, have the following meanings:

      • C1-C20 alkyl, C6-C20 aryl or arylalkyl, C1-C20 alkenyls, or a combination thereof;
      • halogen, selected from chlorine, fluorine, bromine;
      • or cyano groups, -ORB and COORB, wherein RB is an alkyl, aryl, arylalkyl or alkenyl having the above meanings;

      wherein two radicals of the R2, R3, R4, R5 group can form with the heteroatom Q a cyclic structure;
      when Q is a sulphur atom one of the R2, R3, R4, R5 radicals is not present;
    2. B) amino-phosphonium derivatives having the following general formulas:

              mI[P(NR6R7)nIR84-nI]+ YmI-     (II)

              R9[P(NR6R7)rR83-r]2+ pYmI-     (III)

      wherein:

      R6, R7 and R8, equal or different, have the following meanings:

      • C1-C18, preferably C1-C12 alkyl, C4-C7 cycloalkyl, C6-C18, preferably C6-C12, aryl or arylakyl;
      • oxyalkyl or poly(oxyalkyl) wherein the alkyl is as above and the polyoxyalkyl radical has a free or etherified terminal OH function; R6, R7 and R8 can optionally contain halogens, CN, OH, carbalkoxy groups;
        wherein R6 and R7 can form with the nitrogen atom an heterocyclic ring;
      • R9 is a C1-C6 bivalent alkylenic, oxyalkylenic or C6-C12 arylenic radical;
      • nI is an integer from 1 to 4;
      • r is an integer from 1 to 3;
      • mI is an integer from 1 to 2 and corresponds to the Y ion valence;
      • p is a coefficient such that mI x p = 2;
      • Y is an anion having valence m and can be organic or inorganic; for example Y can be selected from halides, perchlorate, nitrate, tetrafluoroborate, hexafluorophosphate, oxalate, acetate, stearate, haloacetate, para-toluensulphonate, phenate, bisphenate, hydroxide; Y can also be a complex anion for example ZnCl42-, CdCl42-, NiBr42-, HgI3-;

    3. C) phosphoranes, in particular triarylphosphoranes, having formula:

      wherein:

      Ar is phenyl, substituted phenyl (as for example methoxyphenyl, chlorophenyl, tolyl), naphthyl;

      R10 is hydrogen, methyl, ethyl, propyl, carbalkoxy;

      R11 is carbalkoxy, C1-C8 alkyls, cyano, and amidic;

      or R10 with R11 with the carbon atom of the P=C bond forms a cyclic group, for example cyclopentadiene;

    4. D) iminium salts having formula

              [N(R12)2]c+XCc-     (V)

      wherein:

      R12 is a monovalent organic radical ended with an heteroatom, as P, S, O or N, such that the organic radical is covalently linked to the nitrogen atom through said heteroatom;

      c is the valence of the XC anion;

      XC is an organic or inorganic anion, for example halide, hydroxide, sulphate, thiosulphate, nitrate, formiate, acetate, cyanate, thiocyanate, tetraphenilborate, phosphate, phosphonate, alkoxide, phenate, bisphenate or perchlorate.



    [0014] Examples of the onium-organic derivatives of class A) are the following: triphenylbenzylphosphonium chloride, tetraphenylphosphonium chloride, tetrabutylammonium chloride, tetrabutylammonium bisulphate, tetrabutylammonium bromide, tributylallylphosphonium chloride, tributylbenzylphosphonium chloride, dibutyldiphenylphosphonium chloride, tetrabutylphosphonium chloride, triarylsulphonium chloride.

    [0015] Examples of amino-phosphonium derivatives of class B) are benzyldiphenyl(diethylamino)phosphonium and benzyltris (dimethylamino) phosphonium salts.

    [0016] An example of the compounds of class D) is 8-benzyl-1,8-diazobicyclo [5,4,0] -7-undecene chloride.

    [0017] Preferably quaternary ammonium or phosphonium salts are used, see for example EP 335,705 and USP 3,876,654; amino-phosphonium salts, see for example USP 4,259,463; phosphoranes, see for example USP 3,752,787.

    [0018] Mixtures of -onium organic derivatives can also be used.

    [0019] As curing agent component c), aromatic or aliphatic polyhydroxylated compounds or derivatives thereof can be used, as described for example in EP 335,705 and USP 4,233,427. For example di- tri- and tetrahydroxybenzenes, naphtalenes, anthracenes and bisphenols of formula

    can be mentioned, wherein:

    Z' has one of the following meanings:

    • bivalent radical C1-C13 aliphatic, linear or branched, C4-C13 cycloaliphatic, C6-C13 aromatic or arylalkylenic, optionally substituted with at least one chlorine or fluorine atom;
    • a thio, oxy, carbonyl, sulphinyl or sulphonyl radical;
    • x is 0 or 1;
    • u is 1 or 2;
    • the aromatic rings of the compound of formula (VI) can optionally have other substituents selected from chlorine, fluorine or bromine; -CHO, C1-C8 alkoxy, -COOR10, wherein R10 is H or C1-C8 alkyl, C6-C14 aryl, C4-C12 cycloalkyl.



    [0020] When in formula (VI) Z' is alkylene it can be for example methylene, ethylene, chloroethylene, fluoroethylene, difluoroethylene, 1,3-propylene, tetramethylene, chlorote-tramethylene, fluorotetramethylene, trifluorotetramethylene, 2-methyl-1,3-propylene, 2-methyl-1,2-propylene, pentamethylene, hexamethylene. When Z' is an alkylidene it can be for example ethylidene, dichloroethylidene, difluoroethylidene, propylidene, isopropylidene, trifluoroisopropylidene, hexafluoroisopropylidene, butylidene, heptachlorobutylidene, heptafluorobutylidene, pentylidene, hexylidene, 1,1-cyclohexylidene.

    [0021] When Z' is a cycloalkylene, it can be for example 1,4-cyclohexylene, 2-chloro-1,4-cyclohexylene, 2-fluoro-1,4-cyclohexylene, 1,3-cyclohexylene, cyclopentylene, chlorocyclopentylene, fluorocyclopentylene, and cycloheptylene. Besides Z' can be an arylene radical, as m-phenylene, p-phenylene, 2-chloro-1,4-phenylene, 2-fluoro-1,4-phenylene, o-phenylene, methyl phenylene, dimethylphenylene, trimethylphenylene, tetramethyl phenylene, 1,4-naphthylene, 3-fluoro-1,4-naphthylene, 5-chloro-1,4-naphthylene, 1,5-naphtylene and 2,6-naphthylene.

    [0022] Among the curing agents of formula (VI) hexafluoroisopropylidene bis (4-hydroxybenzene), known as bisphenol AF, 4,4'-dihydroxydiphenyl sulphone and isopropylidene bis (4-hydroxybenzene), known as bisphenol A, are preferred.

    [0023] Other polyhydroxylic compounds usable as curing agents are for example dihydroxybenzenes as catechol, resorcinol, 2-methyl resorcinol, 5-methyl resorcinol, hydroquinone, 2-methyl hydroquinone, 2,5-dimethyl hydroquinone, 2-t-butyl hydroquinone, 1,5-dehydroxynaphthalene.

    [0024] Other curing agents based on polyols are the salts formed by the anion of a bisphenol with cations of alkaline metals, such for example the dipotassic salt of bisphenol AF and the monosodic monopotassic salt of bisphenol AF.

    [0025] As curing agents -onium biphenates, i.e. salts of a bisphenol in which one or both the hydroxyls are in the form of -onium salt can also be used. As counterions of the bisphenate all the cations corresponding to the above -onium organic derivatives accelerants component b) can be used.

    [0026] Other curing agents are for example described in EP 335,705 and USP 4,233,427.

    [0027] In the curable fluoroelastomers instead of component b) and c) an adduct of component b) with component c) is used. In particular an adduct formed by bishphenol and an -onium salt, preferably in molar ratios curing agent:accelerant from 1:1 to 5:1, preferably from 2:1 to 5:1, is used.

    [0028] Said adducts are obtained by melting of the reaction product between the accelerant and the curing agent in the indicated molar ratios, or by melting of the adduct 1:1 added with the curing agent in the indicated amounts.

    [0029] Optionally when the adduct is used, also an amount of free accelerant in addition to that contained in the adduct can be present.

    [0030] Optionally, preferably, when the adduct is used an amount of free curing agent in addition to that contained in the adduct can be present.

    [0031] For the adduct preparation the following cations are particularly preferred: 1,1-diphenyl-1-benzyl-N-diethyl-phosphoranamine, tetrabutyl phosphonium, tetrabutyl ammonium; among anions are particularly preferred the bisphenol compounds wherein the two aromatic rings are linked by an alkylenic group selected from the perfluoroalkylenic groups having from 3 to 7 carbon atoms, and the OH in the aromatic rings are in para position.

    [0032] The preparation of the adduct is described in the European patent applications in the name of the Applicant EP 684,277, EP 684,276 herein incorporated by reference.

    [0033] Other compounds usable as curing agents are the following:
    • Difunctional fluoroethers and fluoropolyethers selected from the following:

              HOCH2-CF2OCF2CF2OCF2-CH2OH

              HOCH2-CF2O(CF2CF2OCF2CF2OCF2O)ZCF2-CH2OH

              HOCH2-CF2CF2OCF2CF2-CH2OH

              H2NCH2-CF2O(CF2CF2OCF2CF2OCF2O)ZCF2-CH2NH2

    wherein Z is an integer from 1 to 15.

    [0034] Said compounds are described in USP 4,810,760 and USP 4,894,418.

    [0035] It is also possible to use the salts of the aforesaid difunctional fluoropolyethers, which show the advantage to be more easily incorporated in the fluoroelastomer. In said salts, at least one of the two end groups is a metal alcoholate, preferably of a bivalent metal, or it is an ammonium salt when the starting end groups are aminic.

    [0036] Examples of end groups of the first type are -CH2OMgOH, -CH2OCaOH, -CH2OZnOH; an end group of the second type is for example -CH2NH3+Cl-.

    [0037] Polyols wherein one or more hydroxyl groups are blocked as esters or carbonates.

    [0038] Said class of compounds comprises polyhydroxylated compounds, in particular the above mentioned polyphenols and difunctional fluoro polyethers, wherein at least one of the hydroxyl groups is substituted by an ester or carbonate group. Said compounds are described in USP 5,728,773 and USP 5,929,169.

    [0039] Polyols wherein one or more hydroxyl groups are blocked or protected in the form of silylethers.

    [0040] Said class of compounds comprises polyhydroxylated compounds, in particular the above mentioned polyphenols and difunctional fluoropolyethers, wherein at least one of the hydroxyl groups is substituted by a-OSiRk3 group wherein Rk is a radical having a C1-C20 aliphatic, linear or branched, C3-C20 cycloaliphatic or C6-C20 aromatic structure containing hydrogen and/or fluorine. 4,4'-hexafluoroisopropyliden-bis-(trimethyl silyldiphenol) is preferred. This class of compounds is described in EP 879,851.

    [0041] Component d) is selected from those used in ionic curing of vinylidene fluoride copolymers, as specified in Claim 1. ZnO, MgO, PbO can be mentioned.

    [0042] Component e) is selected from those known in ionic curing of vinylidene fluoride copolymers, as specified in Claim 1. For example hydroxides can be mentioned. They are preferably selected for example from Ca(OH)2, Sr(OH)2, Ba(OH)2. Other examples of component e) are the metal salts of weak acids, such for example carbonates, benzoates, oxalates and phosphites of Ca, Sr, Ba, Na and K. Mixtures of said hydroxides with the aforesaid metal salts can also be used.

    [0043] Component f) is preferably selected from the following: carbon black, barium sulphate, silicas, silicates, semi-crystalline fluoropolymers. The semi-crystalline fluoropolymers have sizes from 5 to 90 nm, preferably from 10 to 60. As semi-crystalline fluoropolymer it is meant a fluoropolymer which shows, besides the glass transition temperature Tg, at least one melting temperature. An example of semi-crystalline fluoropolymer is that based on modified PTFE. I.e. it comprises at least one comonomer containing at least one ethylene unsaturation both of hydrogenated and fluorinated type. Among those hydrogenated ethylene, propylene, acrylic monomers, for example methylmethacrylate, (meth)acrylic acid, butylacrylate, hydroxyethylhexylacrylate, styrene monomers can be mentioned.

    [0044] Among fluorinated comonomers it can be mentioned:
    • C3-C8 perfluoroolefins, such hexafluoropropene (HFP), hexafluoroisobutene;
    • C2-C8 hydrogenated fluoroolefins, such as vinyl fluoride (VF), vinylidene fluoride (VDF), trifluoroethylene, perfluoroalkylethylene CH2=CH-Rf, wherein Rf is a C1-C6 perfluoroalkyl;
    • C2-C8 chlorofluoroolefins, such as chlorotrifluoroethylene (CTFE);
    • (per)fluoroalkylvinylethers (PAVE) CF2=CFORf, wherein Rf is a C1-C6 (per)fluoroalkyl, for example CF3, C2F5, C3F7;
    • (per)fluoro-oxyalkylvinylethers CF2=CFOX, wherein X is: a C1-C12alkyl or a C1-C12 oxyalkyl or a C1-C12 (per)fluorooxyalkyl having one or more ether groups, for example perfluoro-2-propoxy-propyl; fluorodioxoles, preferably perfluorodioxoles;

      ∘ fluorovinylethers of general formula CFXAI=CXAIOCF2ORAI(A-I) wherein RAI is a C2-C6 linear, branched or C5-C6 cyclic (per)fluoroalkylic group, or a C2-C6 linear, branched (per)fluorooxyalkyl group containing from one to three oxygen atoms; when RAI is a fluoroalkyl or a fluorooxyalkyl group as above defined it can contain from 1 to 2 atoms, equal or different, selected from the following: H, Cl, Br, I; XAI = F, H; the compounds of general formula:
      CFXAI=CXAIOCF2OCF2CF2YAI (A-II), wherein YAI = F, OCF3; XAI as above are preferred; in particular CF2=CFOCF2OCF2CF3 (A-III) and CF2=CFOCF2OCF2CF2OCF2 (A-IV) are preferred.



    [0045] PAVEs, in particular perfluoromethyl-, ethyl-, propylvinylether are preferred comonomers.

    [0046] To the curing blend other conventional additives, such as thickeners, pigments, antioxidants, stabilizers, processing supporting agents and the like can then be added. As processing supporting agents esters and amides of fat acids, long chain aliphatic alcohols, polyethylene having low molecular weight, stearic acid and its inorganic salts can be added to the curing blend. The amounts of supporting agents are generally lower than 10 phr, preferably lower than 5 phr.

    [0047] Other compounds which can be added to the curable compositions of the present invention are sulphur oxides diorgano substituted, for example sulphones and sulpholanes in amounts from 0.01 to 5 phr. Said compounds are able to increase the blend curing rate. Said compounds are described for example in USP 4,287,320. The sulphur oxides diorgano substituted preferably contain at least one S atom, one or two oxygen atoms linked only to the sulphur atom, and two organic radicals R' and R" linked to the sulphur atom by carbon-sulphur bonds having general formula:

            (R') (R")S(O)xA     (VI)

    wherein:

    xA is 1 or 2;

    R' and R", equal or different, are organic radicals, containing from one to 20 or more carbon atoms, up to a maximum of 30; preferably from 1 to 8 carbon atoms; R' and R" together can form an only alkylenic group, forming with the sulphur atom a heterocyclic ring; R' and R" being formed by an aliphatic linear, branched or cyclic or aromatic chain of carbon atoms, R' and R" can optionally contain heteroatoms, for example oxygen, and/or substituents, for example halides, alkoxy, sulphinyl, sulphonyl, carbalkoxy, oxy, hydroxyls, nitro, cyano, alkyls, aryls.



    [0048] The sulphur oxides diorgano substituted comprise the diorgano sulphoxides and diorgano sulphones and are described for example in "Organic Syntheses", Vol. I, pp. 718-725, Vol. II, pp. 1709-1715, Reinhold Publishing Co., N.Y., N.Y., 1957. Dimethylsulphone, tetramethylensulphone, and bis (4-chlorophenyl)sulphone are particularly preferred. Tetramethylensulphone in amounts from 0.01 to 5 phr is preferably used.

    [0049] The fluoroelastomers component a) are obtained by radical polymerization. For example radical initiators, preferably an organic peroxide, can be used, which can be selected in particular from:

    I) dialkylperoxides, wherein the alkyl has from 1 to 12 carbon atoms, as di-ter-butylperoxide (DTBP);

    II) dialkylperoxydicarbonates, wherein the alkyl has from 1 to 12 carbon atoms, as diisopropylperoxydicarbonate (IPP), di-sec-butylperoxydicarbonate, di-sec-hexylperoxy dicarbonate, di-n-propylperoxydicarbonate, and di-n-butyl peroxydicarbonate;

    III) peroxyesters, having from 3 to 20 carbon atoms, as terbutylperoxyisobutyrate and ter-butylperoxypivalate;

    IV) diacylperoxides, wherein the acyl has from 2 to 12 carbon atoms, as diacetylperoxide and dipropionylperoxide; di(perfluoroacyl)peroxides, or di(chlorofluoroacyl)peroxides, as di(perfluoropropionyl)peroxide and di(tri-chloro-octa fluorohexa-noyl)peroxide.



    [0050] The peroxide use of groups I) and II) is preferred, respectively, the use of DTBP and of IPP is more preferred.

    [0051] The process for preparing the fluoroelastomers of the invention can be carried out for example by copolymerization of the corresponding monomers in aqueous emulsion in the presence of a radical initiator, preferably an organic peroxide as above defined. The polymerization in emulsion can be carried out according to known methods such for example those described in Kirk Othmer, Encyclopaedia of Chemical Technology, vol. 8, pp. 500 and those following, 1979. The process temperature is in the range 100°-150°C, preferably 105°-130°C. One can operate at pressures comprised between 10 and 100 bar, preferably between 20 and 50 bar. As known, the polymerization in emulsion requires also the presence of surfactants. The surfactants at least partially fluorinated, corresponding to the general formula:

            Rf-XB- M+

    are particularly preferred, wherein Rf is a C5-C16 (per)fluoroalkyl chain or a (per)fluoropolyoxyalkylenic chain, XB- is -COO- or -SO3-, M+ is selected from: H+, NH4+, an alkaline metal ion. Among the most commonly used we remember: ammonium perfluoro-octanoate, (per)fluoropolyoxyalkylenes ended with one or more carboxylic groups, optionally salified with sodium, ammonium and alkaline metals in general, preferably, sodium, partially fluorinated alkylsulphonates. See for example USP 4,524,197. To the reaction mixture chain transfer agents, selectd from those commonly used in the fluoroelastomer synthesis, can be added. It can be mentioned: hydrogen, hydrocarbons having from 1 to 12 carbon atoms, for example methane, ethane, methylcyclopentane; chloro(fluoro)carbons having from 1 to 10 carbon atoms, optionally containing hydrogen, for example, chloroform, trichlorofluoromethane; esters, alcohols, ethers having from 1 to 12 carbon atoms, for example ethylacetate, diethylmalonate, diethylether, isopropanol, and the like. Other chain tranfer agents are for example the following:
    • iodinated and/or brominated chain transfer agents, such for example the compounds of general formula Rfb(I)xB (Br)y (Rfb = perfluorinated hydrocarbon radical containing from 1 to 8 carbon atoms, xB, y = integers between 0 and 2, with at least xB or y = 1 and xB+y ≤ 2);
    • iodides and/or bromides of alkaline or alkaline-earth metals, according to European patent application 407,937.


    [0052] When the polymerization in emulsion is completed, the fluoroelastomer is isolated from the polymer latex by known methods, as the coagulation by addition of electrolytes or by cooling.

    [0053] The fluoroelastomer preparation of the present invention can advantageously be carried out in aqueous emulsion in the presence of microemulsions of perfluoropolyoxyalkylenes, according to USP 4,864,006, or also of microemulsions of fluoropolyoxyalkylenes having hydrogenated end groups and/or hydrogenated repeating units, according to EP 625,526.

    [0054] Said last process is preferred (see the Examples).

    [0055] The polymerization can advantageously be carried out also using, instead of a microemulsion, an emulsion or dispersion of perfluoropolyoxyalkylenes and water according to USP 4,789,717.

    [0056] To this purpose also the emulsions and dispersions of perfluorooxyalkylenes and water described for example in patent applications EP 196,904, EP 280,312 and EP 360,292 can be used.

    [0057] An example of another method usable to prepare the fluoroelastomers of the present invention is the polymerization in suspension as described in USP 6,277,937.

    [0058] The compositions object of the present invention are cured by ionic route, as well known in the prior art.

    [0059] As said, the cured fluoroelastomers of the present invention can be used also as O-rings, gaskets, shaft seals, hoses, profiles. They are suitable also for gaskets with metal inserts generally used for articles of big sizes for applications in the car and chemical industry.

    [0060] The fluoroelastomers of the present invention after curing in press at high temperature, generally from 170°C to 230°C, and even short post-treatment times, generally of the order of 1-2 hours, show final mechanical and compression set property values already stabilized. The values of said properties remain substantially unchanged with respect to conventional post-treatments, of the order of 24 hours at 250°.

    [0061] It has been surprisingly found that the cured fluoroelastomers of the present invention do not show defects on the manufactured article and therefore they allow the discard reduction during the processing step in comparison with the cured fluoroelastomers of the prior art.

    [0062] The present invention will now be better illustrated by the following Examples which have a merely indicative but not limitative purpose for the scope of the invention itself.

    EXAMPLES


    Polar end group determination



    [0063] The determination is carried out by FT-IR, 1H-NMR (300 MHz) and 19F-NMR (188 MHz) analyses. The method is described in M. Pianca, J. Fluorine Chem. 95 (1999) 71-84.

    [0064] Polar end groups are for example the following: -CH2OH, carboxyl, -COF, -CONH2, -OSO3-.

    [0065] Detectability limit of the method: 0.1 mmoles/Kg. Below the detectability limit the ionic end groups are considered absent.

    Characterization methods of the fluoroelastomeric composition of the invention


    Viscosity



    [0066] The Mooney viscosity ML (1+10) at 121°C and the Mooney scorch MS at 135°C have been determined according to ASTM D 1646.

    Scorch time



    [0067] The scorch time t15 shown in Tables, corresponding to the necessary time to reach a Mooney viscosity equal to the minimum viscosity MV + 15 Mooney points.

    [0068] The properties of the crosslinking process have been determined according to the ASTM D 5289 method, using a MDR (Moving Die Rheometer) 2000E Alpha Tecnologies Ltd.
    The following test conditions have been used:
    • oscillation frequency: 1.66 MHz;
    • oscillation amplitude: +/-0.5 degrees;
    • temperature: 177°C;
    • specimen weight: 7-8 g;
    • test duration: sufficient to reach the plateau.
      The following parameters have been recorded:
    • ML: minimum torque level, expressed in units of lbf.in;
    • MHF: maximum torque level at plateau, in units of lbf.in
    • ts2: time necessary to reach a torque equal to ML + 2 lbf.in
    • t'x: time necessary to reach a torque equal to ML + x(MHF-ML)/100, with x = 50, 90, 95.
      Mechanical and sealing property determination
      13 x 13 x 2 mm plaques and O-rings 214 have been cured in press at 177°C for a time equal to t'95 of the MDR curve, and then post-treated in an air circulating stove at 250°C for the time specified in the Examples.


    [0069] The tensile properties have been determined on specimens punched from the plaques, according to the ASTM D 412 method, method C. The Shore A hardness (3") has been determined on 3 pieces of plaque piled according to the ASTM D 2240 method.

    [0070] The compression set has been determined on O-ring 214, according to the ASTM D 1414 method.

    Microemulsion preparation



    [0071] Into a glass reactor equipped with stirrer, under mild stirring, the following components for the preparation of 1 Kg of microemulsion are fed as follows. The correspondence by volume is equal to 782 ml.
    1. 1) 170 ml of acid having a number average molecular weight 600 and the formula, are fed into the reactor:

      wherein n/m = 10
    2. 2) 170 ml of an aqueous emulsion of ammonium hydroxide at 30% by volume are added;
    3. 3) 340 ml of demineralized water are added;
    4. 4) 102 ml of Galden® D02 of formula:

              CF3O(CF2-CF(CF3)O)n (CF2O)m CF2COOH

      are added, wherein n/m = 20 and having average molecular weight of 450.

    EXAMPLE 1


    Preparation of a VDF/HFP copolymer according to the present invention and preparation of the respective formulations without component e)



    [0072] In a 21 l horizontal reactor, equipped with a stirrer working at 50 rpm 15 l of water and 150 g of the microemulsion prepared according to the described procedure are introduced.

    [0073] The reactor is heated up to 122°C and then brought to the pressure of 35 relative bar by feeding the monomers until having the following composition of the gaseous phase: VDF=53% by moles HFP=47% by moles.

    [0074] Due to the feeding of 12 g of diterbutylperoxide (DTBP) the reaction starts and the pressure is kept constant for the whole polymerization by feeding a mixture formed by:
    VDF = 78.5% by moles,
    HFP = 21.5% by moles.

    [0075] After a prefixed amount of monomeric mixture corresponding to 4,500 g has reacted, the reaction is stopped. The total polymerization time results equal to 265 minutes.

    [0076] The latex which has a concentration of 271 g/l latex is then coagulated by using an electrolyte agent (aluminum sulphate), washed and dried at 80°C for 24 h.

    [0077] The obtained polymer has a Mooney viscosity ML (1+10 at 121°C) equal to 44.

    [0078] The 19F NMR analysis shows the following composition: 79.3% molar of HFP, 20.7% molar of VDF.

    [0079] The analyses of the end groups carried out by FT-IR, 1H-NMR, 19F-NMR have shown the presence of end groups CF2H and CH3 and the total absence of polar end groups (<0.1 mmoles/Kg), such CH2OH, carbonyl and carboxyl groups.

    [0080] The fluoroelastomer has been formulated as described in Table 1. The Tecnoflon FOR XA51 (adduct b) + c)) is the adduct bisphenol AF/1,1,-diphenyl-1-benzyl-N-diethylphosphoramine in the 5/1 ratio.

    [0081] In the formulation 1.1 mmhr of component b) and 6.5 mmhr of component c) are present (molar ratio accelerant/curing agent 0.17). The amounts of adduct b) + c) in phr and of component c) in phr correspond to 1.1 mmhr of accelerant and 6.5 mmhr of curing agent as above indicated. These amounts remain unchanged in the comparative Examples 2-6.

    [0082] The rheometric and mechanical properties data are shown in the same Table.

    EXAMPLE 2


    Preparation of a formulation of the copolymer of Example 1 wherein 1 phr of component e) is used.



    [0083] The fluoroelastomer has been formulated as described in Table 1. The rheometric and of mechanical properties data are shown in the same Table.

    EXAMPLE 3 (comparative)


    Preparation of a formulation of the copolymer of Example 1 wherein 6 phr of component e) are used.



    [0084] The fluoroelastomer has been formulated as described in Table 1. The rheometric and mechanical properties data are shown in the same Table.

    [0085] As it can be noticed, the values of stress at break and compression set are worse than the corresponding values of the Examples of the invention.

    EXAMPLE 4 (comparative)


    Preparation of a formulation of the copolymer of Example 1 wherein 3 phr of component e) are used.



    [0086] The fluoroelastomer has been formulated as described in Table 1. The rheometric and mechanical properties data are shown in the same Table.

    [0087] As it can be noticed, the values of stress at break and of compression set are worse than the corresponding values of the Examples of the invention.

    EXAMPLE 5 (comparative)


    Preparation of a formulation of a VDF/HFP copolymer having ionic end groups, wherein the component e) is not used.



    [0088] The used polymer is an Ausimont commercial product (Tecnoflon® N535) having the same monomeric composition of the copolymer of Example 1 and Mooney viscosity ML (1+10 at 121°C) equal to 48.

    [0089] The analyses of the end groups carried out by FT-IR, 1H-NMR, 19F-NMR have shown the presence of polar end groups CH2OH in amounts equal to 6 mmoles/Kg, corresponding to 15% by moles based on the total of the end groups present. The non polar end groups present are CF2H and CH3.

    [0090] The fluoroelastomer has been formulated as described in Table 1.

    [0091] The rheometric data are reported in the same Table.

    [0092] In this case the crosslinking rate expressed as t'90 results very slow and not acceptable for the automatic moulding of manufactured articles.

    EXAMPLE 6 (comparative)


    Preparation of a formulation of a VDF/HFP copolymer having ionic end groups, wherein 6 phr of component e) are used.



    [0093] The used polymer is the same of Example 5.

    [0094] The fluoroelastomer has been formulated as described in Table 1. The rheometric and mechanical properties data are shown in the same Table.

    [0095] As it can be noticed, the values of stress at break and of compression set are worse than the corresponding values of the Examples of the invention.

    EXAMPLE 7


    Preparation of another formulation of the copolymer of Example 1 without component e)



    [0096] The fluoroelastomer has been formulated as reported in Table 2, using 9 phr of component d). The amounts of adduct b) + c) and of bisphenol AF reported in Table 2 correspond to 6.1 mmhr of component c) and 1.0 mmhr of component b) (molar ratio accelerant/curing agent 0.12).

    [0097] The rheometric and mechanical properties are shown in the same Table.

    EXAMPLE 8 (comparative)


    Preparation of a formulation of the copolymer described in Example 1 containing an amount of basic compound Ca (OH)2 higher than 2.5 phr



    [0098] The fluoroelastomer of Example 1 has been formulated as reported in Table 2, with 6 phr of component e) and 3 phr of component d). The formulation contains 6.7 mmhr of component c) and 0.8 mmhr of component b).

    [0099] The rheometric and mechanical properties are shown in the same Table. The composition results to have a torque and a crosslinking time, expressed as t'90, similar to those of Example 7 of the invention, but the compression set and the combination of stress and elongation at break are worse.

    EXAMPLE 9 (comparative)


    Preparation of a formulation of the copolymer described in Example 5 without component e)



    [0100] The fluoroelastomer with ionic end groups of Example 5 has been formulated as reported in Table 2, with 6 phr of component e) and 3 phr of component d). The formulation contains 6.5 mmhr of component c) and 1.3 mmhr of component b).

    [0101] The rheometric and mechanical properties are shown in the same Table.

    [0102] Even if said composition has a molar ratio accelerant/curing agent higher than that of the Examples 1 and 7 of the invention (0.20 against 0.17 and 0.12 respectively), the curing rate is lower; besides, the compression set values for short times of postcure are worse. This Example shows that the polymer polar end group content negatively affects the curing rate.

    EXAMPLE 10


    Preparation of a formulation of the copolymer of Example 1 having a different amount of component b) and c) with respect to that of Example 1.



    [0103] The fluoroelastomer has been formulated as shown in Table 3, using 7 phr of component d). The formulation contains 4.8 mmhr of component c) and 0.8 mmhr of component b).

    [0104] Said amounts remain unchanged in the comparative Examples 11-13.

    [0105] The rheological, rheometric and mechanical properties are shown in the same Table.

    EXAMPLE 11 (comparative)


    Preparation of a formulation of the copolymer having ionic end groups of Example 5.



    [0106] The fluoroelastomer having ionic end groups of Example 5 has been formulated as shown in Table 3, with 6 phr of component e) and 3 phr of component d).

    [0107] The rheometric and mechanical properties are shown in the same Table.

    [0108] The composition results to have a crosslinking time, expressed as t'90, comparable with that of Example 10 of the invention, but the compression set and the combination of stress and elongation at break are worse.

    EXAMPLE 12 (comparative)


    Preparation of a formualtion of the copolymer of Example 5 wherein component e) is not used.



    [0109] The fluoroelastomer has been formulated with a method equal to that of Example 10, as reported in Table 3. The rheometric properties are shown in the same Table.

    [0110] It is noticed that the curing time, expressed as t'90, is much higher than that of the composition of Example 10 of the invention, and not acceptable for the automatic moulding of manufactured articles.

    EXAMPLE 13 (comparative)


    Preparation of a formulation of the copolymer of Example 5 wherein component e) is not present and a high amount of component d) is used.



    [0111] The fluoroelastomer has been formulated with a high amount, equal to 14 phr, of component d), as shown in Table 3. The rheological and rheometric properties are shown in the same Table.

    [0112] It is noticed that the composition of the comparative Example 13 with respect to that of Example 10 of the invention shows:
    • a higher Mooney viscosity,
    • lower scorch times, expressed as Mooney scorch t15 and ts2 MDR.


    [0113] Furthermore the composition cures much more slowly (t'90 higher) with respect to that of Example 10 of the invention. The aforesaid properties make the composition unsuitable to the automatic moulding.
    Table 1
    Example123 comp4 comp5 comp6 comp
    Polymer ex. (VDF/HFP)Ex. 1Ex.5 comp 15% ionic end gr.
    b)+c) XA 51 phr 2.2
    c) Bisph. AF " 0.35
    d) MgO-DE phr 7 6 3 4 7 3
    e) Ca(OH)2 " - 1 6 3 - 6
    f) Black MT " 30 30 30 30 30 30
    MDR at 177°C      
    arc 3°, 12'      
    ML lbf.in   1.38 1.46 1.46 1.35 1.74 1.52
    MH "   20.1 21.1 22.3 21.3 26.8 28.0
    ts2 min   1.60 1.70 1.33 1.66 2.34 1.93
    t'50 "   2.24 2.34 1.62 2.09 3.65 2.35
    t'90 "   3.20 3.33 2.31 3.08 5.68 3.45
    Post cure (p.c.)      
    250°C x 1 h            
    M100 MPa   5.4 6 6.1 5.9   6.9
    CR "   16.9 16.9 15.4 15.2   14.5
    Example123 comp4 comp5 comp6 comp
    Polymer ex. (VDF/HFP)Ex. 1Ex.5 comp 15% ionic end gr.
    AR %   214 202 198 201   181
    Shore A hardness 70 71 72 71   75
    p.c. 250°C x 2 h      
    M100 MPa   5.5 6 6.4 5.9   7.2
    CR "   18.1 16.8 15.2 15   15.4
    AR %   214 196 187 193   185
    Shore A hardness 70 71 72 71   75
    p.c. 250°C x 8 h      
    + 16 h                
    M100 MPa   5.6 6.4 6.7 6.2   8.4
    CR "   18.0 .17.0 15.0 15.7   16.2
    AR %   201 185 178 182   162
    Shore A hardness 71 71 73 71   76
    Compression set O-Ring      
      200°C·70 h (%)            
    p.c. 250°C·1 h   16 16 18 17   21
    p.c. 250°C·2 h   15 15 17 15   19
    p.c. 250°C·8 h + 16 h 13 13 15 13   14
    Table 2
    Examples 78 comp9 comp
    Polymer Ex.1   100 100  
    Polymer Ex.5 comp       100
    b) + c) XA51 phr 2.0 1.7 2.62
    c) Bisphenol AF " 0.40 0.6  
    d) MgO " 9 6 7
    e) Ca(OH)2 "   3  
    f) MT N990 " 30 30 30
    MDR at 177°C, arc 0.5°    
    ML lbf.in 1.53 1.36 1.68
    MH lbf.in 19.7 21.6 26.7
    ts2 min 1.48 1.67 1.66
    t'50 " 2.12 2.02 2.47
    t'90 " 3.14 2.97 3.90
    Mechanical properties after post cure (p.c.)    
    250°C x 2 h        
    M100 MPa 5.5 5.5 7.1
    CR MPa 17.1 14.2 18.1
    AR % 221 203 194
    Hardness Sh. A 72 72 73
    Compression set    
    O-R 200°C-70 h (%)        
    p.c. 250°C.1 h % 18 19 20
    Examples 78 comp9 comp
    p.c. 250°C·2 h % 16 18 18
    p.c. 250°C·8 h+16h % 13 15 13
    Table 3
    Example1011 comp.12 comp.13 comp.
    Polymerex. 1with 15% ionic end groups (ex. 5 comp.)
    b) + c) XA51 phr 1.6
    c) Bis-AF " 0.30
    d) MgO phr 7 3 7 14
    e) Ca(OH)2 " 0   6 0 0
    f) Black MT N990 " 30 30 30 30
    Mooney compound     
    ML (1+10), 121°C MU 73     100
    Mooney scorch at 135°C          
    t15 min 61     27
    MDR at 177°C, arc 0.5°        
    ML lbf.in 1.46 1.48 1.67 2.27
    MHF lbf.in 15.0 21.3 18.9 13.6
    ts2 min 1.69 1.82 2.68 1.40
    t'50 min 2.66 2.30 5.33 3.01
    t'90 min 4.06 3.61 9.70 11.3
    Mechanical properties after postcure 250°Cx1h  
    M100% MPa 4.1 5.1    
    Stress at break MPa 16.1 15.5    
    Elong. at break % 246 230    
    Shore A hardness points 68 71    
    Mechanical properties after postcure 250°C x (8+16)h 
    M100% MPa 4.3 6.2    
    Stress at break MPa 18.0 17.4    
    Elong. at break % 236 206    
    Shore A hardness points 69 73    
    Compression set on O-ring 214, 200°C x 70 h after post cure at:  
    250°C x 1h % 16 20    
    250°C x 2h % 15 18    
    250°C x (8+16)h % 14 14    



    Claims

    1. Fluoroelastomers curable by ionic route based on vinylidenfluoride (VDF) comprising :

    a) 100 parts by weight of fluoroelastomer based on VDF and having an amount of polar end groups that has to be lower than 3 % by moles with respect to the total amount of the end groups present in the polymer;

    b) from 0.05 to 5 phr of accelerant ;

    c) from 0.5 to 15 phr of curing agent;

    d) from 1 to 40 phr of one or more inorganic acid acceptors;

    e) from 0 to 2.5 phr of one or more basic compounds;

    f) from 0 to 80 phr of reinforcing fillers,

    and wherein:

    - the composition comprises from 1 to 40 phr of one or more inorganic acid acceptors selected from bivalent metal oxides; and

    - the composition comprises from 0 to 2.5 phr of one or more basic compounds selected from hydroxides of bivalent metals and weak acid metal salts.


     
    2. Curable fluoroelastomers according to claim 1, wherein the fluoroelastomers component a) comprise VDF copolymers comprising at least another ethylenically unsaturated fluorinated comonomer selected for example from the following :

    - C2-C8 perfluoroolefins, such as hexafluoropropene (HFP), tetrafluoroethylene (TFE) ;

    - C2-C8 fluoroolefins containing hydrogen and/or chorine and/or bromine and/or iodine, such trifluoroethylene, pentafluoropropene, chlorotrifluoroethylene (CTFE), bromotrifluoroethylene ;

    - (per)fluoroalkylvinylethers (PAVE) CF2=CFORf wherein Rf is a C1-C6 (per)fluoroalkyl, for example trifluoromethyl, bromodifluoromethyl, pentafluoropropyl ;

    - perfluoro-oxyalkylvinylethers CF2=CFOX, wherein X is a C1-C12 perfluorooxyalkyl having one or more ether groups, for example perfluoro-2-propoxy-propyl ;

    - CF2=CFOCF2OCF2CF3 (A-III) and CF2=CFOCF2OCF2-CF2OCF3 (A-IV).


     
    3. Curable fluoroelastomers according to claims 1-2, wherein component a) contains non fluorinated C2-C8 olefins (Ol).
     
    4. Curable fluoroelastomers according to claims 1-3, wherein component a) contains an amount from 0.01 to 5 percent by moles of units deriving from a fluorinated bis-olefin.
     
    5. Curable fluoroelastomers according to claims 1-4, wherein component a) has the following composition in % by moles :

    - VDF 45-85 %, HFP 15-45 %, TFE 0-30 % ;

    - VDF 20-30 %, HFP 15-40 %, TFE 0-30 %, Ol 5-30 %, PAVE 0-35% ;

    - VDF 60-75 %, HFP 10-25 %, VE 0-15 %, TFE 0-20 %.


     
    6. Curable fluoroelastomers according to claims 1-5, wherein component a) contains an amount of polar end groups lower than 1 percent by moles with respect to the total amount of end groups, still more preferably it is zero.
     
    7. Curable fluoroelastomers acoording to claims 1-6, wherein component b) is an organic -onium derivative.
     
    8. Curable fluoroelastomers according to claim 7, wherein the organic - onium compounds contain an heteroatom selected from N, P, S, O linked to organic or inorganic groups.
     
    9. Curable fluoroelastomers according to claims 7-8, wherein component b) is selected from quaternary ammonium or phosphonium salts or amino-phosphonium salts.
     
    10. Curable fluoroelastomers according to claim 9, wherein component b) is selected from the following : triphenylbenzylphosphonium chloride, tetraphenylphosphonium chloride, tetrabutylammonium chloride, tetrabutylammonium bisulphate, tetrabutylammonium bromide, tributylallylphosphonium chloride, tributylbenzylphosphonium chloride, dibutyldiphenylphosphonium chloride, tetrabutylphosphonium chloride, triarylsulphonium chloride, salts of benzyldiphenyl(diethylamino) phosphonium and of benzyltris (dimethylamino) phosphonium.
     
    11. Curable fluoroelastomers according to claims 1-10, wherein component c) is selected from polyhydroxylated, aromatic or aliphatic compounds or derivatives thereof.
     
    12. Curable fluoroelastomers according to claim 11, wherein component c) is selected from bisphenols.
     
    13. Curable fluoroelastomers according to claim 12, wherein component c) is bisphenol AF, hexafluoro isopropylidene bis (4-hydroxybenzene).
     
    14. Curable fluoroelastomers according to claims 7-13, wherein instead of component b) and c) an adduct of component b) with component c) is used.
     
    15. Curable fluoroelastomers according to claim 14, wherein the adduct is formed by bisphenol and an -onium salt, in molar ratios from 1:1 to 5:1, preferably from 2:1 to 5:1.
     
    16. Curable fluoroelastomers according to claims 14-15, wherein the adduct is used in the presence of the accelerant component b).
     
    17. Curable fluoroelastomers according to claims 14-15, wherein the adduct is used in the presence of the curing agent component c).
     
    18. Curable fluoroelastomers according to claims 14-17, wherein the adduct contains cations selected from the following : 1,1-diphenyl-1-benzyl-N-diethyl-phosphoranamine, tetrabutyl phosphonium, tetrabutyl ammonium, and anions selected from bisphenol compounds wherein the two aromatic rings are linked by an alkylenic group selected from the perfluoroalkylenic groups having from 3 to 7 carbon atoms, and the hydroxyls in the aromatic rings are in para position.
     
    19. Curable fluoroelastomers according to claim 18, wherein the adduct contains cations selected from the following : 1,1-diphenyl-1-benzyl-N-diethyl-phosphoranamine, tetrabutyl phosphonium, tetrabutyl ammonium, and the anion is the bisphenol AF.
     
    20. Curable fluoroelastomers according to claims 1-19, wherein the inorganic acid acceptor component d) is selected from the acceptors used in ionic curing of vinylidene fluoride copolymers selected from ZnO, MgO, PbO.
     
    21. Curable fluoroelastomers according to claims 1-20, wherein the basic compound component e) is selected from those used in ionic curing of vinylidene fluoride copolymers, selected from Ca(OH)2, Sr(OH)2, Ba(OH)2, or from the metal salts of weak acids selected from carbonates, benzoates, oxalates and phosphites of Ca, Sr, Ba, Na and K.
     
    22. Curable fluoroelastomers according to claims 1-21, wherein component f) is selected from the following : carbon black, barium sulphate, silicas, silicates, semicrystalline fluoropolymers.
     
    23. Curable fluoroelastomers according to claim 22, wherein the semi-crystalline fluoropolymer has sizes from 5 to 90 nm, preferably from 10 to 60.
     
    24. Curable fluoroelastomers according to claims 1-23, comprising additives, thickeners, pigments, antioxidants, stabilizers, processing supporting agents.
     
    25. Curable fluoroelastomers according to claim 24, wherein as processing supporting agents sulphur oxides diorgano substituted, selected from sulphones and sulpholanes in amounts from 0.01 to 5 phr, are used.
     
    26. Cured fluoroelastomers according to claims 1-25.
     
    27. Fluoroelastomers according to claim 26, cured by ionic route.
     
    28. Manufactured articles obtainable with the cured fluoroelastomers of claims 26-27.
     
    29. Manufactured articles according to claim 28, selected from O-rings, gaskets, shaft seals, hoses.
     


    Ansprüche

    1. Fluorelastomere, die auf ionischem Weg aushärtbar sind, basierend auf Vinylidenfluorid (VDF), enthaltend:

    a) 100 Gewichtsanteile eines auf VDF basierenden Fluorelastomers, das eine Menge an polaren Endgruppen aufweist, die geringer als 3 mol-% bezogen auf die Gesamtmenge der in dem Polymer vorhandenen Endgruppen ist;

    b) 0,05 bis 5 phr Beschleuniger;

    c) 0,5 bis 15 phr eines Aushärtemittels;

    d) 1 bis 40 phr einer oder mehrerer anorganischer Säureakzeptoren;

    e) 0 bis 2,5 phr einer oder mehrerer basischer Verbindungen;

    f) 0 bis 80 phr eines Verstärkungsfüllmittels,

    und wobei:

    - die Zusammensetzung 1 bis 40 phr einer oder mehrerer anorganische Säureakzeptoren enthält, die aus bivalente Metalloxiden ausgewählt sind;

    - die Zusammensetzung 0 bis 2,5 phr einer oder mehrerer basische Verbindungen enthält, die aus Hydroxide von bivalenten Metallen oder von schwach sauren Metallsalzen ausgewählt sind.


     
    2. Aushärtbare Fluorelastomere nach Anspruch 1, wobei die fluorelastomere Komponente a) VDF Copolymere enthalten, die wenigstens eine andere Ethylenungesättigtes, fluoriertes Comonomer enthält, das zum Beispiel ausgewählt ist aus den folgenden:

    - C2-C8 Perfluorolefine, wie Hexafluorpropen (HFP), Tetrafluorethylen (TFE);

    - C2-C8 Fluorolefine, die Wasserstoff und/oder Chlor und/oder Brom und/oder Iod enthalten, wie Trifluorethylen, Pentafluorpropen, Chlortrifluorethylen, Pentafluorpropen, Chlortrifluorethylen (CTFE), Bromtrifluorethylen;- Fluorvinylether (VE), vorzugsweise ausgewählt aus:

    - (Per)fluoralkylvinylether (PAVE) CF2=CFORf wobei Rf ein C1-C6 (per)fluoralkyl ist, zum Beispiel Trifluormethyl, Bromdifluormethly, Pentafluorpropyl;

    - Perfluoroxyalkylvinylether CF2=CFOX, wobei X ein C1-C12 Perfluoroxyalkyl ist, das eine oder mehrere Ethergruppen aufweist, zum Beispiel Perfluor-2-propoxypropyl.

    - CF2=CFOCF2OCF2CF3 (A-III) und CF2=CFOCF2OCF2-CF2OCF3 (A-IV)


     
    3. Aushärtbare Fluorelastomere nach den Ansprüchen 1-2, wobei Komponente a) nicht-fluorierte C2-C8-Olefine enthält.
     
    4. Aushärtbare Fluorelastomere nach den Ansprüchen 1-3, wobei Komponente a) eine Menge von 0,01 bis 5 mol- % an Einheiten enthält, die von einem fluorierten Bis-olefin abgeleitet sind.
     
    5. Aushärtbare Fluorelastomere nach den Ansprüchen 1-4, wobei Komponente a) die folgende Zusammensetzung in mol- % hat:

    - VDF 45-85 % HFP 15-45 % TFE 0-30 %;

    - VDF 20-30 %, HFP 15-40 %, TFE 0-30 %, O1 5-30 %, PAVE 0-35 %;

    - VDF 60-75 %, HFP 10-25 %, VE 0-15 %, TFE 0-20 %.


     
    6. Aushärtbare Fluorelastomere nach den Ansprüchen 1-5, wobei Komponente a) eine Menge an polaren Endgruppen aufweist, die geringer als 1 mol- % ist bezogen auf die Gesamtmenge an Endgruppen, und weiter bevorzugt Null ist.
     
    7. Aushärtbare Fluorelastomere nach den Ansprüchen 1-6, wobei die Komponente b) ein organisches -Onium-Derivat ist.
     
    8. Auhaertbare Fluorelastomere nach Anspruch 7, wobei die organischen -Onium-Verbindungen ein Heteroatom enthalten, das ausgewählt ist aus N, P, S, O, das an organische oder anorganische Gruppen gebunden ist.
     
    9. Aushärtbare Fluorelastomere nach den Ansprüchen 7-8, wobei Komponente b) ausgewählt ist aus quarternären Ammonium- oder Phosphorsalzen oder Aminophosphorsalzen.
     
    10. Aushärtbare Fluorelastomere nach Anspruch 9, wobei Komponente b) aus den folgenden ausgewählt ist: Triphenylbenzylphosphoniumchlorid, Tetraphenylphosphorchlorid, Tetrabutylammoniumchlorid, Tetrabutylammoniumbisulphat, Tetrabutylammoniumbromid, Tributylallylphosphorchlorid, Tributylbenzylphosphorchlorid, Diebutyldiphenylphosphorchlorid, Tetrabutylphosphorchlorid, Triarylschwefelchlorid, Salze von Benzyldiphenyl(diethylamino)-phosphor und von Benzyltris(dimethylamino)phosphor.
     
    11. Aushärtbare Fluorelastomere nach den Anspruechen 1-10, wobei Komponente c) ausgewählt ist aus Polyhydroxylierten, aromatischen oder aliphatischen Verbindungen oder deren Derivaten.
     
    12. Aushärtbare Fluorelastomere nach Anspruch 11, wobei Komponente c) aus Bisphenolen ausgewählt ist.
     
    13. Aushärtbare Fluorelastomere nach Anspruch 12, wobei Komponente c) Bisphenol AF, Hexafluorisopropyliden bis(4-hydroxybenzen) ist.
     
    14. Aushärtbare Fluorelastomere nach den Ansprüchen 7-13, wobei statt Komponente b) und c) ein Addukt von Komponente b) mit Komponente c) verwendet wird.
     
    15. Aushärtbare Fluorelastomere nach Anspruch 14, wobei das Addukt gebildet wird von Bisphenol und einem -Oniumsalz, in molaren Verhältnissen 1:1 bis 5:1, vorzugsweise von 2:1 bis 5:1.
     
    16. Aushärtbare Fluorelastomere nach den Ansprüchen 14-15, wobei das Addukt bei Vorliegen der Beschleunigerkomponente b) verwendet wird.
     
    17. Aushärtbare Fluorelastomere nach den Ansprüchen 14-15, wobei das Addukt bei Vorliegen des Aushärtemittels Komponente c) verwendet wird.
     
    18. Aushärtbare Fluorelastomere nach den Ansprüchen 14-17, wobei das Addukt Kationen enthält, die aus den folgenden ausgewählt sind: 1,1-Diphenyl-1-Benzyl-N-Diethyl-Posphoranamin, Tetrabutylphosphor, Tetrabutylammonium, und Anionen, die ausgewählt sind aus Bisphenol-Verbindungen, wobei die zwei aromatischen Ringe über eine Alkylgruppe miteinander verbunden sind, die ausgewählt ist aus den Perfluoralkylgruppen mit 3 bis 7 Kohlenstoffatomen und die Hydroxyle in den aromatischen Ringen in Para-Position zueinander liegen.
     
    19. Aushärtbare Fluorelastomere nach Anspruch 18, wobei das Addukt Kationen enthält, die aus den folgenden ausgewählt sind: 1,1-Diphenyl-1-benzyl-N-Diethylphosphoranamin, Tetrabutylphosphor, Tetrabutylammonium und das Anion Bisphenol AF ist.
     
    20. Aushärtbare Fluorelastomere nach den Ansprüchen 1-19, wobei der anorganische Säureakzeptor Komponente d) ausgewählt ist aus den Akzeptoren, die bei dem ionischen Aushärten von Vinylidenfluorid-Copolymeren verwendet werden, ausgewählt aus ZnO, MgO, PbO.
     
    21. Aushärtbare Fluorelastomere nach den Ansprüchen 1-20, wobei die basische Verbindung Komponente e) ausgewählt ist aus denen, die bei dem ionischen Aushärten von Vinylidenfluorid-Colpolymeren verwendet werden, ausgewählt aus Ca(OH)2, Sr(OH)2, Ba(OH)2, oder von den metallischen Salzen schwacher Säuren, ausgewählt aus Carbonate, Benzoate, Oxalate oder Phosphite von Ca, Sr, Ba, Na und K.
     
    22. Aushärtbare Fluorelastomere nach den Ansprüchen 1 - 21, wobei Komponente f) aus den folgenden ausgewählt ist: Kohle, Bariumsulfat, Silika, Silikate, Semikristalline Fluorpolymere.
     
    23. Aushärtbare Fluorelastomere nach den Ansprüchen 22, wobei das semikristalline Fluorpolymer Größen von 5 bis 90 nm, vorzugsweise von 10 bis 60 nm hat.
     
    24. Aushärtbare Fluorelastomere nach den Ansprüchen 1-23, enthaltend Zusätze, Verdickungsmittel, Pigmente, Antioxidatien, Stabilisatoren, verarbeitungsunterstützende Mittel.
     
    25. Aushärtbare Fluorelastomere nach Anspruch 24, wobei Schwefeloxide diorgano substituiert, ausgewählt aus Sulphonen und Sulpholanen in Mengen von 0,01 bis 5 phr als verarbeitungsunterstützende Mittel verwendet werden.
     
    26. Ausgehärtete Fluorelastomere nach den Ansprüchen 1-25.
     
    27. Fluorelastomere nach Anspruch 26, die auf ionischem Weg ausgehärtet wurden.
     
    28. Hergestellte Artikel, die mit den ausgehärteten Fluorelastomeren der Ansprüche 26-27 erhalten werden.
     
    29. Hergestellte Artikel nach Anspruch 28, ausgewählt aus O-Ringen, Dichtungen, Wellendichtungen, Schläuchen.
     


    Revendications

    1. Fluoroélastomères durcissables par voie ionique à base de fluorure de vinylidène (VDF) comprenant:

    a) 100 parties en poids d'un fluoroélastomère à base de VDF et ayant une quantité de groupes terminaux polaires qui doit être inférieure à 3 % en moles par rapport à la quantité totale des groupes terminaux présents dans le polymère;

    b) de 0,05 à 5 phr d'un accélérateur;

    c) de 0,5 à 15 phr d'un agent de durcissement;

    d) de 1 à 40 phr d'un ou de plusieurs accepteurs d'acide inorganique;

    e) de 0 à 2,5 phr d'un ou de plusieurs composes basiques;

    f) de 0 à 80 phr de charges de renforcement,

    et dans lesquels :

    - la composition comprends de 1 à 40 phr d'un ou plusieurs accepteurs d'acide inorganique choisis parmi les oxydes métalliques bivalents ; et

    - la composition comprends de 0 à 2,5 phr d'un ou de plusieurs composes basiques choisis parmi les hydroxydes de métaux bivalents et les sels métalliques d'acides faibles.


     
    2. Fluoroélastomères durcissables selon la revendication 1, dans lesquels le composant fluoroélastomère a) comprend des copolymères de VDF contenant au moins un autre comonomère fluore éthyléniquement insaturé choisi, par exemple, parmi les suivants:

    - les perfluorooléfines en C2-C8 telles que l'hexafluoropropène (HFP), le tetrafluoroéthylène (TFE);

    - les fluorooléfines en C2-C8 contenant de l'hydrogène et/ou du chlore et/ou du brome et/ou de l'iode, telles que le trifluoroéthylène, le pentafluoropropène, le chlorotrifluoroéthylène (CTFE), le bromotrifluoroéthylène;

    - des éthers fluorovinyliques (VE) choisis de préférence parmi:

    - les éthers (per)fluoroalkylvinyliques (PAVE) CF2=CFORf dans lesquels Rf est un groupe (per)fluoroalkyle en C1-C6, par exemple les groupes trifluorométhyle, bromodifluorométhyle, pentafluoropropyle;

    - les éthers perfluoro-oxyalkylvinyliques CF2=CFOX, dans lesquels X est un groupe perfluorooxyalkyle en C1-C12 ayant un ou plusieurs groupes éthers, par exemple le perfluoro-2-propoxy-propyle;

    - CF2=CFOCF2OCF2CF3 (A-III) et CF2=CFOCF2OCF2-CF2OCF3 (A-IV).


     
    3. Fluoroélastomères durcissables selon les revendications 1 et 2, dans lesquels le composant a) contient des oléfines en C2-C8 non fluorées (O1).
     
    4. Fluoroélastomères durcissables selon les revendications 1 à 3, dans lesquels le composant a) contient une quantité de 0,01 à 5 % en moles de motifs dérivants d'une bis-oléfine fluorée.
     
    5. Fluoroélastomères durcissables selon les revendications 1 à 4, dans lesquels le composant a) à la composition suivante en percent en moles:

    - VDF 45 à 85 percent, HFP 15 à 45 percent, TFE 0 à 30 percent;

    - VDF 20 à 30 percent, HFP 15 à 40 percent, TFE 0 à 30 percent, 01 5 à 30 percent, PAVE 0 à 35 percent;

    - VDF 60 à 75 percent, HFP 10 à 25 percent, VE 0 à 15 percent, TFE 0 à 20 percent.


     
    6. Fluoroélastomères durcissables selon les revendications 1 à 5, dans lesquels le composant a) contient une quantité de groupes terminaux polaires inférieure à 1 % en moles par rapport à la quantité totale de groupes terminaux, encore plus préférablement égale à 0.
     
    7. Fluoroélastomères durcissables selon les revendications 1 à 6, dans lesquels le composant b) est un dérivé -onium organique.
     
    8. Fluoroélastomères durcissables selon la revendication 7, dans lesquels les composés -onium organiques contiennent un hétéroatome choisi parmi N, P, S, O lie à des groupes organiques ou inorganiques.
     
    9. Fluoroélastomères durcissables selon les revendications 7 et 8, dans lesquels le composant b) est choisi parmi les sels d'ammonium quaternaire ou de phosphonium ou les sels d'amino-phosphonium.
     
    10. Fluoroélastomères durcissables selon la revendication 9, dans lesquels le composant b) est choisi parmi les suivants: chlorure de triphénylbenzylphosphonium, chlorure de tétraphénylphosphonium, chlorure de tétrabutylammonium, bisulfate de tétrabutylammonium, bromure de tétrabutylammonium, chlorure de tributylallylphosphonium, chlorure de tributylbenzylphosphonium, chlorure de dibutyldiphénylphosphonium, chlorure de tétrabutylphosphonium, chlorure de triarylsulfonium, sels de benzyldiphényl(diéthylamino)phosphonium et de benzyltris(diméthylamino)-phosphonium.
     
    11. Fluoroélastomères durcissables selon les revendications 1 à 10, dans lesquels le composant c) est choisi parmi les composés polyhydroxylés, aromatiques ou aliphatiques ou des dérivés de ceux-ci.
     
    12. Fluoroélastomères durcissables selon la revendication 11, dans lesquels le composant c) est choisi parmi les bisphénols.
     
    13. Fluoroélastomères durcissables selon la revendication 12, dans lesquels le composant c) est le bisphénol AF, l'héxafluoroisopropylidène bis (4-hydroxybenzène).
     
    14. Fluoroélastomères durcissables selon les revendications 7 à 13, dans lesquels à la place des composants b) et c), on utilise un adduit du composant b) avec le composant c).
     
    15. Fluoroélastomères durcissables selon la revendication 14, dans lesquels l'adduit est forme par un bisphenol et un sel -onium, selon des rapports molaires de 1:1 à 5:1, de préférence de 2:1 à 5:1.
     
    16. Fluoroélastomères durcissables selon les revendications 14 et 15, dans lesquels l'adduit est utilisé en présence du composant accélérateur b).
     
    17. Fluoroélastomères durcissables selon les revendications 14 et 15, dans lesquels l'adduit est utilisé en présence du composant agent de durcissement c).
     
    18. Fluoroélastomères durcissables selon les revendications 14 à 17, dans lesquels l'adduit contient des cations choisis parmi les suivants: la 1,1-diphényl-1-benzyl-N-diéthyl-phosphoranamine, le phosphonium de tétrabutyle, l'ammonium de tétrabutyle, et des anions choisis parmi les composés bisphénols dans lesquels les deux cycles aromatiques sont liés par un groupe alkylénique choisi parmi les groupes perfluoroalkyléniques ayant de 3 à 7 atomes de carbone, et les groupes hydroxyles dans les cycles aromatiques sont en position para.
     
    19. Fluoroélastomères durcissables selon la revendication 18, dans lesquels l'adduit contient des cations choisis parmi les suivants: la 1,1-diphényl-1-benzyl-N-diéthyl-phosphoranamine, le phosphonium de tétrabutyle, l'ammonium de tétrabutyle, et l'anion est le bisphénol AF.
     
    20. Fluoroélastomères durcissables selon les revendications 1 à 19, dans lesquels le composant accepteur d'acide inorganique d) est choisis parmi les accepteurs utilisés dans le durcissement ionique de copolymères de fluorure de vinylidène, choisi parmi le ZnO, MgO, PbO.
     
    21. Fluoroélastomères durcissables selon les revendications 1 à 20, dans lesquels le composant basique e) est choisi parmi ceux utilisés dans le durcissement ionique de copolymères de fluorure de vinylidène, choisis parmi Ca (OH)2, Sr (OH)2, Ba (OH)2, ou parmi les sels métalliques d'acides faibles, de préférence les carbonates, les benzoates, les oxalates et les phosphites de Ca, Sr, Ba, Na, et K.
     
    22. Fluoroélastomères durcissables selon les revendications 1 à 21, dans lesquels le composant f) est choisi parmi les suivants: le noir de carbone, le sulfate de baryum, les silices, les silicates, les fluoropolymères semi-cristallins.
     
    23. Fluoroélastomères durcissables selon la revendication 22, dans lesquels le fluoropolymère semi-cristallin a des tailles de 5 à 90 nm, de préférence de 10 à 60 nm.
     
    24. Fluoroélastomères durcissables selon les revendications 1 à 23, comprenant des additifs, des épaississants, des pigments, des antioxydants, des agents de stabilisation, des agents de support de traitement.
     
    25. Fluoroélastomères durcissables selon la revendication 24, dans lesquels comme agents de support de traitement, on utilise des oxydes de soufre diorgano substitués, choisis parmi les sulfones et les sulfolanes en des quantités de 0,01 à 5 phr.
     
    26. Fluoroélastomères durcis selon les revendications 1 à 25.
     
    27. Fluoroélastomères selon la revendication 26, durcis par voie ionique.
     
    28. Articles manufactures pouvant être obtenus avec les fluoroélastomères durcis selon les revendications 26 et 27.
     
    29. Articles manufactures selon la revendication 28, choisis parmi les joints toriques, les joints statiques, les joints d'arbre, les flexibles hydrauliques.