(19)
(11)EP 1 977 274 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
30.12.2015 Bulletin 2015/53

(21)Application number: 07701712.7

(22)Date of filing:  22.01.2007
(51)International Patent Classification (IPC): 
G02B 6/00(2006.01)
G02B 6/44(2006.01)
G02B 6/02(2006.01)
G02B 6/28(2006.01)
G02B 6/38(2006.01)
G02B 6/36(2006.01)
G02B 6/14(2006.01)
(86)International application number:
PCT/CA2007/000085
(87)International publication number:
WO 2007/082387 (26.07.2007 Gazette  2007/30)

(54)

OPTICAL FIBER COMPONENT PACKAGE FOR HIGH POWER DISSIPATION

GEHÄUSE FÜR GLASFASERKOMPONENTEN MIT HOHER VERLUSTLEISTUNG

MODULE DE COMPOSANT A FIBRE OPTIQUE POUR UNE DISSIPATION DE PUISSANCE ELEVEE


(84)Designated Contracting States:
DE FR GB IT

(30)Priority: 23.01.2006 CA 2533674

(43)Date of publication of application:
08.10.2008 Bulletin 2008/41

(73)Proprietor: ITF Laboratories Inc.
Montreal QC H4N 2G7 (CA)

(72)Inventors:
  • WETTER, Alexandre
    H2T 2G1 (CA)
  • SEGUIN, François
    Montreal, Quebec H9W 4T9 (CA)
  • MARTINEAU, Lilian
    Montreal, Quebec H3T 1W8 (CA)
  • FAUCHER, Mathieu
    Montreal, Quebec H2J 3T2 (CA)

(74)Representative: Cabinet Laurent & Charras 
Le Contemporain 50 Chemin de la Bruyère
69574 Dardilly Cedex
69574 Dardilly Cedex (FR)


(56)References cited: : 
WO-A1-00/28361
DE-A1- 19 724 528
JP-A- 2002 169 053
JP-A- 2002 267 848
US-A1- 2004 052 481
US-B1- 6 865 316
US-B2- 6 944 374
WO-A1-00/28361
JP-A- 2002 169 053
JP-A- 2002 267 848
US-A- 5 664 040
US-B1- 6 513 994
US-B1- 6 865 316
  
  • IWASHIMA T. ET AL.: 'Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes' ELECTRONICS LETTERS vol. 33, no. 5, 27 February 1997, XP000726998
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] This invention relates to an optical fiber component package. More particularly, it relates to a package for optical fiber devices that are capable of operating at high power levels.

BACKGROUND OF THE INVENTION



[0002] Fiber lasers and amplifiers are being used in a growing number of applications. As these mature in the commercial, deployment, an intense focus is being put on their reliability and that of their components. With the current progress in this field, reliability demonstrations must be made at increasingly higher power levels. Optical fiber reliability, connector reliability and susceptibility of optical fiber coatings to optical power damage have been studied for a number of years. Power levels for most applications have however been limited to the range of a few tens of Watts.

[0003] In U.S. Patent No. 4,678,273 a high power optical fiber with improved covering is described. In U.S. Patent Application Publication No. 2004/0175086 a fiber with a multilayer cladding arrangement is proposed to provide means of extracting energy from the cladding. These two inventions specifically address the issue of power handling of the optical fiber and its coating, but do not provide a solution for the component related power handling issues. In U.S. Patents Nos. 5,291,570 and 5,946,437, there are described two variants of high power fiber connectors with means to prevent intense radiation, not coupled in the optical fiber, from damaging the fiber jacket. These two patents propose no solution to the specific problem of fiber component packaging and describe only a solution applicable to the ends of fibers where light is coupled from a source to the fiber input. In U.S. Patent No. 6,865,316 B1, a cladding mode stripper is described for use in dissipating unwanted optical power coupled to the fiber cladding in a laser-to-fiber coupling arrangement. This patent is another example of an invention addressing excess light at the launch point into a fiber. In U.S. Patent Application Publication No. 2003/0103724, a fiber termination is proposed for lessening negative effects associated with launching high power signals from a single mode optical fiber. This is the reverse problem from optical launch into the fiber and does not cover fiber component related high power issues:

[0004] In Japanese Patent Application Publication No. 2002-169053, a simple fiber optic component packaging is disclosed in which the fiber optic component is held in place by UV-curable epoxy adhesive bond. However, the invention does not address the problem of packaging a fiber optic component carrying a high power signal, of managing and ultimately dissipating the optical losses, and of controlling the thermally induced mechanical mounting stress of the fiber by the use of a substrate with a CTE higher than that of the fiber itself.

[0005] In U.S. Patent No. 6,860,651 B2, a fiber optic component packaging invention is presented where various configurations are claimed to optically extract lost light to displace heat generation away from the optical device. The principal claim of this invention is to use a fiber to capture and divert optical power loss into a terminated end, where more efficient heat dissipation means can be applied. This solution is better suited for a certain class of components where the lost signal is available for coupling to a fiber, for example in micro-optic thin film components where optical loss is available in the form of a well defined reflected portion of the input beam. This is not generally the case in fiber optic components. In general optical loss will be spurious in nature and the corresponding optical beam characteristics will be ill-defined, which makes the use of an optical fiber based loss extraction impractical.

[0006] All-fiber components, such as tapered fused bundle (TFB) couplers, pump strippers, splices, mode field adaptors and Bragg gratings, allow monolithic integration of fiber laser and amplifier devices for deployment in the field. Characterized by intrinsically low loss transmission, they are well suited to handle signal and pump light, which are likely to reach the kW level in the near future. However, little progress has been made or improvements proposed for increasing the power handling capabilities of these components. In general, several package features are dictated by the requirements to robustly enclose the component in a protective enclosure, decouple the optical device from loads applied to the lead fibers and maintain performance in an uncontrolled environment, where temperature and humidity variations can lead to aging or thermally induced stresses. These requirements must be met while reducing the package sensitivity to high optical power levels, which creates a need for a novel packaging solution.

OBJECTS AND SUMMARY OF THE INVENTION



[0007] It is an object of the present invention to provide an optical fiber component package according to claim 1 for optical fiber devices operating at high power levels.

[0008] A further object of the present invention is to provide an optical fiber component package that will avoid damage to the optical fiber device due to mechanical stresses.

[0009] Other objects and advantages of the invention will be apparent from the following description thereof.

[0010] The most meaningful benchmark of reliability under high optical power must involve the capability of the device to handle optical power loss, rather than transmitted power. This approach provides a more accurate estimate of feasible power levels and allows increased power handling by addressing thermal management and optical loss reduction issues concurrently. The origin of optical loss and its impact on package temperature rise must be studied to produce a component package optimized for heat dissipation. This approach must be applied to all of the principal components of fiber lasers.

[0011] The requirements for providing a robust decoupling from external loads dictates the use of rigid anchoring bonds, causing the optical structure to experience strain induced by mismatches in coefficient of thermal expansion between the packaging substrate material and the optical fibers. Configuring the package geometry and choosing the properties for its parts are therefore important factors in maintaining a reliable operation.

[0012] In a typical TFB structure comprising, for example, six multimode pump fibers arrayed in a closed pack hexagonal arrangement around a central signal carrying fiber, this bundle of fibers is fused and elongated to match a target fiber, which has a signal-carrying core surrounded by a fluoroacrylate outer cladding, creating a guiding structure for the pump light. As the pump fibers are tapered, the pump signal undergoes a numerical aperture transformation that follows the preservation of brightness relationship NA1D1=NA2D2. At the fusion splice, several loss components are generated including NA and area mismatch of pump light and modal mismatch of the signal. Table 1 below summarizes the main sources of optical loss that can potentially generate heat loads. The loss can follow a complex path depending on its nature and location. For example, an adhesive bonded dual-core fiber can be considered a six-layer waveguide, leading to many potential reflections and refractions. The loss and absorption paths determine the dissipation limits of the device. Improving heat load distribution, results in a lower maximum temperature for the same power loss.
Table 1 Principal sources of optical loss in a TFB structure carrying both pump and signal
 TypeDescriptionLoss path
1 NA transformation Light NA exceeds waveguiding capacity Refraction/absorption in cladding material
  1- Structure transforms signal NA
  2- Structure NA suddenly changes
2 Scattering loss at splice Cladding light loss due to area mismatch - DCF cladding/bundle Radiation in air
  Cladding light loss due to lateral misalignment - DCF cladding/bundle Radiation in air
  Cladding light loss due to angular misalignment - DCF cladding/bundle Radiation in air and guidance by glass-air interface
  Core light modal mismatch Coupling to cladding modes; degradation of modal content
3 Microbending Microbend on core guided signal Coupling to cladding guided modes
  Microbend on cladding guided pump Refraction at cladding interface
4 Macrobending Macrobend on core guided signal Coupling to cladding guided modes
  Macrobend on cladding guided pump Refraction at cladding interface
5 Absorptive Defects Contaminants, aged organics microcracks, polymer delamination Absorption/scattering by defects


[0013] Loss is a function of component properties, and also of the specific signal quality presented to the input fibers. When considering pump light for example, a realistic pump loss can be predicted using a simple integral (equation 1 below):



[0014] Where ILPump is insertion loss for the pump, g(NA) represents the pump pigtail far field intensity distribution and f (NA), the NA-dependent loss function of the TFB. Various NA altering phenomenon also come into play to change the exact farfield distribution of multimode signals such as mode scrambling due to coiling prior to launch in the TFB.

[0015] The same concerns apply to the signal-carrying fiber, especially in the case of large mode area fibers, where low numerical apertures and large V numbers make splicing an important source of modal degradation. Increased LP01 loss not only generates heat loads, but also can result in a non-thermally driven failure mode. As more interfering modes are excited, gain instabilities can lead to the generation of intense pulses that will exceed the material breakdown threshold of glass, resulting in destruction of the core, typically in the regions of smallest mode diameter. It is not the purpose of a packaging solution to solve this issue, however, the coupler package should preserve modal quality during assembly and subsequently in all conditions of use, including laser power cycling and ambient temperature cycling.

[0016] The elements most susceptible to failure from heat loads are the TFB anchoring bonds. Their temperature profile can be estimated analytically by making a few simplifications. Thus, the adhesive may be represented as a truncated cylinder with finite thermal resistance in contact with a heatsink. Heat flow may be represented by longitudinal and radial terms. The adhesive provides the dissipation path as well as the source of heat itself, through signal absorption. Presented here as a function of the longitudinal dimension only, the model neglects the radial components of light absorption and temperature gradients. The bondline radius does, however, influence thermal conductivity and is taken into consideration. Only the dominant conduction term can be considered, which yields the simplified equilibrium expressed in equation 2 below:



[0017] Where ϕ(x) is the conducted heat flux on each side of the disc of elemental length dx, h(x) the flux conducted to the heat sink in the radial direction and Pi (x) is the optical power absorbed by incremental length dx. If we assign k as the adhesive thermal conductivity in the longitudinal direction, A the area of the disc, h, a factor that combines material and geometrical properties of conduction in the radial direction, B the perimeter of the cylinder, α, the attenuation coefficient of the adhesive and finally P0, the input optical power, we can express this equilibrium as a differential equation 3 shown below:



[0018] Applying the proper limit conditions to equation 3 yields the temperature rise profile in the adhesive ΔT(x) (equation 4 below):

Where L is the adhesive bond length,

and



[0019] Equation 4 predicts a longitudinal profile where a peak is present some distance away from the edges of the bondline. It is important to locate this point in order to properly establish the maximum temperature reached during operation. In order to corroborate the model, samples were instrumented to provide temperature-mapping capability inside a fully enclosed package. Capillary tubing transecting the adhesive bond in the radial and longitudinal axis were introduced to allow high reflectivity Bragg gratings to be positioned for profiling. To produce a well-controlled optical loss function, a length of pump fiber was stripped and etched in hydrofluoric acid to expose its core to mode stripping from the adhesive. A match was shown between the fitted theoretical profile and the temperature reading from the Bragg. In the radial profile, most heat is generated close to the fiber, probably because the refracted signal has a strong forward directionality. This measurement also confirms that the sidewalls of the package are indeed acting as heatsinks, the distribution matching closely the package sidewall diameter of 3 mm. This analysis indicates that the best strategy to decrease temperature elevation in the package is to control and preferably to minimize the length and diameter of the adhesive, select an adhesive with good transparency and make it contact a packaging material with good thermal conductivity. Also, the packaging material should be such as to compensate for any variation of the adhesive bond at each end of the package, due to temperature variation, so as to prevent damage to the optical device by mechanical stresses that may otherwise be produced.

[0020] In essence, the present invention provides a package for an optical fiber device capable of carrying a high power signal which comprises:
  1. a) a thermally conductive packaging substrate (18, 20) surrounding said optical fiber device (12) and having an entry port through which one end of the optical fiber device (12) enters the package (10) and an exit port through which another end of the optical fiber device (12) exits the package, said packaging substrate (18, 20) having a preselected coefficient of thermal expansion CTE;
  2. b) a rigid transparent adhesive bond (14, 16) at the entry port and at the exit port anchoring each end of the optical fiber device (12) to the packaging substrate (18, 20), said adhesive bond (14, 16) being made of a material having a high transparency and having a preselected coefficient of thermal expansion CTE;
wherein the CTE of the optical fiber device (12) is lower than the CTE of the packaging substrate (18, 20) which is lower than the CTE of the adhesive bond (14, 16) and
characterized in that the transparency of the adhesive bond (14, 16) is selected in the wavelength band of the signal, said transparency exceeding 80% transmission per mm thickness to minimize optical absorption of optical loss emanating from the optical fiber device (12); thereby compensating for any variation in volume of the adhesive bond (14, 16) at each end of the optical fiber device (12) due to external temperature variation and/or to internal temperature variation due to the absorption by the adhesive bond (14, 16) of the optical loss emanating from the optical fiber device (12), thereby limiting mechanical stress in the optical fiber device (12) within the package (10).

[0021] The optical fiber devices or components that may be packaged in accordance with the present invention include all devices capable of carrying a high power signal, such as, for example, a coupler that combines or separates a plurality of fibers; one such coupler is disclosed in U.S. Patent Application Publication No. 2005/0094952 which belongs to the present applicant. Other suitable devices may constitute connections between two fibers that may be similar, forming a splice, or different, forming a mode field adaptor. Also, a pump stripper, namely a device to strip left over power from the cladding of the fiber (cladding light stripper) may be so packaged, as well as Bragg grating devices.

[0022] The packaging substrate should preferably have a high thermal conductivity and an absorption capacity such as to absorb essentially all optical loss emanating from the optical fiber device when it is in operation. It may consist of metal or alloy (e.g. CuW or CuMo), or a metal composite (e.g. AlSi), or an advanced composite material (pyrolated graphite), or a ceramic (e.g. AlN), or it can- be a combination of two materials in a bi-material arrangement (e.g. Invar or Kovar with inserts of Cu, Ag or Al), or a combination of the above with a highly conductive layer (e.g. electroplated, hot dipped, thin film or foil). Normally, the thermal conductivity should be at least 100 w/mk (watts/meter-kelvin), and preferably it should be higher than 130 w/mk. Normally, the packaging is opaque because this allows the spurious optical signal to be directly absorbed and dissipated, and thus offers an efficient heat extraction and protection against exposure to damaging optical power.

[0023] The adhesive bond should be transparent in the wavelength band of the signals that will be transmitted in order to minimize absorption which is the main source of heat. It should preferably have high transparency that would exceed 80% transmission per 1 mm thickness. It should also be capable of withstanding temperatures of over 100°C and preferably have a service temperature limit of over 130°C. It should also have a high glass transition temperature (Tg), preferably above 85°C. Once it is cured, it must be rigid so as to protect the glass component from load applied externally to the fibers. Moreover, the adhesive should preferably have the same spectral absorption between 800-1600 nm before and after aging (500 hours in an 85°C/85% relative humidity environment). Several such materials have been reviewed. One is, for instance, described in U.S. Patent Application Publication No. 2005/0282996 A1. After testing a number of them, the best example of such adhesive bond was found to be AC L2007 from Addison Clear Wave, which is a UV curable bisphenol A epoxy acrylate based material. It is characterized by high hardness, high optical transparency, good adhesion to glass and is presently used in the manufacturing of molded plastic lenses.

[0024] The packaging substrate material CTE and the-bond material CTE are chosen to produce an effective CTE close to that of silica in order to limit mechanical stress in T-cycling. In a preferred embodiment, the packaging substrate consists of C11 produced by Osprey which is a 50%/50% wt. AlSi metal alloy with a CTE of 11 ppm/°C in combination with an adhesive bond consisting of AC L2007 having a CTE > 30 ppm/°C. This preferred choice is related to the substrate geometry, in particular the length between anchoring bonds (40 mm) and the diameter of the bond (3 mm); with a different geometry, different materials may be selected. It should also be noted that the CTEs of the materials should preferably be in an arrangement such that:

CTE fiber device < CTE packaging substrate < CTE adhesive bond

in order to produce an effective CTE of the package close to the CTE of silica.



[0025] The surface of the inner walls of the packaging substrate may be treated to minimize reflections and maximize effective dissipative power of the package. This can be done by abrasion, oxidation or thin film coating or a combination thereof. The finish of the outside surfaces is preferably designed to maximize thermal conductivity. The package produced is preferably flat and rectangular to allow efficient thermal contact when mounting to a flat surface; Also, grooved channels on each side of the package wall are normally provided to allow clamping down with a variety of fasteners and a precise positioning of the component into a complete assembly, providing means to finely adjust its position with respect to other components in the assembly. This also allows CTE mismatches between package and mounting surface to be resolved through pistonning. Finally, strain relief shapes may be machined into the ends of the channels to avoid the use of more conventional elastomeric boots, which may be susceptible to degradation.

BRIEF DESCRIPTION OF THE DRAWINGS



[0026] 

Fig. 1 is a perspective view of the package for an optical fiber device in accordance with the present invention in which the upper portion of the packaging substrate is shown elevated from the lower portion;

Fig. 2 shows a typical TFB structure of the optical fiber device that may be packaged within the package shown in Fig. 1;

Figs. 3a, 3b and 3c show a cross-sectional side view of a package in accordance with the present invention at different operating temperatures;

Fig. 4 is a graph showing the relationship between tension and package material CTE;

Fig. 5 is a graph showing the dependency of axial tension imparted on a TFB structure under temperature cycling for a given adhesive bond and substrate geometry, and a given adhesive CTE;

Figs. 6a and 6b show side view representations of test vehicles used to produce controlled optical losses to test the effectiveness of the package in accordance with the present invention;

Fig. 7 is a graph showing temperature at the hottest point vs. optical power loss for test samples packaged in accordance with the present invention; and

Fig. 8 is a graph showing a power handling projection at different heatsink temperatures based on a slope of 1.1°C/W using 70°C as the maximum hot point temperature.


DETAILED DESCRIPTION OF THE INVENTION



[0027] Preferred embodiments of the invention will now be described with reference to the appended drawings.

[0028] Fig. 1 illustrates a preferred design of the package 10 for an optical fiber device 12 packaged in accordance with the present invention. The optical fiber device 12 in this embodiment is a tapered fused bundle (TFB) coupler used to combine signal and pump power, which is illustrated in greater detail in Fig. 2, although it may be any device capable of carrying a high power signal. At each end, the TFB is anchored by means of an adhesive bond 14 and 16 respectively to a packaging substrate consisting of lower and upper sections 18 and 20 respectively. Each section is provided with a grooved channel 22 and 24 respectively in which the device 12 is packaged when the two sections are fastened to one another, for example by means of screws 26A, 26B, 26C and 26D. Strain relief shapes 28, 30 are provided at each end of the device 12 applied to the ends of channel 22 and similarly to the ends of channel 24. Such strain relief shapes can take the form of rounded chamfers and are designed to match the natural elastic deformation of the fibers when submitted to a lateral pull to avoid discontinuity of the first order derivative and preferentially also discontinuity of the second order derivatives of the bent fibers path.

[0029] As already indicated above, in this embodiment, the optical fiber component or device 12 that is packaged as shown in Fig. 1 is a TFB coupler as illustrated in Fig.2 which shows the bundle, the fused taper, the splice and the dual core fiber between the two anchoring bonds 14 and 16. It also shows the cross sectional views of the bundle at different stages until it has the same diameter as the DCF. Also, photographic views of the cross-sections at these stages are shown for illustration purposes.

[0030] Fig. 3a to 3c show a graphic representation of the arrangement of the adhesive bonds 14 and 16 between the two sides or sections of the packaging substrate 18 and 20 respectively. The protected fiber optic device 12 is located in the space 32 between the two adhesive bonds 14 and 16 in which the ends of this device are anchored. Therefore, the so enclosed device 12 protected by the packaging substrate 18 and 20 has the length D and the adhesive bonds 14 and 16 at each end have each the length A. If the operating temperature T of the device corresponds to the curing temperature T(cure) of the adhesive, then the device will remain in proper unstressed condition as shown in Fig. 3a. However, if the temperature T becomes lower than T(cure), the adhesive bonds will shrink as shown in Fig. 3b, due to the fact that the CTE of the adhesive is greater than that of the package material. This will result in a retraction of the bond surface. In order to maintain the same length D in the middle of the space 32, it is necessary that the two halves 18 and 20 of the substrate also shrink in length to compensate for the shrinkage of the adhesive bond at each end, thereby allowing length D to remain the same and preventing longitudinal stress to the device by undue extension thereof.

[0031] On the other hand, if the temperature T becomes higher than T(cure), due to ambient variation or due to the extra heat generated by optical losses from the device, then the adhesive bonds will expand, and it is necessary that the sides 18 and 20 of the substrate should then stretch to increase their lengths correspondingly, and thereby compensate for the expansion, thus maintaining the length D within the space 32 as shown in Fig. 3c.

[0032] This compensation between the variation in volume of the adhesive and variation in length of the substrate is done by proper selection of their materials so that the CTE of the substrate material and the CTE of the adhesive bond material would lead to a resulting CTE as close as possible to that of silica within the operating temperature range, thereby limiting mechanical stress of the device in T-cycling. This can be illustrated by the equation 5 when referring to Figs. 3a to 3c. The function f(ΔV) linking length variation L to the volume differential ΔV is determined by the specific geometry of the bond.

where

αs : thermal expansion coefficient of the substrate

αa : thermal expansion coefficient of the adhesive

V : volume of adhesive



[0033] Figure 4 shows how temperature excursion in cycling is affected by substrate material CTE. The adhesive bond is made from the same adhesive (Addison Clearwave ACL2007) with a bond geometry of 3 mm diameter, 8 mm length spaced 40 mm apart. From this figure, the choice of the ideal substrate material CTE for this geometry is 11 ppm/°C. A material with this CTE and high thermal conductivity is the metal alloy of aluminium and silicon in a ratio of 50%/50% commercially available from Osprey alloys under the brand name C11. It is clear that variations in geometry can give rise to a different optimum, which can lead to selecting a different material satisfying both CTE and high thermal conductivity requirements. By varying the ratio of Al and Si for example, the CTE can be tailored without sacrificing thermal conductivity. Other classes of material also offer flexibility in this design such as carbon matrix composites, thermal pyrolithic graphite, metal matrix graphite composites (GrCu), metal alloys such as AlSiC, CuW, CuMo, and high thermal conductivity ceramic (AlN).

[0034] Figure 5 shows axial tension variation on a TFB during temperature cycling using AlSi substrate. The total tension excursion is under 10 gf. The upper curve in this graph represents ambient temperature variation. The two variations follow a similar pattern.

[0035] To test the package of the present invention while producing a well-controlled optical loss function, test vehicles were made such as illustrated in Figs. 6a and 6b. Thus, as shown in Fig. 6a, a misaligned splice was formed in a pump fiber 200/220 µm with 0.22 NA while as shown in Fig. 6b, a length of the same pump fiber was stripped of its cladding and etched in hydrofluoric acid to expose its core to mode stripping from the adhesive. These test samples were packaged in a C11 package with sandblasted internal sidewalls. The package performance was concurrently evaluated using a real TFB device in which six 200/220 µm 0.22NA fibers are bundled around a 6/125 µm 0.14NA signal fiber and connected to a 20/400 µm 0.06/0.46NA dual core fiber. In all cases, the adhesive used was AC L2007. A Bragg grating is co-packaged in the bonds for temperature profiling. In the forward direction, light from six pump sources is used to inject up to 110 W into the pump legs of the TFB, generating up to 2 W of loss. In the reverse direction, a second, identical TFB connected in the same way is used to feed the output DCF fiber to simulate left over pump from a gain fiber. From a total of 77 W injected in this second configuration, 15 W is lost in the package. In both cases, the samples were clamped to the surface of a 100 mm square aluminum block bolted to a stainless steel optical table. The results are presented in figure 7.

[0036] In the forward propagation case, a slope of 2.7°C/W is measured when a straight cleave is applied to the output fiber. Given the very low TFB loss, the fresnel reflection from the fiber endface re-injects a significant amount of light in the backward direction. To demonstrate the importance of that effect, the output is angle polished and the outer jacket immersed in matching fluid, producing a reduction in slope to 1.1 °C/W. This result is significantly lower than for the etched fiber sample (3.6°C/W), but in closer agreement with that of a packaged offset splice (1.7°C/W), demonstrating the importance of the longitudinal loss profile on thermal dissipation. It confirms that the main loss in the forward direction comes from mismatches at the TFB splice, resulting in multiple, distributed loss centers. It also illustrates the importance of end preparation in managing potentially damaging reflections. Extrapolation of these measurements predicts that, at the hottest point in the device, the temperature elevation should be maintained below 50°C at 45 W optical loss. Using passive heatsinking from 20°C ambient, this corresponds to a safe bondline temperature of 70°C expected from a 0.2dB loss TFB presented with a total of 1 kW at the input of the pump legs.

[0037] In reverse, a slope of 4.8°C/W is obtained mainly due to absorption in the bundle anchoring bond, more than four times that of the forward case, and slightly higher than in the case if the etched fiber sample (3.6°C/W). The slope difference between etched fiber and TFB can be attributed to the larger NA resulting from the counter propagating excitation, leading to stronger and consequently more localized absorption in the adhesive as compared to the etched fiber sample. In both cases, the larger temperature elevation is the result of a single dominant absorption loss center located close to the fiber surface.

[0038] Fig. 8 shows power handling projections based on a maximum temperature of 70°C using a slope of 1.1°C/W for heatsink temperatures of 5°C, 10°C, 15°C, 20°C and 25°C

[0039] The above results indicate that the package of the present invention produces a very satisfactory performance of the TFB component packaged therein. The temperature elevation slope of 1.1°C/W for forward propagating pump light was extrapolated to predict reliable operation at 1 kW power level using passively heatsunk 0.2dB loss TFB when packaged in accordance with the present invention.

[0040] It should also be noted that the invention is not limited to the preferred embodiments described above, but that various modifications obvious to those skilled in the art may be made without departing from the invention and the scope of the following claims.


Claims

1. A package (10) for an optical fiber device (12) capable of carrying a high power signal, which comprises:

a) a thermally conductive packaging substrate (18, 20) surrounding said optical fiber device (12) and having an entry port through which one end of the optical fiber device (12) enters the package (10) and an exit port through which another end of the optical fiber device (12) exits the package, said packaging substrate (18, 20) having a preselected coefficient of thermal expansion CTE;

b) a rigid transparent adhesive bond (14, 16) at the entry port and at the exit port anchoring each end of the optical fiber device (12) to the packaging substrate (18, 20), said adhesive bond (14, 16) being made of a material having a high transparency and having a preselected coefficient of thermal expansion CTE;

wherein the CTE of the optical fiber device (12) is lower than the CTE of the packaging substrate (18, 20) which is lower than the CTE of the adhesive bond (14, 16)
characterized in that the transparency of the adhesive bond (14, 16) is selected in the wavelength band of the signal, said transparency exceeding 80% transmission per mm thickness to minimize optical absorption of optical loss emanating from the optical fiber device (12);
thereby compensating for any variation in volume of the adhesive bond (14, 16) at each end of the optical fiber device (12) due to external temperature variation and/or to internal temperature variation due to the absorption by the adhesive bond (14, 16) of the optical loss emanating from the optical fiber device (12), thereby limiting mechanical stress in the optical fiber device (12) within the package (10).
 
2. A package (10) according to claim 1, in which the packaging substrate (18, 20) is configured such as to absorb essentially all the optical loss emanating from the optical fiber device (12) and to minimize the temperature rise of the package (10) when it is in operation.
 
3. A package (10) according to claims 1 or 2, in which the packaging substrate (18, 20) is made of a metal, an alloy, a composite, a ceramic, a ceramic matrix composite or a combination of two such materials in a bi-material arrangement, or a combination of these materials with a thermally conductive layer.
 
4. A package (10) according to claim 3, in which the packaging substrate (18, 20) consists of CuW or CuMo.
 
5. A package (10) according to claim 3, in which the packaging substrate (18, 20) consists of an alloy of aluminum and silicon.
 
6. A package (10) according to claim 5, in which the packaging substrate (18, 20) consists of AlSi with a composition of 50% A1/50% Si by weight.
 
7. A package (10) according to claim 3, in which the packaging substrate (18, 20) consists of a ceramic material AlN.
 
8. A package (10) according to claim 3, in which the packaging substrate (18, 20) comprises a combination of low expansion metal selected from Invar and Kovar with high thermal conductivity inserts selected from Cu, Ag and Al.
 
9. A package (10) according to claim 3, in which the combination of the materials with the thermally conductive layer has an electroplated layer or a hot dip layer or thin film layer or foil layer.
 
10. A package (10) according to any one of claims 1 to 9, in which the thermal conductivity of the packaging substrate (18, 20) is at least 100 W/mK.
 
11. A package (10) according to any one of claims 1 to 9, in which the thermal conductivity of the packaging substrate (18, 20) is greater than 130 W/mK.
 
12. A package (10) according to any one of claims 1 to 11, in which the adhesive bond (14, 16) has a service temperature limit of over 130°C.
 
13. A package (10) according to any one of claims 1 to 12, in which the adhesive bond (14, 16) has a glass transition temperature Tg of above 85°C.
 
14. A package (10) according to any one of claims 1 to 13, in which the adhesive bond (14, 16) has essentially the same specific optical absorption between 800-1600 nm before and after aging of 500 hours in an 85°C/85% relative humidity environment.
 
15. A package (10) according to any one of claims 1 to 14, in which the adhesive bond (14, 16) is made of a UV curable bisphenol A epoxy acrylate based material and has a CTE > 30ppm/°C.
 
16. A package (10) according to any one of claims 1 to 15, in which the surface finish of inner walls of the packaging substrate (18, 20) is in condition such as to minimize reflections and maximize effective dissipation power of the optical fiber device (12).
 
17. A package (10) according to claim 16, in which said condition is achieved by abrasion, oxidation or thin film coating of the inner walls or a combination of these procedures.
 
18. A package (10) according to any one of claims 1 to 17, which is flat and rectangular to allow efficient thermal contact when mounted on a flat surface.
 
19. A package (10) according to any one of claims 1 to 18, which is made of two elongated sections (18, 20) fastened to one another and wherein a grooved longitudinal channel (22, 24) is provided in each of said sections (18, 20) in which the optical fiber device (12) is placed.
 
20. A package (10) according to claim 19, in which strain relief shapes (28, 30) are machined into ends of the channels (22, 24) so as to avoid creating bend discontinuities in the fiber exiting therethrough when pulled laterally.
 
21. A package (10) according to any one of claims 1 to 20, in which the optical fiber device (12) capable of carrying a high power signal is a coupler that combines or separates a plurality of fibers.
 
22. A package (10) according to claim 21, in which said coupler is a tapered fused bundle TFB coupler.
 
23. A package (10) according to any one of claims 1 to 20, in which the optical fiber device (12) capable of carrying a high power signal is a splice between two fibers.
 
24. A package (10) according to any one of claims 1 to 20, in which the optical fiber device (12) capable of carrying a high power signal is a mode field adaptor.
 
25. A package (10) according to any one of claims 1 to 20, in which the optical fiber device (12) capable of carrying a high power signal is a cladding mode light stripper.
 
26. A package (10) according to any one of claims 1 to 20, in which the optical fiber device (12) capable of carrying a high power signal is a Bragg grating.
 


Ansprüche

1. Verkapselung (10) für eine zum Übertragen eines Hochleistungssignals fähige Lichtwellenleitervorrichtung (12), die umfasst:

a) eine wärmeleitfähiges Verkapselungssubstrat (18, 20), das die Lichtwellenleitervorrichtung (12) umgibt und eine Eintrittsöffnung, durch die ein Ende der Lichtwellenleitervorrichtung (12) in das Gehäuse (10) eintritt, und eine Austrittsöffnung hat, durch die ein anderes Ende der Lichtwellenleitervorrichtung (12) aus dem Gehäuse austritt, wobei das Verkapselungssubstrat (18, 20) einen vorausgewählten Wärmedehnungskoeffizienten CTE hat;

b) eine starre, transparente adhäsive Verbindung (14, 16) an der Eintrittsöffnung und der Austrittsöffnung, die jedes Ende der Lichtwellenleitervorrichtung (12) am Verkapselungssubstrat (18, 20) verankert, wobei die adhäsive Verbindung (14, 16) aus einem Material mit einer hohen Transparenz und mit einem vorausgewählten Wärmedehnungskoeffizienten CTE besteht;
wobei der CTE der Lichtwellenleitervorrichtung (12) niedriger ist als derjenige des Verkapselungssubstrats (18, 20), der niedriger ist als der CTE der adhäsiven Verbindung (14, 16), und

dadurch gekennzeichnet, dass die Transparenz der adhäsiven Verbindung (14, 16) im Wellenlängenbereich des Signals ausgewählt ist, wobei die Transparenz 80% Durchlässigkeit pro mm Dicke überschreitet, um Lichtabsorption eines von der Lichtwellenleitervorrichtung (12) ausgehenden Lichtverlusts zu minimieren,
wodurch jedwede Volumenveränderung der adhäsiven Verbindung (14, 16) an jedem Ende der Lichtwellenleitervorrichtung (12) aufgrund einer externen Temperaturveränderung und/oder einer internen Temperaturveränderung ausgeglichen wird, die von der Absorption des von der Lichtwellenleitervorrichtung (12) ausgehenden Lichtverlusts durch die adhäsive Verbindung (14, 16) herrührt, wodurch eine mechanische Belastung der Lichtwellenleitervorrichtung (12) in der Verkapselung (10) eingeschränkt wird.
 
2. Verkapselung (10) nach Anspruch 1, wobei das Verkapselungssubstrat (18, 20) so ausgelegt ist, dass es im Wesentlichen den gesamten von der Lichtwellenleitervorrichtung (12) ausgehenden Lichtverlust absorbiert und den Temperaturanstieg der Verkapselung (10) minimiert, wenn sie in Betrieb ist.
 
3. Verkapselung (10) nach Anspruch 1 oder 2, wobei das Verkapselungssubstrat (18, 20) aus einem Metall, einer Legierung, einem Verbundstoff, einer Keramik, einem Keramik-Matrix-Verbund oder einer Kombination aus zweien solcher Materialien in einer Bi-Materialanordnung oder einer Kombination dieser Materialien mit einer wärmeleitfähigen Schicht hergestellt ist.
 
4. Verkapselung (10) nach Anspruch 3, wobei das Verkapselungssubstrat (18, 20) aus CuW oder CuMo besteht.
 
5. Verkapselung (10) nach Anspruch 3, wobei das Verkapselungssubstrat (18, 20) aus einer Aluminium- und Siliciumlegierung besteht.
 
6. Verkapselung (10) nach Anspruch 5, wobei das Verkapselungssubstrat (18, 20) aus AlSi mit einer Zusammensetzung von 50 Gew.-% Al/50 Gew.-% Si besteht.
 
7. Verkapselung (10) nach Anspruch 3, wobei das Verkapselungssubstrat (18, 20) aus einem AlN-Keramikmaterial besteht.
 
8. Verkapselung (10) nach Anspruch 3, wobei das Verkapselungssubstrat (18, 20) eine Kombination aus einem Metall geringer Dehnung umfasst, das aus Invar und Kovar ausgewählt ist, wobei Einsätze hoher Wärmeleitfähigkeit aus Cu, Ag und Al ausgewählt sind.
 
9. Verkapselung (10) nach Anspruch 3, wobei die Kombination aus den Materialien mit der wärmeleitfähigen Schicht eine galvanisierte Schicht oder eine feuerverzinkte Schicht oder eine Dünnfilmschicht oder eine Folienschicht hat.
 
10. Verkapselung (10) nach einem der Ansprüche 1 bis 9, wobei die Wärmeleitfähigkeit des Verkapselungssubstrats (18, 20) mindestens 100 W/mK beträgt.
 
11. Verkapselung (10) nach einem der Ansprüche 1 bis 9, wobei die Wärmeleitfähigkeit des Verkapselungssubstrats (18, 20) über 130 W/mK beträgt.
 
12. Verkapselung (10) nach einem der Ansprüche 1 bis 11, wobei die adhäsive Verbindung (14, 16) eine Betriebstemperaturgrenze von über 130°C hat.
 
13. Verkapselung (10) nach einem der Ansprüche 1 bis 12, wobei die adhäsive Verbindung (14, 16) eine Glasübergangstemperatur Tg von über 85°C hat.
 
14. Verkapselung (10) nach einem der Ansprüche 1 bis 13, wobei die adhäsive Verbindung (14, 16) im Wesentlichen dieselbe spezifische Lichtabsorption von zwischen 800 - 1600 nm vor und nach einer 500-stündigen Alterung in einer Umgebung mit 85°C/85% relativer Feuchtigkeit hat.
 
15. Verkapselung (10) nach einem der Ansprüche 1 bis 14, wobei die adhäsive Verbindung (14, 16) aus einem Material auf Basis von UV-vernetzbarem Bisphenol-A-Epoxidacrylat hergestellt ist und einen CTE > 30 ppm/°C hat.
 
16. Verkapselung (10) nach einem der Ansprüche 1 bis 15, wobei die Oberflächenbeschaffenheit von Innenwänden des Verkapselungssubstrats (18, 20) in einem solchen Zustand ist, dass Reflexionen minimiert und eine effektive Dissipationsleistung der Lichtwellenleitervorrichtung (12) maximiert ist.
 
17. Verkapselung (10) nach Anspruch 16, wobei der Zustand durch Abrasion, Oxidation oder eine Dünnfilmbeschichtung der Innenwände oder eine Kombination aus diesen Vorgehensweisen erzielt ist.
 
18. Verkapselung (10) nach einem der Ansprüche 1 bis 17, die flach und rechteckig ist, um bei Montage auf einer ebenen Fläche einen effizienten Wärmekontakt zuzulassen.
 
19. Verkapselung (10) nach einem der Ansprüche 1 bis 18, die aus zwei langgestreckten Abschnitten (18, 20) besteht, die aneinander befestigt sind, und wobei ein genuteter Längskanal (22, 24) in jedem der Abschnitte (18, 20) vorgesehen ist, in den die Lichtwellenleitervorrichtung (12) eingesetzt ist.
 
20. Verkapselung (10) nach Anspruch 19, wobei Zugentlastungsformen (28, 30) in Enden der Kanäle (22, 24) eingearbeitet sind, um zu vermeiden, dass Biegungsdiskontinuitäten in dem durch diese austretenden Wellenleiter bei seitlichem Zug entstehen.
 
21. Verkapselung (10) nach einem der Ansprüche 1 bis 20, wobei es sich bei der zum Übertragen eines Hochleistungssignals fähigen Lichtwellenleitervorrichtung (12) um einen Koppler handelt, der eine Vielzahl von Wellenleitern kombiniert oder trennt.
 
22. Verkapselung (10) nach Anspruch 21, wobei es sich bei dem Koppler um einen TFB-Koppler für konisch zulaufende verschmolzene Bündel (TFB - tapered fused bundle) handelt.
 
23. Verkapselung (10) nach einem der Ansprüche 1 bis 20, wobei es sich bei der zum Übertragen eines Hochleistungssignals fähigen Lichtwellenleitervorrichtung (12) um einen Spleiß zwischen zwei Wellenleitern handelt.
 
24. Verkapselung (10) nach einem der Ansprüche 1 bis 20, wobei es sich bei der zum Übertragen eines Hochleistungssignals fähigen Lichtwellenleitervorrichtung (12) um einen Modenfeldadapter handelt.
 
25. Verkapselung (10) nach einem der Ansprüche 1 bis 20, wobei es sich bei der zum Übertragen eines Hochleistungssignals fähigen Lichtwellenleitervorrichtung (12) um einen Mantelmodenlichtstripper (cladding mode light stripper) handelt.
 
26. Verkapselung (10) nach einem der Ansprüche 1 bis 20, wobei es sich bei der zum Übertragen eines Hochleistungssignals fähigen Lichtwellenleitervorrichtung (12) um ein Bragg-Gitter handelt.
 


Revendications

1. Un module (10) pour un dispositif à fibre optique (12) capable de transporter un signal de puissance élevée, qui comprend :

a) un substrat de modularisation à conductivité thermique (18, 20) entourant ledit dispositif à fibre optique (12) et présentant un orifice d'entrée à travers lequel une extrémité du dispositif à fibre optique (12) pénètre dans le module (10) et un orifice de sortie à travers lequel une autre extrémité du dispositif à fibre optique (12) ressort du module, ledit substrat de modularisation (18, 20) présentant un coefficient d'expansion thermique CTE présélectionné ;

b) une liaison adhésive transparente rigide (14, 16) à l'orifice d'entrée et à l'orifice de sortie, fixant chacune des extrémités du dispositif à fibre optique (12) au substrat de modularisation (18,20), ladite liaison adhésive (14, 16) étant constituée d'un matériau présentant une transparence élevée et présentant un coefficient d'expansion thermique CTE présélectionné ;

dans lequel le CTE du dispositif à fibre optique (12) est inférieur au CTE du substrat de modularisation (18,20) qui est inférieur au CTE de la liaison adhésive (14, 16) ; caractérisé en ce que la transparence de la liaison adhésive (14, 16) est sélectionnée dans la bande de longueur d'onde du signal, ladite transparence dépassant 80% de transmission par millimètre d'épaisseur afin de minimiser l'absorption optique de la perte optique émanant du dispositif à fibre optique (12) ;
compensant ainsi pour chaque variation en volume de la liaison adhésive (14, 16) à chaque extrémité du dispositif à fibre optique (12) due à la variation de température externe et/ou à la variation de température interne inhérente à l'absorption par la liaison adhésive (14, 16) de la perte optique émanant du dispositif à fibre optique (12), limitant ainsi la contrainte mécanique dans le dispositif à fibre optique (12) au sein du module (10).
 
2. Un module selon la revendication 1, dans lequel le substrat de modularisation (18, 20) est configuré de manière à absorber essentiellement toute la perte optique émanant du dispositif à fibre optique (12) et de minimiser l'augmentation de température du module (10) quand il est en fonctionnement.
 
3. Un module selon la revendication 1 ou 2, dans lequel le substrat de modularisation (18, 20) est réalisé en un métal, un alliage, un composite, une céramique, un composite de matrice composite ou une combinaison de deux de ces matériaux dans un arrangement bi-matériau, ou une combinaison de ces matériaux avec une couche thermiquement conductrice.
 
4. Un module (10) selon la revendication 3, dans lequel le substrat de modularisation (18, 20) est réalisé en CuW ou CuMo.
 
5. Un module (10) selon la revendication 3, dans lequel le substrat de modularisation (18, 20) est réalisé en un alliage d'aluminium et de silicone.
 
6. Un module (10) selon la revendication 5, dans lequel le substrat de modularisation (18, 20) est réalisé en AISi avec une composition, en poids, de 50% en Al et de 50% en Si.
 
7. Un module (10) selon la revendication 3, dans lequel le substrat de modularisation (18, 20) est réalisé en un matériau céramique AIN.
 
8. Un module (10) selon la revendication 3, dans lequel le substrat de modularisation (18, 20) comprend une combinaison de métaux de faible expansion sélectionnés parmi Invar and Kovar avec des insertions de haute conductivité thermique sélectionnées parmi Cu, Ag et Al.
 
9. Un module (10) selon la revendication 3, dans lequel la combinaison des matériaux avec la couche thermiquement conductrice présente une couche électrolytique ou une couche de galvanisation à chaud ou film mince ou une couche mince.
 
10. Un module (10) selon l'une des revendications 1 à 9, dans lequel la conductivité thermique du substrat de modularisation (18,20) est au moins de 100 W/mK.
 
11. Un module (10) selon l'une des revendications 1 à 9, dans lequel la conductivité thermique du substrat de modularisation (18,20) est supérieure à 130 W/mK.
 
12. Un module (10) selon l'une des revendications 1 à 11, dans lequel la liaison adhésive (14, 16) présente une limite de température de service de plus de 130°C.
 
13. Un module (10) selon l'une des revendications 1 à 12, dans lequel la liaison adhésive (14, 16) présente une température de transition vitreuse Tg supérieure à 85°C.
 
14. Un module (10) selon l'une des revendications 1 à 13, dans lequel la liaison adhésive (14, 16) présente essentiellement la même absorption optique spécifique entre 800-1600 nm avant et après vieillissement de 500 heures dans un environnement d'humidité relative de 85°C/85%.
 
15. Un module (10) selon l'une des revendications 1 à 14, dans lequel la liaison adhésive (14, 16) est réalisée à partir d'un matériau à base d'acrylate d'époxy bisphénol A durcissable et présentant un CTE>30ppm/°C.
 
16. Un module (10) selon l'une des revendications 1 à 15, dans lequel la finition de la surface des parois intérieures du substrat de modularisation (18, 20) est dans un état apte à minimiser les réflexions et maximiser la dissipation efficace de la puissance du dispositif à fibre optique (12).
 
17. Un module (10) selon la revendication 16, dans lequel ledit état est atteint par abrasion, oxydation ou dépôt d'un film mince sur les parois intérieures ou une combinaison de ces procédés.
 
18. Un module (10) selon l'une des revendications 1 à 17, ledit module étant plat et rectangulaire pour permettre un contact thermique efficace lorsqu'il est monté sur une surface plane.
 
19. Un module (10) selon l'une des revendications 1 à 18, constitué de deux sections allongées (18, 20) solidarisées l'une à l'autre, dans lesquelles un canal longitudinal rainuré (22, 24) est ménagé dans chacune desdites sections (18, 20) dans lesquelles le dispositif à fibre optique est placé.
 
20. Un module (10) selon la revendication 19, dans lequel des formes de détente de contrainte (28, 30) sont usinées aux extrémités des canaux (22, 24) afin d'éviter la formation de discontinuités de courbure au sein de la fibre émergeant de ceux-ci lorsqu'elle est tirée latéralement.
 
21. Un module (10) selon l'une des revendications 1 à 20, dans lequel le dispositif à fibre optique (12) capable de transporter un signal de puissance élevée est un coupleur qui combine ou sépare une pluralité de fibres.
 
22. Un module (10) selon la revendication 21, dans lequel ledit coupleur est un coupleur de faisceau condensé conique (TFB).
 
23. Un module (10) selon l'une des revendications 1 à 20, dans lequel le dispositif à fibre optique (12) capable de transporter un signal de puissance élevée est une épissure entre deux fibres.
 
24. Un module (10) selon l'une des revendications 1 à 20, dans lequel le dispositif à fibre optique capable de transporter un signal de puissance élevée est un adaptateur de champ de mode.
 
25. Un module (10) selon l'une des revendications 1 à 20, dans lequel le dispositif à fibre optique (12) capable de transporter un signal de puissance élevée est un extracteur de lumière de mode de gaine.
 
26. Un module (10) selon l'une des revendications 1 à 20, dans lequel le dispositif (12) capable de transporter un signal de puissance élevée est un réseau de Bragg.
 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description