(19)
(11)EP 1 363 414 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
01.05.2013 Bulletin 2013/18

(21)Application number: 03252985.1

(22)Date of filing:  14.05.2003
(51)Int. Cl.: 
H04B 7/26  (2006.01)
H04W 24/00  (2009.01)
H04W 56/00  (2009.01)

(54)

Mobile communication system, base station control device and radio base station forming the same, and communication timing control method thereof

Basisstationsteuervorrichtung, Basisstation und Kommunikations-Synchronisierungsverfahren in einem mobilen Kommunikationssystem

Appareil de commande de station de base, station de base et procédé de commande de synchronisation de communication dans un système de communication mobile


(84)Designated Contracting States:
FI GB SE

(30)Priority: 14.05.2002 JP 2002138016

(43)Date of publication of application:
19.11.2003 Bulletin 2003/47

(73)Proprietor: NEC Corporation
Minato-ku Tokyo 108-8001 (JP)

(72)Inventor:
  • Kobayashi, Kazunari
    Minato-ku, Tokyo 108-8001 (JP)

(74)Representative: Reeve, Nicholas Edward et al
Reddie & Grose LLP 16 Theobalds Road
London WC1X 8PL
London WC1X 8PL (GB)


(56)References cited: : 
WO-A-98/57450
JP-A- 8 280 056
US-A1- 2002 055 356
JP-A- 2 238 732
JP-A- 2001 333 446
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Field of the Invention



    [0001] The present invention relates to a mobile communication system such as a cellular phone, a base station control device and a radio base station forming the system, and a communication timing control method in the system.

    2. Description of the Related Art



    [0002] Mobile communication system whose representative is a cellular phone or a PHS is an information communication means indispensable in the information age of today. The mobile communication is realized by transmission and reception of radio signals by a mobile terminal to and from a radio base station and transmission and reception of wire signals by the radio base station to and from a network connecting to a communication target. Since one radio base station has its communicable area limited, a plurality of radio base stations form an area (cell) covering communication to compensate for each other, thereby enabling mobile communication everywhere. In a case where a mobile terminal conducts communication, it uses a radio base station responsible for communication in a cell to which it belongs. When the mobile terminal comes out of the area of the cell to which it originally belongs to move to other cell during communication, there arises the need of communication using a radio base station existing in the cell to which it has moved. At this time, if the terminal is allowed to use only one radio base station, communication is instantaneously cut off at the instant of switching to a radio base station to be used. For avoiding such problem, mobile communication systems of today employ a method of preventing communication from cutting off even when a mobile terminal moves among cells by enabling the mobile terminal to simultaneously communicate with a plurality of radio base stations when the mobile terminal is located near the boundaries of a plurality of cells.

    [0003] For enabling this method, a plurality of radio base stations existing near a terminal should receive user data and timing should be controlled such that data from each radio base station to the terminal arrives at the terminal at the same time. A base station control device in general takes charge of this control and upon receiving user data to the terminal, the base station control device copies the data and controls timing of transmission to each radio base station such that the user data arrives at the plurality of radio base stations at the same time.

    [0004] Fig. 13 is a conceptual diagram showing a relationship among a base station control device, a radio base station and a terminal in a common mobile communication system.

    [0005] In Fig. 13, in the mobile communication system, user data C from a core network 1 is received by a base station control device 2, the received user data C is transmitted from the base station control device 2 to a plurality of radio base stations 3 (3-1, 3-2, 3-3) and user data B in question is sent from the plurality of radio base stations 3-1, 3-2 and 3-3 as user data A by radio, whereby the user data is transmitted from the relevant radio base station 3 to a mobile terminal 4.

    [0006] In the above-described mobile communication system, for conducting communication timing control, the base station control device 2 in advance defines, as a fixed value, a time from the reception of the user data C by the base station control device 2 until the transmission of the user data as the user data A by the radio base station 3 by radio (the time period will be hereinafter referred to as a total delay time in RAN). In addition, at the start of communication, calculate the amount of transmission delay corresponding to a time period of data transmission between the base station control device 2 and the respective radio base stations 3-1, 3-2 and 3-3. Upon receiving the user data C from the core network 1, the base station control device 2 determines timing of transmitting user data to the respective radio base stations 3-1, 3-2 and 3-3 according to the following expression:



    [0007] With this timing control method, when the amount of transmission delay is small, the base station control device 2 needs to buffer user data for a time period approximate to a total delay time in RAN, which might invite an increase in the total amount of delay of the entire system. In addition, when the amount of transmission delay between the base station control device 2 and the radio base station 3 changes due to handover or the like, the radio base station 3 senses deviation of user data reception timing to instruct the base station control device 2 to modify transmission timing, thereby realizing timing modification. For realizing such control, however, timing should be synchronized between the radio base station 3 and the base station control device 2 and the radio base station 3 needs to monitor normality of timing of data reception from the base station control device 2 all the time.

    [0008] Conventional timing control method will be more detailed with reference to the drawings. First, at the time of communication start, timing is adjusted such that user data simultaneously arrives at all the radio base stations 3 (3-1, 3-2, 3-3) taking the amount of transmission delay between the base station control device 2 and the respective radio base stations 3-1, 3-2 and 3-3 into consideration.

    [0009] Fig. 14 is a timing chart showing a conventional timing control method at the time of communication start.

    [0010] Timing is adjusted such that at the respective radio base stations 3-1, 3-2 and 3-3 connected with the base station control device 2 through a transmission path (cable), a relationship between a sequence number applied to a frame (hereinafter referred to as CFN) and radio transmission timing of frame is the same.

    [0011] To the respective radio base stations 3-1, 3-2 and (3-3), the base station control device 2 transmits a synchronous frame with a CFN appropriately applied. Each of the radio base stations 3-1, 3-2 and (3-3) having received the synchronous frames transmitted from the base station control device 2 responds to the base station control device 2 with a time difference between the time when it received the synchronous frame and timing when a frame having the CFN applied to the synchronous frame is transmitted.

    [0012] Based on the difference received from each of the radio base stations 3-1, 3-2 and 3-3, the base station control device 2 adjusts a relationship between the CFN to be applied to the frame and the frame transmission timing and adjusts user data sending timing such that the frame arrives meeting the CFN transmission timing of each of the radio base stations 3-1, 3-2 and 3-3.

    [0013] Fig. 15 is a timing chart showing timing of transmission of user data to each of the radio base stations 3-1, 3-2 and 3-3 at the time of down frame reception in the conventional method.

    [0014] As a fixed value, determine in advance the above-described total delay time in RAM from when the base station control device 2 receives user data from the core network 1 until when the radio base stations 3-1, 3-2 and 3-3 transmit the user data by radio.

    [0015] Upon receiving the user data from the core network 1, the base station control device 2 adjusts timing of transmission of user data to each of the radio base stations 3-1, 3-2 and 3-3, that is, each buffering time to be applied, such that the user data arrives at the radio base stations 3-1, 3-2 and 3-3 after a lapse of the total delay time in RAM after the reception of the user data.

    [0016] When the amount of transmission delay between the base station control device 2 and the radio base stations 3-1, 3-2 and 3-3 changes due to hard handover or the like, timing is modified.

    [0017] Figs. 16 and 17 are timing charts showing the conventional timing control method at the time of modifying the timing. Fig. 16 shows a state before the timing is modified, while Fig. 17 shows a state after the timing is modified.

    [0018] The radio base stations 3-1, 3-2 and 3-3 have a window having a fixed time span for each CFN transmission timing and when receiving a frame which can not be accommodated in the window, report deviation from the window to the base station control device 2.

    [0019] Upon receiving the report, the base station control device 2 adjusts timing of user data transmission to the radio base station 3 by as much as the deviation from the window.

    [0020] As described in the foregoing, since in such a conventional timing control method as described above, time is defined in advance from when the base station control device 2 receives data until when the radio base station 3 transmits the data and based on the time, a buffering time of the base station control device 2 is determined, data should be buffered for a long period of time at the base station control device.

    [0021] In addition, since timing control between the radio base station and the base station control device is complicated to make it difficult to reduce a delay time of user data transmission in the system as a whole.

    [0022] Under these circumstances, proposed for a mobile communication system in which a signal processing device is provided between a base station control device and a core network are the technique (Japanese Patent Laying-Open (Kokai) No. 2001-333446) of preventing deterioration of communication quality by reducing time of delay in transmission from the base station control device to the signal processing device, thereby reducing the number of user frames aborted due to delayed arrival and the techniques (Japanese Patent Laying-Open (Kokai) No. 2001-16159 and Japanese Patent Laying-Open (Kokai) No. 2001-358638) of maintaining communication quality by measuring a signal propagation time (transmission delay time) of a signal between a mobile station moving fast and a radio base station and conducting appropriate control according to the measurement result.

    [0023] United States Patent Application 2002/0055356 describes a data transmission system comprising a base station controller and a plurality of base transceiver stations. Transmission delays between the base station controller and the base transceiver stations are compensated by introducing a delay which is greater than the greatest of the transmission time delays. The delay is measured by sending time stamped information from the base station controller to the base transceiver stations where it is compared with an accurate reference, this requiring that the base transceiver stations are all equipped with GPS or the like. International Patent Application WO98/57450 describes a radio communications system which uses a round-trip delay measurement but for different purposes.

    [0024] These techniques, however, fail to have an intention to suppress an increase in the scale of the base station control device, while reducing a user data transmission time in the system as a whole by reducing a user data (frame) buffering time in the base station control device.

    SUMMARY OF THE INVENTION



    [0025] Accordingly, an object of the present invention is to provide a mobile communication system, a base station control device and a radio base station forming the system, and a communication timing control method in the system which enable an increase in load and scale of the base station control device to be suppressed, as well as enabling reduction in a user data transmission time in the system as a whole by reducing a data buffering time in the base station control device.

    [0026] According to the first aspect of the invention, a mobile communication system in which user data from a core network is received by a base station control device, the received user data is transmitted from the base station control device to a plurality of radio base stations and the user data is sent out by radio from these plurality of radio base stations to transmit the user data to a mobile terminal from the relevant radio base station, wherein
       the base station control device is structured to, at the time of communication start, transmit test data to each the radio base station, receive, from each radio base station, a response signal related to the transmitted test data, based on time of the transmission and time of reception of each response from each the radio base station, calculate the amount of transmission delay corresponding to a data transmission time between its own device and each radio base station in question and based on each calculated amount of transmission delay, with one radio base station whose the amount of transmission delay is the largest as a reference, calculate a transmission data buffering time to be applied to each radio base station to be zero substantially zero or extremely short for the one radio base station in question, so that the base station control device instantaneously transmits the user data to said one radio base station and to be a finite value conforming to a relative relationship with the amount of transmission delay of the one radio base station for each of the other radio base stations, at the time of transmitting down data supplied from the core network, transmit the data to each corresponding radio base station with each the calculated buffering time applied, and at the time of receiving up data from each the radio base station, based on a change of a difference in time of data reception from each radio base station, adjust a buffering time to be applied, and
       each the radio base station is structured to, at the time of communication start, upon receiving the test data from the base station control device, transmit the response signal to the base station control device in question out delay.

    [0027] In the preferred construction, the base station control device executes adjustment of a buffering time all the time which is conducted based on a change of a difference in time of data reception from each radio base station when receiving up data from each the radio base station.

    [0028] In another preferred construction, the base station control device executes adjustment of a buffering time in a fixed cycle which is conducted based on a change of a difference in time of data reception from each radio base station when receiving up data from each the radio base station.

    [0029] According to the second aspect of the invention, a base station control device forming a mobile communication system designed such that user data from a core network is received by the base station control device, the received user data is transmitted from the base station control device to a plurality of radio base stations and the user data is sent out by radio from these plurality of radio base stations to transmit the user data to a mobile terminal from the relevant radio base station, which is structured to:

    at the time of communication start, transmit test data to each the radio base station, receive, from each radio base station, a response signal related to the transmitted test data, based on time of the transmission and time of reception of each response from each the radio base station, calculate the amount of transmission delay corresponding to a data transmission time between its own device and each radio base station in question and based on each calculated amount of transmission delay, with one radio base station whose the amount of transmission delay is the largest as a reference, calculate a transmission data buffering time to be applied to each radio base station to be zero substantially zero or extremely short for the one radio base station in question so that base station control device instantaneously transmits the user data to the one radio base station, and to be a finite value conforming to a relative relationship with the amount of transmission delay of the one radio base station for each of the other radio base stations, at the time of transmitting down data supplied from the core network, transmit the data to each corresponding radio base station with each the calculated buffering time applied, and at the time of receiving up data from each the radio base station, based on a change of a difference in time of data reception from each radio base station, adjust a buffering time to be applied.



    [0030] In the preferred construction, the base station control device executes adjustment of a buffering time all the time which is conducted based on a change of a difference in time of data reception from each radio base station when receiving up data from each the radio base station.

    [0031] In another preferred construction, the base station control device executes adjustment of a buffering time in a fixed cycle which is conducted based on a change of a difference in time of data reception from each radio base station when receiving up data from each the radio base station.

    [0032] According to another aspect of the invention, a communication timing control method in a mobile communication system structured such that user data from a core network is received by a base station control device, the received user data is transmitted from the base station control device to a plurality of radio base stations and the user data is sent out by radio from these plurality of radio base stations to transmit the user data to a mobile terminal from the relevant radio base station, comprising the steps of:

    in the base station control device, at the time of communication start, transmitting test data to each the radio base station,

    in each the radio base station, upon receiving the test data, transmitting a response signal to the base station control device with out delay,

    in the base station control device, receiving the response signal from each the radio base station,

    in the base station control device, based on time of the transmission and time of reception of each response from each the radio base station, calculating the amount of transmission delay corresponding to a data transmission time between its own device and each radio base station in question,

    in the base station control device, based on each calculated amount of transmission delay, with one radio base station whose the amount of transmission delay is the largest as a reference, calculating a transmission data buffering time to be applied to each radio base station to be zero substantially zero or extremely short for the one radio base station in question, so that the base station control device instantaneously transmits the user data to said one radio base station, and to be a finite value conforming to a relative relationship with the amount of transmission delay of the one radio base station for each of the other radio base stations,

    in the base station control device, at the time of transmitting down data supplied from the core network, transmitting the data to each corresponding radio base station with each the calculated buffering time applied, and

    in the base station control device, at the time of receiving up data from each the radio base station, based on a change of a difference in time of data reception from each radio base station, adjusting a buffering time to be applied.



    [0033] In the preferred construction, in the base station control device, when receiving up data from each the radio base station, the step of adjusting a buffering time to be applied based on a change of a difference in time of data reception from each radio base station is executed all the time.

    [0034] In another preferred construction, in the base station control device, when receiving up data from each the radio base station, the step of adjusting a buffering time to be applied based on a change of a difference in time of data reception from each radio base station is executed in a fixed cycle.

    [0035] Other features and advantages of the present invention will become clear from the detailed description given herebelow.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0036] The present invention will be understood more fully from the detailed description given herebelow and from the accompanying drawings of the preferred embodiment of the invention, which, however, should not be taken to be limitative to the invention, but are for explanation and understanding only.

    [0037] In the drawings:

    Fig. 1 is a timing chart showing a timing control method at the time of timing modification according to the present invention;

    Fig. 2 is a timing chart showing the timing control method at the time of timing modification according to the present invention;

    Fig. 3 is a timing chart showing the timing control method at the time of communication start according to the present invention;

    Fig. 4 is a timing chart showing timing of user data transmission to each radio base station at the time of down frame reception in the method according to the present invention;

    Fig. 5 is a diagram for use in explaining an example of timing modification according to a change of the amount of transmission delay between a base station control device and one radio base station;

    Fig. 6 is a conceptual diagram showing a general relationship between a radio base station and a base station control device common to the system according to the present invention;

    Fig. 7 is a block diagram showing a timing control function (initial setting unit) of the base station control device;

    Fig. 8 is a block diagram showing a timing control function (data reception unit) of the base station control device;

    Fig. 9 is a flow chart showing an operation flow of the base station control device at the time of test request transmission.

    Fig. 10 is a flow chart showing an operation flow of the base station control device at the time of test response transmission;

    Fig. 11 is a flow chart showing an operation flow of the base station control device at the time of up data reception;

    Fig. 12 is a flow chart for use in explaining another mode of implementation of the present invention;

    Fig. 13 is a conceptual diagram showing a relationship among a base station control device, a radio base station and a terminal in a common mobile communication system;

    Fig. 14 is a timing chart showing a conventional timing control method at the time of communication start;

    Fig. 15 is a timing chart showing timing of user data transmission to each radio base station at the time of down frame reception in a conventional method;

    Fig. 16 is a timing chart showing a conventional timing control method at the time of timing modification; and

    Fig. 17 is a timing chart showing the conventional timing control method at the time of timing modification.


    DESCRIPTION OF THE PREFERRED EMBODIMENT



    [0038] The preferred embodiment of the present invention will be discussed hereinafter in detail with reference to the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be obvious, however, to those skilled in the art that the present invention may be practiced without these specific details. In other instance, well-known structures are not shown in detail in order to unnecessary obscure the present invention.

    [0039] In the following, detailed description will be made of a preferred mode of implementation of a mobile communication system, a base station control device and a radio base station forming the system, and a communication timing control method in the system according to the present invention.

    [0040] Fig. 3 is a timing chart showing a timing control method at the time of communication start according to the present invention.

    [0041] The base station control device 2 transmits test data to the respective radio base stations 3-1, 3-2 and 3-3.

    [0042] Upon receiving the test data, the radio base stations 3-1, 3-2 and 3-3 immediately return a response to the base station control device 2 with substantially no delay without conducting any processing.

    [0043] The base station control device 2 calculates the amount of transmission delay between the base station control device 2 and the radio base stations 3-1, 3-2 and 3-3 from a time cost from test data transmission until response reception.

    [0044] Upon completion of the calculation of the amount of transmission delay of each of all the radio base stations 3-1, 3-2 and 3-3, calculate a buffering time that the base station control device 2 has to have related to transmission data to the respective radio base stations 3-1, 3-2 and 3-3 such that user data reception time of each of all the radio base stations 3-1, 3-2 and 3-3 is the same.

    [0045] Fig. 4 is a timing chart showing timing of user data transmission to the respective radio base stations 3-1, 3-2 and 3-3 at the time of down frame reception in the method according to the present invention.

    [0046] Upon receiving user data, the base station control device 2 instantaneously transmits the user data to the radio base station 3-3 having the largest amount of transmission delay. In other words, for one radio base station 3-3, set a transmission data buffering time to be applied to each radio base station to be substantially zero or very short with the one radio base station 3-3 whose amount of transmission delay is the largest as a reference.

    [0047] Adjust a frame buffering time at each of the other radio base stations 3-2 and 3-1 with the above one radio base station 3-3 as a reference such that user data reception timing of all the radio base stations 3-1, 3-2 and 3-3 is the same and transmit the user data to the radio base stations 3-2 and 3-1 to which the data is yet to be sent. More specifically, calculate each value as a finite value based on a relative relationship with the above amount of transmission delay (maximum value) of the above one radio base station and regard the calculated value as a frame buffering time related to each radio base station. Qualitatively speaking with respect to the three radio base stations in the above-described example, a buffering time applied related to one radio base station 3-3 whose calculated amount of transmission delay is the largest will be the shortest (substantially 0), a buffering time applied related to the radio base station 3-1 whose calculated amount of transmission delay is the smallest will be the longest and a buffering time applied related to the radio base station 3-2 whose amount of transmission delay has an intermediate value between the two amounts will be an intermediate value between the two buffering times.

    [0048] Figs. 1 and 2 are timing charts showing the timing control method at the time of timing modification according to the present invention. Fig. 1 shows timing control in an up direction, while Fig. 2 shows timing control in a down direction.

    [0049] As is already described, timing should be modified when the amount of transmission delay between the base station control device 2 and the base stations 3-1, 3-2 and 3-3 changes due to hard handover or the like.

    [0050] Detect a change of the amount of transmission delay from a change of a difference in arrival timing of up user data from the respective radio base stations 3-1, 3-2 and 3-3. In the illustrated case (Fig. 1), a change of a difference is recognized between the amount of transmission delay related to the radio base station 3-1 and the amount of transmission delay related to the radio base station 3-2.

    [0051] Reflect the above-detected change of the amount of transmission delay on down user data transmission timing. More specifically, in the illustrated case (Fig. 2), adjust a buffering time of data to be sent to the radio base station 3-1 according to the above-described amount of change in difference with the radio base station 3-2 whose amount of delay is relatively large as a reference.

    [0052] Fig. 5 is a diagram for use in explaining an example where timing is modified according to a change of the amount of transmission delay between the base station control device 2 and one radio base station (3-1 in this case).

    [0053] First, at the time of communication start, the base station control device 2 transmits a test request for confirming the amount of transmission delay to all the radio base stations 3 (3-1, 3-2 and 3-3) to be used.

    [0054] Upon receiving the test request, each of the radio base stations 3-1, 3-2 and 3-3 immediately returns a test response to the base station control device 2 without conducting any processing.

    [0055] Upon receiving the response from each of the radio base stations 3-1, 3-2 and 3-3, the base station control device 2 calculates the amount of transmission delay from a time cost from the transmission of the test data until the reception of the response.

    [0056] Next, with the radio base station whose amount of transmission delay is the largest as a reference, calculate a buffering time from reception of down data until transmission to the radio base station to make the time of down data arrival at each radio station be the same. Assuming, for example, that the amount of transmission delay of the radio base station 3-1 is 4, that of the radio base station 3-2 is 5 and that of the radio base station 3-3 is 7, with the radio base station 3-3 whose amount of transmission delay is the largest as a reference, set a buffering time of the radio base station 3-3 to be zero (substantially zero or extremely short), that of the radio base station 3-2 to be 2 (i.e. 7 - 5 ) and that of the radio base station 3-1 to be 3 (i.e. 7 - 4 ) to absorb differences in transmission delays of the respective radio base stations 3-1, 3-2 and 3-3 by the buffering times.

    [0057] In other words, based on each of calculated amounts of transmission delays, with the above-described one radio base station whose amount of transmission delay is the largest as a reference, calculate a transmission data buffering time to be applied to each radio base station to be substantially zero or extremely short for the one radio base station and for each of the other radio base stations, calculate the time to be a finite value conforming to a relative relationship with the above-described amount of transmission delay of the above one radio base station.

    [0058] Since the difference in the amount of transmission delay is absorbed by a buffering time after the reception of down data, data reception time of each radio base station will be the same.

    [0059] In a case where the amount of transmission delay between the radio base station 3 and the base station control device 2 remains unchanged during communication, communication can be continued without changing a buffering time, while in a case where the amount of transmission delay changes due to handover or the like, a buffering time of the base station control device should be modified.

    [0060] Process of modifying a down data buffering time when the amount of transmission delay of the radio base station 3-1 changes (at the time of up data reception) is shown in Fig. 5. Since up data reception time <1> comes before the amount of transmission delay changes, the difference in the amount of transmission delay is the same as that at the time of communication start, so that the down data buffering time needs not to be changed.

    [0061] Since at the up data reception time <2>, the amount of transmission delay change to have the difference in the amount of transmission delay changing from that at the time of communication start, update the down data buffering time.

    [0062] Fig. 6 is a conception diagram showing a general relationship between a general radio base station and a base station control device common to the system according to the present invention. In the figure, most parts are common to those shown in Fig. 13 which have been already described. Illustrated is how up data (A) and down data (B) are transmitted and received between the radio base station and the base station control device.

    [0063] Figs. 7 and 8 are block diagrams showing a timing control function of the base station control device, with Fig. 7 being a functional block diagram of an initial setting unit 2A for use in calculating a down data buffering time at the time of communication start. At the time of starting communication, the base station control device preserves a test request transmission time in a transmission time storage unit 21 and at the same time transmits a test request to the radio base station by means of a test request transmission unit 22. As is already described, upon receiving the test request, the radio base station immediately transmits a test response. The initial setting unit 2A of the base station control device receives the test response at a test response reception unit 23 and at the same time preserves a test response reception time in a reception time storage unit 24. When reception of test responses from all the radio base stations is completed, based on the test request transmission time and the test response reception time of each radio base station, a down data buffering time calculation unit 25 calculates a buffering time of down transmission data to each radio base station. The calculation result is preserved in a down data buffering time storage unit 26. Upon receiving down data, the base station control device determines timing of transmission of the down data to each radio base station based on the buffering time preserved in the down data buffering time storage unit 26.

    [0064] Fig. 8 is a functional block diagram of a data reception unit 2B for use in updating a down data buffering time when receiving up data. Upon receiving up data from each radio base station, the base station control device preserves a data reception time in an up data reception time storage unit 27. When arrival of the data from all the radio base stations is completed, an up data reception time difference calculation unit 28 calculates a difference in time of receiving up data from each radio base station with the latest up data reception time as a reference time. When the difference calculation is completed, a down data buffering time comparison unit 29 compares the difference calculated this time and the down data buffering time preserved in the down data buffering time storage unit 26 which has been already described with reference to Fig. 7. When the compared results fail to coincide with each other, store the difference calculated this time in the down data buffering time storage unit 26.

    [0065] Fig. 9 is a flow chart showing an operation flow of the base station control device at the time of test request transmission. Fig. 10 is a flow chart showing an operation flow of the base station control device at the time of test response transmission. Fig. 11 is a flow chart showing an operation flow of the base station control device at the time of up data reception.

    [0066] As illustrated in the flow chart of Fig. 9, at the time of starting communication, the base station control device transmits a test request to each radio base station (Step 1) and preserves a transmission time (Step S2).

    [0067] As illustrated in the flow chart of Fig. 10, upon receiving a response from the radio base station (Step S11), the base station control device derives the amount of transmission delay between the radio base station and the base station control device from a time cost from the test request transmission until the test response reception (Step S12). Although the method of deriving the amount of transmission delay depends on a transmission medium and data processing characteristics of the radio base station, when the amount of up direction transmission delay and the amount of down direction transmission delay are equal, the amount of down direction transmission delay can be obtained by the following expression:



    [0068] When the amounts of up and down direction transmission delays differ from each other, derive the amounts of transmission delays by a calculation method according to their characteristics.

    [0069] When reception of the test responses from all the radio base stations is completed (Step S13), with a radio base station whose amount of transmission delay is the largest as a reference radio base station (Steps S14 and S15), calculate a down buffering time for each radio base station by the following expression (Step S16):



    [0070] According to the above-described expression, a down buffering time for the radio base station whose amount of transmission delay is the largest will be zero and a down buffering time for each of the other radio base stations will have a larger value as its amount of transmission delay becomes smaller. As a result, all the radio base stations simultaneously receive the down data.

    [0071] In addition, as illustrated in Fig. 11, after the communication starts, the base station control device recalculates a down data buffering time based on the time of arrival of up data from each radio base station.

    [0072] First, receive user data from the reference base station (Step S21) and when receiving up data from the radio base station, the base station control device preserves the reception time in an internal memory (Step S22). When the reception of the up data from all the radio base stations is completed (Step S23), with the radio base station which has transmitted data whose reception time is the latest as a reference radio base station (Steps S24 and S25), calculate a data reception time difference (Step S26):



    [0073] Compare the difference calculated by the above-described expression and a down data buffering time with respect to each of all the radio base stations (Step S27) and when they fail to coincide with each other, update the down data buffering time to be the difference calculated by the above expression (Step S28).

    [0074] According to the present invention described in the foregoing, the following effects can be obtained. Since conventional systems in advance define a time from data reception by a base station control device until data transmission by a radio base station and determine a buffering time of the base station control device based on the defined time, data should be buffered for a long period of time at the base station control device, while the present invention enables a data buffering time of the base station control device to be minimized by monitoring time of up data reception from each radio base station all the time. This mitigates a load of the base station control device to suppress an increase in the scale of the device, as well as enabling reduction in the amount of transmission delay in the system as a whole, thereby realizing high-speed and comfortable communication.

    [0075] Furthermore, in the conventional systems, the radio base station monitors a down data reception time and when the data is not received at an expected time, makes a request for down data transmission timing modification to the base station control device, thereby realizing timing control, while according to the present invention, the base station control device autonomously conducts down data timing control by using up data reception time, thereby simplifying timing control between the base station control device and the radio base station.

    [0076] Fig. 12 is a flow chart for use in explaining another mode of implementation of the present invention. Although in the above-described mode of implementation, timing modification can be conducted timely because up data is monitored all the time, while it is probable that a processing capacity of the base station control device will be reduced. As a method of avoiding such a probability, the method of, not monitoring up data all the time but monitoring the same in a fixed cycle is the mode of implementation shown in Fig. 12.

    [0077] Receive user data from the radio base station (Step S31) and upon receiving up data, the base station control device increments a delay amount confirmation counter (Step S32). Thereafter, compare the counter with a confirmation cycle (Step S33) and when they coincide with each other, recalculate a down data buffering time (Steps S34 to S38) to clear the delay amount confirmation counter (Step S39). When they fail to coincide with each other, conduct no processing.

    [0078] Since too short a confirmation cycle will cause reduction in a processing capacity of the base station control device and too long a confirmation cycle will delay detection of a change of the amount of transmission delay, it is preferable that an appropriate cycle is determined according to the system. On the other hand, in a system in which up data transmission is not periodically conducted to have a probability that no up data will be transmitted for a long period of time, test data for confirming the amount of transmission delay needs to be transmitted periodically in an up direction.

    [0079] According to the present invention, it is possible to provide a mobile communication system, a base station control device and a radio base station forming the system, and a communication timing control method in the system which enable an increase in load and scale of the base station control device to be suppressed, as well as enabling reduction in a user data transmission time in the system as a whole by reducing a data buffering time in the base station control device.


    Claims

    1. A mobile communication system in which user data from a core network is received by a base station control device (2), the received user data is transmitted from said base station control device (2) to a plurality of radio base stations (3) and the user data is sent out by radio from these plurality of radio base stations (3) to transmit said user data to a mobile terminal from the relevant radio base station (3), wherein
    said base station control device (2) is structured to : at the time of communication start, transmit test data to each said radio base station (3) ; receive, from each radio base station (3), a response signal related to the transmitted test data, based on time of said transmission and time of reception of each response from each said radio base station (3) ; calculate the amount of transmission delay corresponding to a data transmission time between its own device and each radio base station (3) in question and based on each calculated amount of transmission delay, with one radio base station (3) whose said amount of transmission delay is the largest as a reference, calculate a transmission data buffering time to be applied to each radio base station (3) to be zero, substantially zero or extremely short for the one radio base station (3) in question, so that the base station control device instantaneously transmits the user data to said one radio base station, and to be a finite value conforming to a relative relationship with said amount of transmission delay of said one radio base station (3) for each of the other radio base stations (3) ; at the time of transmitting down data supplied from said core network, transmit the data to each corresponding radio base station (3) with each said calculated buffering time applied, and at the time of receiving up data from each said radio base station (3), based on a change of a difference in time of data reception from each radio base station (3), adjust a buffering time to be applied; and
    each said radio base station (3) is structured to, at the time of communication start, upon receiving the test data from said base station control device (2), transmit the response signal to the base station control device (2) in question without delay.
     
    2. The mobile communication system as set forth in claim 1, wherein
    said base station control device (2) executes adjustment of a buffering time all the time which is conducted based on a change of a difference in time of data reception from each radio base station (3) when receiving up data from each said radio base station (3).
     
    3. The mobile communication system as set forth in claim 1, wherein
    said base station control device (2) executes adjustment of a buffering time in a fixed cycle which is conducted based on a change of a difference in time of data reception from each radio base station (3) when receiving up data from each said radio base station (3).
     
    4. A base station control device (2) forming a mobile communication system designed such that user data from a core network is received by the base station control device (2), the received user data is transmitted from said base station control device (2) to a plurality of radio base stations (3) and the user data is sent out by radio from these plurality of radio base stations (3) to transmit said user data to a mobile terminal from the relevant radio base station (3), which is structured to:

    at the time of communication start, transmit test data to each said radio base station (3) ; receive, from each radio base station (3), a response signal related to the transmitted test data; based on time of said transmission and time of reception of each response from each said radio base station (3), calculate the amount of transmission delay corresponding to a data transmission time between its own device and each radio base station (3) in question and based on each calculated amount of transmission delay, with one radio base station (3) whose said amount of transmission delay is the largest as a reference, calculate a transmission data buffering time to be applied to each radio base station (3) to be zero, substantially zero or extremely short for the one radio base station (3) in question, so that the base station control device instantaneously transmits the user data to said one radio base station, and to be a finite value conforming to a relative relationship with said amount of transmission delay of said one radio base station (3) for each of the other radio base stations (3) ; at the time of transmitting down data supplied from said core network, transmit the data to each corresponding radio base station (3) with each said calculated buffering time applied; and at the time of receiving up data from each said radio base station (3), based on a change of a difference in time of data reception from each radio base station (3), adjust a buffering time to be applied.


     
    5. The base station control device (2) as set forth in claim 4, which executes
    adjustment of a buffering time all the time which is conducted based on a change of a difference in time of data reception from each radio base station (3) when receiving up data from each said radio base station (3).
     
    6. The base station control device (2) as set forth in claim 4, which executes
    adjustment of a buffering time in a fixed cycle which is conducted based on a change of a difference in time of data reception from each radio base station (3) when receiving up data from each said radio base station (3).
     
    7. A communication timing control method in a mobile communication system structured such that user data from a core network is received by a base station control device (2), the received user data is transmitted from said base station control device (2) to a plurality of radio base stations (3) and the user data is sent out by radio from these plurality of radio base stations (3) to transmit said user data to a mobile terminal from the relevant radio base station (3), comprising the steps of:

    in said base station control device (2), at the time of communication start, transmitting test data to each said radio base station (3),

    in each said radio base station (3), upon receiving said test data, transmitting a response signal to said base station control device (2) without delay,

    in said base station control device (2), receiving the response signal from each said radio base station (3),

    in said base station control device (2), based on time of said transmission and time of reception of each response from each said radio base station (3), calculating the amount of transmission delay corresponding to a data transmission time between its own device and each radio base station (3) in question,

    in said base station control device (2), based on each calculated amount of transmission delay, with one radio base station (3) whose said amount of transmission delay is the largest as a reference, calculating a transmission data buffering time to be applied to each radio base station (3) to be zero, substantially zero or extremely short for the one radio base station (3) in question, so that the base station control device instantaneously transmits the user data to said one radio base station, and to be a finite value conforming to a relative relationship with said amount of transmission delay of said one radio base station (3) for each of the other radio base stations (3),

    in said base station control device (2), at the time of transmitting down data supplied from said core network, transmitting the data to each corresponding radio base station (3) with each said calculated buffering time applied, and

    in said base station control device (2), at the time of receiving up data from each said radio base station (3), based on a change of a difference in time of data reception from each radio base station (3), adjusting a buffering time to be applied.


     
    8. The communication timing control method as set forth in claim 7, wherein
    in said base station control device (2), when receiving up data from each said radio base station (3), the step of adjusting a buffering time to be applied based on a change of a difference in time of data reception from each radio base station (3) is executed all the time.
     
    9. The communication timing control method as set forth in claim 7, wherein
    in said base station control device (2), when receiving up data from each said radio base station (3), the step of adjusting a buffering time to be applied based on a change of a difference in time of data reception from each radio base station (3) is executed in a fixed cycle.
     


    Ansprüche

    1. Mobilkommunikationssystem, in dem eine Basisstationssteuervorrichtung (2) Benutzerdaten aus einem Kernnetzwerk empfängt, wobei die empfangenen Benutzerdaten von der genannten Basisstationssteuervorrichtung (2) an eine Vielzal von Funkbasisstationen (3) übertragen werden und die Benutzerdaten per Funk von dieser Vielzahl von Funkbasisstationen (3) ausgesendet werden, um die genannten Benutzerdaten von der relevanten Funkbasisstation (3) an ein Mobil-Endgerät zu übertragen, wobei
    die genannte Basisstationssteuervorrichtung (2) aufgebaut ist zum: Übertragen von Testdaten an jede genannte Funkbasisstation (3) zur Zeit des Kommunikationsbeginns; Empfangen eines Antwortsignals von jeder Funkbasisstation (3) in Bezug auf die übertragenen Testdaten auf der Basis der Zeit der genannten Übertragung und der Zeit des Empfangs jeder Antwort von jeder genannten Funkbasisstation (3); Berechnen des Übertragungsverzögerungsbetrags, der einer Datenübertragungszeit zwischen ihrer eigenen Vorrichtung und jeder betreffenden Funkbasisstation (3) entspricht, und Berechnen, auf der Basis jedes berechneten Übertragungsverzögerungsbetrags mit einer Funkbasisstation (3), deren genannter Übertragungsverzögerungsbetrag der größte ist, als Referenz, einer Übertragungsdaten-Zwischenspeicherzeit, die auf jede Funkbasisstation (3) anzuwenden ist, um für die eine betreffende Funkbasisstation (3) null, im Wesentlichen null oder extrem kurz zu sein, so dass die Basisstationssteuervorrichtung die Benutzerdaten unverzögert an die genannte eine Funkbasisstation überträgt, und um ein endlicher Wert zu sein, der einer relativen Beziehung mit dem genannten Übertragungsverzögerungsbetrag der genannten einen Funkbasisstation (3) für jede der anderen Funkbasisstationen (3) entspricht; zur Zeit des Übertragens von von dem genannten Kernnetzwerk gelieferten Abwärtsdaten Übertragen der Daten zu jeder entsprechenden Funkbasisstation (3), wobei jede genannte berechnete Zwischenspeicherzeit angewendet wird; und zur Zeit des Empfangens von Aufwärtsdaten von jeder genannten Funkbasisstation (3) Einstellen einer anzuwendenden Zwischenspeicherzeit auf der Basis einer Änderung einer Zeitdifferenz des Datenempfangs von jeder Funkbasisstation (3); und
    jede genannte Funkbasisstation (3) aufgebaut ist zum verzögerungsfreien Übertragen des Antwortsignals an die betreffende Basisstationssteuervorrichtung (2) zur Zeit des Kommunikationsbeginns bei Empfang der Testdaten von der genannten Basisstationssteuervorrichtung (2).
     
    2. Mobilkommunikationssystem nach Anspruch 1, wobei
    die genannte Basisstationssteuervorrichtung (2) die Einstellung einer Zwischenspeicherzeit die ganze Zeit ausführt, die auf der Basis einer Änderung eines Zeitunterschieds des Datenempfangs von jeder Funkbasisstation (3) durchgeführt wird, wenn von jeder genannten Funkbasisstation (3) Aufwärtsdaten empfangen werden.
     
    3. Mobilkommunikationssystem nach Anspruch 1, wobei
    die genannte Basisstationssteuervorrichtung (2) eine Einstellung einer Zwischenspeicherzeit in einem festen Zyklus ausführt, die auf der Basis einer Änderung eines Zeitunterschieds des Datenempfangs von jeder Funkbasisstation (3) durchgeführt wird, wenn von jeder genannten Funkbasisstation (3) Aufwärtsdaten empfangen werden.
     
    4. Basisstationssteuervorrichtung (2), die ein Mobilkommunikationssystem bildet, das so ausgelegt ist, dass die Basisstationssteuervorrichtung (2) Benutzerdaten von einem Kernnetzwerk empfängt, die empfangenen Benutzerdaten von der genannten Basisstationssteuervorrichtung (2) zu einer Vielzahl von Funkbasisstationen (3) übertragen werden und die Benutzerdaten per Funk von dieser Vielzahl von Funkbasisstationen (3) ausgesendet werden, um die genannten Benutzerdaten von der relevanten Funkbasisstation (3) an ein Mobil-Endgerät zu übertragen, die aufgebaut ist zum:

    Übertragen von Testdaten an jede genannte Funkbasisstation (3) zur Zeit des Kommunikationsbeginns; Empfangen von jeder Funkbasisstation (3) eines Antwortsignals in Bezug auf die übertragenen Testdaten; Berechnen auf der Basis der Zeit der genannten Übertragung und der Zeit des Empfangs jeder Antwort von jeder genannten Funkbasisstation (3) des Übertragungsverzögerungsbetrags, der einer Datenübertragungszeit zwischen ihrer eigenen Vorrichtung und jeder betreffenden Funkbasisstation (3) entspricht, und Berechnen, auf der Basis jedes berechneten Übertragungsverzögerungsbetrags mit einer Funkbasisstation (3), deren genannter Übertragungsverzögerungsbetrag der größte ist, als Referenz, einer Übertragungsdaten-Zwischenspeicherzeit, die auf jede Funkbasisstation (3) anzuwenden ist, um für die eine betreffende Funkbasisstation (3) null, im Wesentlichen null oder extrem kurz zu sein, so dass die Basisstationssteuervorrichtung die Benutzerdaten unverzögert zu der genannten einen Funkbasisstation überträgt, und um ein endlicher Wert zu sein, der einer relativen Beziehung mit dem genannten Übertragungsverzögerungsbetrag der genannten einen Funkbasisstation (3) für jede der anderen Funkbasisstationen (3) entspricht; zur Zeit der Übertragung von von dem genannten Kernnetzwerk gelieferten Abwärtsdaten Übertragen der Daten zu jeder entsprechenden Funkbasisstation (3), wobei jede genannte berechnete Zwischenspeicherzeit angewendet wird; und zur Zeit des Empfangens von Aufwärtsdaten von jeder genannten Funkbasisstation (3) Einstellen einer anzuwendenden Zwischenspeicherzeit auf der Basis einer Änderung einer Zeitdifferenz des Datenempfangs von jeder Funkbasisstation (3).


     
    5. Basisstationssteuervorrichtung (2) nach Anspruch 4, die eine Einstellung einer Zwischenspeicherzeit die ganze Zeit ausführt, die auf der Basis einer Änderung einer Zeitdifferenz des Datenempfangs von jeder Funkbasisstation (3) durchgeführt wird, wenn von jeder genannten Funkbasisstation (3) Aufwärtsdaten empfangen werden.
     
    6. Basisstationssteuervorrichtung (2) nach Anspruch 4, die eine Einstellung einer Zwischenspeicherzeit in einem festen Zyklus ausführt, die auf der Basis einer Änderung eines Zeitunterschieds des Datenempfangs von jeder Funkbasisstation (3) durchgeführt wird, wenn von jeder genannten Funkbasisstation (3) Aufwärtsdaten empfangen werden.
     
    7. Verfahren zur Kommunikationszeitsteuerung in einem Mobilkommunikationssystem, das so aufgebaut ist, dass Benutzerdaten aus einem Kernnetzwerk von einer Basisstationssteuervorrichtung (2) empfangen werden, die empfangenen Benutzerdaten von der genannten Basisstationssteuervorrichtung (2) an eine Vielzahl von Funkbasisstationen (3) übertragen werden und die Benutzerdaten per Funk von dieser Vielzahl von Funkbasisstationen (3) ausgesendet werden, um die genannten Benutzerdaten von der relevanten Funkbasisstation (3) zu einem Mobil-Endgerät zu übertragen, umfassend die folgenden Schritte:

    in der genannten Basisstationssteuervorrichtung (2) Übertragen von Testdaten an jede genannte Funkbasisstation (3) zur Zeit des Kommunikationsbeginns,

    in jeder genannten Funkbasisstation (3) bei Empfang der genannten Testdaten verzögerungsfreies Übertragen eines Antwortsignals zu der genannten Basisstationssteuervorrichtung (2),

    in der genannten Basisstationssteuervorrichtung (2) Empfangen des Antwortsignals von jeder genannten Funkbasisstation (3),

    in der genannten Basisstationssteuervorrichtung (2) Berechnen auf der Basis der Zeit der genannten Übertragung und der Zeit des Empfangs jeder Antwort von jeder genannten Funkbasisstation (3) des Übertragungsverzögerungsbetrags, der einer Datenübertragungszeit zwischen ihrer eigenen Vorrichtung und jeder betreffenden Funkbasisstation (3) entspricht,

    in der genannten Basisstationssteuervorrichtung (2) Berechnen, auf der Basis jedes berechneten Übertragungsverzögerungsbetrags mit einer Funkbasisstation (3), deren genannter Übertragungsverzögerungsbetrag der größte ist, als Referenz, einer Übertragungsdaten-Zwischenspeicherzeit, die auf jede Funkbasisstation (3) anzuwenden ist, um für die eine betreffende Funkbasisstation (3) null, im Wesentlichen null oder extrem kurz zu sein, so dass die Basisstationssteuervorrichtung die Benutzerdaten unverzögert an die genannte eine Funkbasisstation überträgt, und um ein endlicher Wert zu sein, der einer relativen Beziehung mit dem genannten Übertragungsverzögerungsbetrag der genannten einen Funkbasisstation (3) für jede der anderen Funkbasisstationen (3) entspricht,

    in der genannten Basisstationssteuervorrichtung (2) zur Zeit der Übertragung von von dem genannten Kernnetzwerk gelieferten Abwärtsdaten Übertragen der Daten zu jeder entsprechenden Funkbasisstation (3), wobei jede genannte berechnete Zwischenspeicherzeit angewendet wird, und

    in der genannten Basisstationssteuervorrichtung (2) zur Zeit des Empfangens von Aufwärtsdaten von jeder genannten Funkbasisstation (3) Einstellen einer anzuwendenden Zwischenspeicherzeit auf der Basis einer Änderung einer Zeitdifferenz des Datenempfangs von jeder Funkbasisstation (3).


     
    8. Verfahren zur Kommunikationszeitsteuerung nach Anspruch 7, wobei
    in der genannten Basisstationssteuervorrichtung (2) bei Empfang von Aufwärtsdaten von jeder genannten Funkbasisstation (3) der Schritt des Einstellens einer anzuwendenden Zwischenspeicherzeit auf der Basis einer Änderung eines Zeitunterschieds des Datenempfangs von jeder Funkbasisstation (3) die ganze Zeit ausführt wird.
     
    9. Mobilkommunikationssystem nach Anspruch 7, wobei
    in der genannten Basisstationssteuervorrichtung (2) bei Empfang von Aufwärtsdaten von jeder genannten Funkbasisstation (3) der Schritt des Einstellens einer anzuwendenden Zwischenspeicherzeit auf der Basis einer Änderung eines Zeitunterschieds des Datenempfangs von jeder Funkbasisstation (3) in einem festen Zyklus ausgeführt wird.
     


    Revendications

    1. Système de communication mobile dans lequel des données d'utilisateur provenant d'un réseau coeur sont reçues par un dispositif de commande de stations de base (2), les données d'utilisateur reçues sont transmises par ledit dispositif de commande de stations de base (2) à une pluralité de stations radio de base (3) et les données d'utilisateur sont envoyées par radio depuis ces pluralités de stations radio de base (3) pour transmettre lesdites données d'utilisateur à un terminal mobile depuis la station radio de base pertinente (3), dans lequel
    ledit dispositif de commande de stations de base (2) est structuré pour ; au début d'une communication, transmettre des données de test à chaque dite station radio de base (3) ; recevoir, depuis chaque station radio de base (3), un signal de réponse lié aux données de test transmises, en fonction du temps de ladite transmission et du temps de réception de chaque réponse depuis chaque station radio de base (3) ; calculer la quantité de retard de transmission correspondant à un temps de transmission de données entre son propre dispositif et chaque station radio de base (3) en question et en fonction de chaque quantité calculée de retard de transmission, une station radio de base (3) dont ladite quantité de retard de transmission est la plus grande étant utilisée comme référence, calculer un temps de tamponnage des données de transmission à appliquer à chaque station radio de base (3) pour qu'il soit nul, sensiblement nul ou extrêmement court pour la une station radio de base (3) en question, de telle sorte que le dispositif de commande de stations de base transmette Instantanément les données d'utilisateur à ladite une station radio de base, et soit une valeur finie conformé à une relation relative à ladite quantité de retard de transmission de ladite une station radio de base (3) pour chacune des autres stations radio de base (3) ; au moment de la transmission en aval des données fournies par ledit réseau coeur, transmettre les données à chaque station radio de base correspondante (3), chaque dit temps de tamponnage calculé étant appliqué, et au moment de la réception en amont des données depuis chaque dite station radio de base (3), en fonction d'un changement d'une différence de temps de réception des données depuis chaque station radio de base (3), régler un temps de tamponnage à appliquer; et
    chaque dite station radio de base (3) est structurée pour, au début de la communication, à la réception des données de test depuis ledit dispositif de commande de stations de base (2), transmettre le signal de réponse au dispositif de commande de stations de base (2) en question sans retard.
     
    2. Système de communication mobile selon la revendication 1, dans lequel
    ledit dispositif de commande de stations de base (2) exécute en permanence un réglage d'un temps de tamponnage qui est effectuée en fonction d'un changement d'une différence de temps de réception de données depuis chaque station radio de base (3) à la réception en amont de données depuis chaque dite station radio de base (3).
     
    3. Système de communication mobile selon la revendication 1, dans lequel
    ledit dispositif de commande de stations de base (2) exécute selon un cycle fixe un réglage d'un temps de tamponnage qui est effectué en fonction d'un changement d'une différence de temps de réception de données depuis chaque station radio de base (3) à la réception en amont de données depuis chaque dite station radio de base (3).
     
    4. Dispositif de commande de stations de base (2) formant un système de communication mobile conçu de telle sorte que des données d'utilisateur provenant d'un réseau coeur soient reçues par le dispositif de commande de stations de base (2), les données d'utilisateur reçues sont transmises par ledit dispositif de commande de stations de base (2) à une pluralité de stations radio de base (3) et les données d'utilisateur sont envoyées par radio depuis ces pluralités de stations radio de base (3) pour transmettre lesdites données d'utilisateur à un terminal mobile depuis la station radio de base pertinente (3), lequel est structuré pour :

    au début d'une communication, transmettre des données de test à chaque dite station radio de base (3) ; recevoir, depuis chaque station radio de base (3), un signal de réponse lié aux données de test transmises ; en fonction du temps de ladite transmission et du temps de réception de chaque réponse depuis chaque dite station radio de base (3), calculer la quantité de retard de transmission correspondant à un temps de transmission de données entre son propre dispositif et chaque station radio de base (3) en question et en fonction de chaque quantité calculée de retard de transmission, une station radio de base (3) dont ladite quantité de retard de transmission est la plus grande étant utilisée comme référence, calculer un temps de tamponnage des données de transmission à appliquer à chaque station radio de base (3) pour qu'il soit nul, sensiblement nul ou extrêmement court pour la une station radio de base (3) en question, de telle sorte que le dispositif de commande de stations de base transmette instantanément les données d'utilisateur à ladite une station radio de base, et soit une valeur finie conforme à une relation relative à ladite quantité de retard de transmission de ladite une station radio de base (3) pour chacune des autres stations radio de base (3) ; au moment de la transmission en aval des données fournies par ledit réseau coeur, transmettre les données à chaque station radio de base (3) correspondante, chaque dit temps de tamponnage calculé étant appliqué, et au moment de la réception en amont des données depuis chaque dite station radio de base (3), en fonction d'un changement d'une différence de temps de réception des données depuis chaque station radio de base (3), régler un temps de tamponnage à appliquer.


     
    5. Dispositif de commande de stations de base (2) selon la revendication 4, lequel exécute
    en permanence un réglage d'un temps de tamponnage qui est effectué en fonction d'un changement d'une différence de temps de réception de données depuis chaque station radio de base (3) à la réception en amont de données depuis chaque dite station radio de base (3).
     
    6. Dispositif de commande de stations de base (2) selon la revendication 4 , lequel exécute
    selon un cycle fixe un réglage d'un temps de tamponnage qui est effectué en fonction d'un changement d'une différence de temps de réception de données depuis chaque station radio de base (3) à la réception en amont de données depuis chaque dite station radio de base (3).
     
    7. Procédé de commande de cadencement de communication dans un système de communication mobile structuré de telle sorte que des données d'utilisateur depuis un réseau coeur soit reçues par un dispositif de commande de stations de base (2), les données d'utilisateur reçues soient transmises par ledit dispositif de commande de stations de base (2) à une pluralité de stations radio de base (3) et les données d'utilisateur soient envoyées par radio depuis ces pluralités de stations radio de base (3) pour transmettre lesdites données d'utilisateur à un terminal mobile depuis la station radio de base pertinente (3), comprenant les étapes consistant à
    dans ledit dispositif de commande de stations de base (2), au début d'une communication, transmettre des données de test à chaque dite station radio de base (3),
    dans chaque dite station radio de base (3), à la réception desdites données de test, transmettre un signal de réponse audit dispositif de commande de stations de base (2) sans retard;
    dans ledit dispositif de commande de stations de base (2), recevoir le signal de réponse depuis chaque dite station radio de base (3),
    dans ledit dispositif de commande de stations de base (2), en fonction du temps de la transmission et du temps de réception de chaque réponse depuis chaque dite station radio de base (3), calculer la quantité de retard de transmission correspondant à un temps de transmission de données entre son propre dispositif et chaque station radio de base (3) en question,
    dans ledit dispositif de commande de stations de base (2), en fonction de chaque quantité calculée de retard de transmission, une station radio de base (3) dont ladite quantité de retard de transmission est la plus grande étant utilisée comme référence, calculer un temps de tamponnage des données de transmission à appliquer à chaque station radio de base (3) pour qu'il soit nul, sensiblement nul ou extrêmement court pour la une station radio de base (3) en question, de telle sorte que le dispositif de commande de stations de base transmette instantanément les données d'utilisateur à ladite une station radio de base, et soit une valeur finie conforme à une relation relative à ladite quantité de retard de transmission de ladite une station radio de base (3) pour chacune des autres stations radio de base (3),
    dans ledit dispositif de commande de stations de base (2), au moment de la transmission en aval de données fournies par ledit réseau coeur, transmettre les données à chaque station radio de base correspondante (3), chaque dit temps de tamponnage calculé étant appliqué, et
    dans ledit dispositif de commande de stations de base (2), au moment de la réception en amont des données depuis chaque dite station radio de base (3), en fonction d'un changement d'une différence de temps de réception des données depuis chaque station radio de base (3), régler un temps de tamponnage à appliquer.
     
    8. Procédé de commande de cadencement de communication selon la revendication 7, dans lequel
    dans ledit dispositif de commande de stations de base (2), à la réception en amont de données depuis chaque dit station radio de base (3), l'étape de réglage d'un temps de tamponnage à appliquer en fonction d'un changement d'une différence de temps de réception de données depuis chaque station radio de base (3) est exécutée en permanence.
     
    9. Procédé de commande de cadencement de communication selon la revendication 7, dans lequel
    dans ledit dispositif de commande de stations de base (2), à la réception en amont de données depuis chaque dit station radio de base (3), l'étape de réglage d'un temps de tamponnage à appliquer en fonction d'un changement d'une différence de temps de réception de données depuis chaque station radio de base (3) est exécutée selon un cycle fixe.
     




    Drawing






















































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description