(19)
(11)EP 1 199 930 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
19.03.2014 Bulletin 2014/12

(21)Application number: 00930237.3

(22)Date of filing:  01.05.2000
(51)International Patent Classification (IPC): 
A01N 49/00(2006.01)
A01N 31/02(2006.01)
(86)International application number:
PCT/US2000/011631
(87)International publication number:
WO 2000/067570 (16.11.2000 Gazette  2000/46)

(54)

METHOD, APPARATUS AND COMPOSITIONS FOR INHIBITING THE HUMAN SCENT TRACKING ABILITY OF MOSQUITOES IN ENVIRONMENTALLY DEFINED THREE DIMENSIONAL SPACES

VERFAHREN, VORRICHTUNG UND ZUSAMMENSETZUNGEN ZUR VERHINDERUNG DER VERFOLGUNGSFÄHIGKEIT DES MENSCHLICHEN DUFTES DURCH MÜCKEN IN DREIDIMENSIONALEN UMWELTLICH DEFINIERTEN RÄUMEN

PROCEDE, DISPOSITIF ET COMPOSITIONS DESTINES A INHIBER LA CAPACITE DES MOUSTIQUES DE DETECTER L'ODEUR HUMAINE, DANS DES ESPACES TRIDIMENSIONNELS DEFINIS DE MANIERE ENVIRONNEMENTALE


(84)Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(30)Priority: 10.05.1999 US 307907

(43)Date of publication of application:
02.05.2002 Bulletin 2002/18

(73)Proprietors:
  • BioSensory, Inc.
    Putnam, CT 06260 (US)
  • THE UNITED STATES OF AMERICA as represented by THE SECRETARY OF AGRICULTURE
    Washington, DC 20250 (US)

(72)Inventors:
  • NOLEN, James, A.
    West Greenwich, RI 02817-2100 (US)
  • BEDOUKIAN, Robert, H.
    West Redding, CT 06896 (US)
  • MALONEY, Robert, E.
    Bethel, CT 06801 (US)
  • KLINE, Daniel, L.
    Gainesville, FL 32653 (US)

(74)Representative: Vossius & Partner 
Siebertstrasse 4
81675 München
81675 München (DE)


(56)References cited: : 
WO-A-00/38512
US-A- 5 196 200
US-A- 5 721 274
GB-A- 1 201 716
US-A- 5 370 829
US-A- 5 799 436
  
  • DATABASE WPI Section Ch, Week 199809 Derwent Publications Ltd., London, GB; Class B04, AN 1998-087406 XP002272301 & AU 28382 97 A (NINETEENTH MAYBARB PTY LTD), 15 January 1998 (1998-01-15) -& CA 2 234 476 A 9 October 1999 (1999-10-09)
  • DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; D.J.BURTON: "Intrinsic mosquito repellency values of some chemical compounds" retrieved from STN-INTERNATIONAL Database accession no. 71:12038 CA XP002272293 & AMERICAN PERFUMER AND COSMETICS, vol. 84, no. 4, 1969, pages 41-42,
  • DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; retrieved from STN-INTERNATIONAL Database accession no. 123:3400 CA XP002272294 & JP 07 076502 A (MIKASA KAGAKU) 20 March 1995 (1995-03-20)
  • DATABASE WPI Section Ch, Week 199002 Derwent Publications Ltd., London, GB; Class A97, AN 1990-012944 XP002272302 & JP 01 294601 A (MIKASA KAGAKU KOGYO KK), 28 November 1989 (1989-11-28)
  • DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; J.B.CHOGO ET AL.: "Chemical composition and biological activity of the Tanzanian plant Ocimum suave" retrieved from STN-INTERNATIONAL Database accession no. 95:3406 CA XP002272295 & JOURNAL OF NATURAL PRODUCTS, vol. 44, no. 3, 1981, pages 308-311,
  • DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; B.M.MODAWI ET AL.: "Chemistry of the Sudanese plants. 4. Constituents of the essential oil of Ocimum basilicum var. thyrsiflorum" retrieved from STN-INTERNATIONAL Database accession no. 101:235366 CA XP002272296 & FITOTERAPIA, vol. 55, no. 1, 1984, pages 60-62,
  • DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; Y.S.HWANG ET AL.: "Isolation and identification of mosquito repellents in Artemisia vulgaris" retrieved from STN-INTERNATIONAL Database accession no. 103:175478 CA XP002272297 & JOURNAL OF CHEMICAL ECOLOGY, vol. 11, no. 9, 1985, pages 1297-1306,
  • DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; B.K.TYAGI ET AL.: "Evaluation and repellent activities of Cymbopogon essential oils against mosquito vectors of malaria, filariasis, and dengue fever in India" retrieved from STN-INTERNATIONAL Database accession no. 130:7329 CA XP002272298 & PHYTOMEDICINE, vol. 5, no. 4, 1998, pages 324-329,
  • DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; W.THORSELL ET AL.: "Efficacy of plant extracts and oils as mosquito repellents" retrieved from STN-INTERNATIONAL Database accession no. 130:11538 CA XP002272299 & PHYTOMEDICINE, vol. 5, no. 4, 1998, pages 311-323,
  • DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; K.P.SVOBODA ET AL.: "Biomass production, essential oil yield and composition of Myrica gale L. harvested from wild populations in Scotland and Finland" retrieved from STN-INTERNATIONAL Database accession no. 130:279250 CA XP002272300 & FLAVOUR AND FRAGRANCE JOURNAL, vol. 13, no. 6, 1998, pages 367-372,
  • PATENT ABSTRACTS OF JAPAN vol. 0175, no. 77 (C-1122), 20 October 1993 (1993-10-20) & JP 05 170601 A (OZAWA YOHEI), 9 July 1993 (1993-07-09)
  • DATABASE CAPLUS [Online] BURTON D.J.: 'Intrinsic mosquito repellency values of some chemical compounds', XP002937585 Database accession no. 1969:412038 & AMER. PERFUM. COSMET. vol. 84, no. 4, 1969, pages 41 - 42, 44
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the Invention



[0001] This invention relates to a method, apparatus and compositions for inhibiting the ability of mosquitoes to locate or track a human body by scent detection. More particularly, the invention relates to the use of certain compounds in compositions and apparatus to inhibit mosquitoes' ability to detect humans by scent detection.

Background



[0002] Compounds, compositions and formulations for protecting human beings from being bitten by mosquitoes are known in the art. Generally, these compounds, compositions and formulations are based on their ability to persist on the skin of the person upon topical or surface application for a time sufficient to repel mosquitoes. Numerous adjuvant materials have been added to mosquito repellents to increase the persistence of the repellents to the skin of a person. However, despite the various attempts to improve the repelling activity of the known mosquito repellents, these attempts have generally not been successful, as almost anyone who has used such mosquito repellents can attest.

[0003] Thus, the art has been searching for new and more effective repellents against mosquitoes. However, the search for more effective mosquito repellents has not generally been met with success since most mosquito repellents have been found only to possess a limited degree of repellency and are generally not particularly effective. There is, therefore, a need for more effective means to deter mosquitoes from locating and biting humans and other targets such as livestock. Moreover, this need has recently become more acute and urgent because mosquitoes have been discovered to be carriers of significant diseases that can be passed on to a target by the mosquitoes biting the target. A further need is to be able to reduce the use of environmentally unfriendly pesticides.

[0004] CA2234476 discloses that Leptospermum liversidgei or its essential oils block the CO2-message to mosquitoes. D.J. Burton (AMERICAN PERFUMER AND COSMETICS, 84 (4), 1969, 41-42) discloses tests about repelling mosquitoes from a humid/warm air stream by inter alia linalool.

Summary of the Invention



[0005] The inventors have discovered that compounds, compositions and formulations heretofore proposed as repellents for mosquitoes have lacked the necessary efficacy due to the ability of mosquitoes to locate and be drawn to the targets by olfactory emissions of the target. Thus, if a mosquito enters a zone or space where a potential target is located, the mosquito can be attracted to the target by olfactory emissions of the target and, this olfactory attraction is sufficient to overcome any repellency activity of the repellent compound, composition or formulation applied on the target. Therefore, the present invention provides compositions and formulations containing compounds usable in methods and apparatus for inhibiting the olfactory target tracking abilities of mosquitoes when an effective amount of the inhibiting compound(s) is/are dispersed in a three dimensional atmospheric space.

[0006] According to this invention, the ability of mosquitoes to locate a target is inhibited by dispensing into a spatial area an inhibiting effective amount of at least one inhibiting compound selected from the group consisting of 3-methyl-1-alken-3-ols of the formula:

and 3-methyl-1-alkyn-3-ols of the formula:

wherein R1 and R2 are each independently a saturated or unsaturated aliphatic hydrocarbon group containing from 1 to about 12 carbon atoms,
wherein the inhibiting effective amount ranges from 0.000054 g/hr/m2 (0.000005 g/hr/ft2) to 0.043 g/hr/m2 (0.004 g/hr/ft2) based on the square footage of the land or base surface area of the environmental space, wherein the target is a human or livestock.

[0007] The inhibiting compound can be dispensed into the three dimensional atmospheric space by any suitable means sufficient to provide an inhibiting effective amount of the inhibiting compound(s). Such dispensing means includes, for example, evaporation, atomization and ionic dispersion of the inhibiting compound from any suitable composition or formulation. Such composition or formulation will generally comprise a base vehicle containing at least one of the inhibiting compounds.

Detailed Summary of the Invention



[0008] The inventors have discovered that if an effective amount of at least one inhibiting compound selected from the group consisting of 3-methyl-1-alken-3-ols of the formula:

and 3-methyl-1-alkyn-3-ols of the formula:

wherein R1 and R2 are each independently a saturated or unsaturated aliphatic hydrocarbon group containing from 1 to about 12 carbon atoms is dispensed into the atmosphere of a three dimensional environmental space, wherein the inhibiting effective amount ranges from 0.000054 g/hr/m2 (0.000005 g/hr/ft2) to 0.043 g/hr/m2 (0.004 g/hr/ft2) based on the square footage of the land or base surface area of the environmental space, the ability of mosquitoes to locate and track a target; which is a human or livestock, by the target's olfactory emissions is inhibited.

[0009] Any suitable 3-methyl-1-alken-3-ols or 3-methyl-1-alkyn-3-ols of the formulas may be employed in the method, compositions and apparatus of this invention. Especially suitable inhibiting compounds are nerolidol, 3-methyl-l-octen-3-ol, linalool and dehydrolinalool. Depending on the particular mosquito species, either the 3-methyl-1-alkyn-3-ols or the 3-methyl-1-alken-3-ols are better inhibitors than the other class of components and will be preferred for that species of mosquito. The inhibiting compounds may be utilized singly or as mixtures of two or more of such compounds.

[0010] Any suitable inhibiting effective amount of the inhibiting compound(s) may be employed. Such inhibiting effective amounts can include amounts, based on the square footage of land or base surface area of the environmental area to be treated, within the range of from 0.000054 g/hr/m2 (0.000005 g/hr/ft2) to 0.043 g/hr/m2 (0.004 g/hr/ft2), preferably amounts within the range of from 0.0016 g/hr/m2 (0.00015 g/hr/ft2) to 0.0022 g/hr/m2 (0.0002 g/hr/ft2), and especially an amount of about 0.0017 g/h/m2 (0.00016 g/hr/ft2).

[0011] The inhibiting compounds for use in this invention may be provided in an essentially pure form of the inhibiting compounds or as a component of a natural essential oil having a concentration of an inhibiting compound sufficient to make it practical and feasible to dispense an inhibiting effective amount of inhibiting compound. Generally, the essential oil will contain a concentration of the inhibiting compound of at least about 2%, preferably at least about 5%, and especially at least about 50% by weight. For example, the inhibiting compound can be provided as a synthetically produced, essentially pure compound or as a component of an essential oil such as basil oil, ho wood oil and the like.

[0012] The inhibiting compounds of this invention, or essential oils containing such inhibiting compounds, may be employed in any formulation suitable for dispensing inhibiting effective amounts of the compounds. The compounds will generally be employed in formulations comprising a suitable vehicle containing the inhibiting compounds. For example, the inhibiting compound can be formulated in a specially formulated wax-like medium or vehicle engineered to release desired amounts of vaporous inhibiting compound at ambient temperatures, such as those mediums or vehicles available from Koster Keunen of Watertown, Connecticut. An example of such a wax-like medium available from Koster Keunen is known as Insect Repellent Wax Bar No. 9, which is a blend of waxes having the following general composition: fatty acids ranging in carbon chain length of from C16 to C22, fatty alcohols ranging in carbon chain length of from C16 to C22, paraffinic hydrocarbons ranging in carbon chain length of from C19 to C47. branched hydrocarbons ranging in carbon chain length of from C23 to C69, beeswax and other natural waxes such as candelilla and carnauba. The wax mixture will generally be formulated with concentrations of the inhibiting compounds of this invention ranging from about 20% to 60% and the formulation has a congealing point which may vary from about 75°C to about 45°C. Alternatively, the inhibiting compound can be formulated in a porous medium or vehicle suitable for releasing effective amounts of the inhibiting compound. An example of such porous medium or vehicle is a polyester membrane material having micropores encasing a block of inhibiting compound saturated fibers that gradually releases the inhibiting compound so that it permeates the microporous membrane and is released to the environment. Such porous membrane known as World of Fragrance™ cups is available from Waterbury Companies, Inc. of Waterbury, Connecticut.

[0013] The formulations can be placed in any suitable container or device for dispensing the inhibiting compound. For example, the formulations can be placed in a suitable fan-equipped device so that one can obtain, for example, fan-driven evaporation of the inhibiting compound from a porous medium or wax-like medium containing the inhibiting compound. As examples of such fan-equipped devices, there can be mentioned the devices disclosed in US Patent 5,370,829 of Waterbury Companies, Inc. and the apparatus disclosed in US Patent 5,799,436 of Biosensory insect Control Corporation, each of said patents being incorporated herein by reference thereto.

[0014] Another suitable means of dispensing the inhibiting compound is by atomization and/or ionic dispersion of the compound as suitable-sized, positively-charged droplets from a suitable atomization or ionic dispersing apparatus, such as the Ionic Wind™ device, available from Brandenburg, Ltd. of Brierery Hill, United Kingdom.

[0015] The inhibiting compounds of this invention are effective against mosquitoes, such as for example, Aedes taeniorhyncus (Black Salt Marsh mosquito), Culex nigripalpus, Aedes aegypti, Aedes albpictus (Asian Tiger mosquito), Culex pipiens (common house mosquito) and the like.

[0016] The use of this invention is illustrated by the following non-limited examples.

Example 1



[0017] A triple cage, dual-port olfactometer, illustrated and described in detail by Posey et al. J. Med. Entomol. 35(3), 330-334 (1998), was used to study the responses of 6 to 8 day old, laboratory-reared adult female Aedes aegypti mosquitoes. This system allows mosquitoes to choose between two different stimuli. The olfactometer is constructed of clear acrylic, comprises three test chambers in a tiered configuration, has paired removable sleeves, and mosquito traps on each chamber, and is equipped with a filtered external air supply system that allows precise temperature (+/- 0.5°C) and relative humidity (+/- 2%) control. Only one chamber at a time was used for the tests. Outside air was conditioned prior to entry through the choice ports, the mosquito trap, and the olfactometer by passing through a series of charcoal filters and then heated and humidified, if necessary.

[0018] One hour before initiation of tests, about 75 female Ae. aegypti mosquitoes were aspirated into the olfactometer chamber and allowed to acclimatize for that one hour before testing. Test compounds were placed into test ports upwind of the traps and olfactometer chamber. A completely randomized design was used for cage position.

[0019] Competitive tests were conducted. In these competitive tests, the inhibiting compound was placed into one of the ports (treatment port); the second port (check port) had the same apparatus but no chemical inhibiting compound. In these tests, inhibiting compounds were presented in glass Pyrex petri dishes (60 x 15 mm) that had been cleaned and sterilized in a vacuum oven and then handled only with gloves to minimize any chance of contamination and placed into one port (Treatment Port) along with another petri dish containing 500 µL of Clara Sludge (CS), a synthetic, human attractant. The other port (Check Port) contained an untreated petri with no inhibiting compound and a second petri dish containing 500 µL CS. Various concentrations (25, 100, 250, 500 and 1000 µL) of the compounds were used in these tests. Each test was conducted for a period of 3 minutes; the number of mosquitoes trapped in the baited ports, and those remaining in the cage, were counted. The data are then presented as a percentage of total mosquitoes in the cage that were attracted to each port and the percentage of mosquitoes remaining in the cage (i.e., not attracted to either port).

[0020] Results of the competitive tests are set forth in the following Table 1.
Table 1 Competitive Tests
 % Mosquitoes Entering 
Test Compound and AmountTreatment Port (Inhibitor Port)Control Port (Human Scent Port)% Mosquitoes Remaining in Cage
       
Dehydrolinalool 25 micro liter 30.23 50.77 19
Dehydrolinalool 100 micro liter 31.13 53.87 15
Dehydrolinalool 250 micro liter 22.6 44.6 32.8
Dehydrolinalool 500 micro liter 24.8 56.47 24.18
Dehydrolinalool 1000 micro liter 26.11 42.76 27.12
Linalool 25 micro liter 21.98 56.89 21.14
Linalool 100 micro liter 31.3 45.61 23.08
Linalool 250 micro liter 16.57 47.3 36.13
Linalool 500 micro liter 16.13 44.56 39.31
Linalool 1000 micro liter 27.24 44.14 31.3


[0021] For comparison purposes, 500 µL of the human scent (CS) was also placed alone in the Treatment Port, and with only an empty petri dish in the Check Port. The Treatment Port with the CS attracted 69 to 65% of the mosquitoes, with 30 to 35% of the mosquitoes remaining in the cage, and none being attracted to the Check Port with only the petri dish. At all tested concentration levels, linalool and dehydrolinalool are shown to greatly inhibit the ability of mosquitoes to locate the human scent (CS) as shown by the much lower percentage of mosquitoes captured in the Treatment Port compared to the Human Scent Port.

Example 2



[0022] Tests identical to that described in Example 1 were conducted with test compounds when employed together with the synthetic human attractant (CS) in a port. The test combinations were:
  1. (1) CS vs. CS (comparison)
  2. (2) dehydrolinalool + CS vs. CS
  3. (3) linalool + CS vs. CS


[0023] Also for comparison purposes, a known topical mosquito repellent, Deet, namely N,N-diethyl-3-methylbenzamide, was employed to compare to linalool and to dehydrolinalool. Each test compound was tested at 100, 250 and 500 µL. The results are presented in Tables 2, 3 and 4. The results are again presented as percent mosquitoes attracted to Ports 1 or 2 or not attracted to either port.
Table 2 (100 micro liter treatments)
 % Mosquitoes Entering 
Test Compound and AmountPort 1Port 2% Mosquitoes Remaining in Cage
1 Human scent vs. 2 human scent 50.5 44 5.5
1 Dehydrolinalool vs. 2 human scent 18.1 63 18.9
1 Linalool vs. 2 human scent 22.5 50.7 26.8
1 Deet vs. 2 dehydrolinalool 60.1 20.1 19.8
1 Deet vs. 2 linalool 56.3 17.5 26.2
Table 3 (250 micro liter treatments)
 % Mosquitoes Entering 
Test Compound and AmountPort 1Port 2% Mosquitoes Remaining in Cage
1 Human scent vs. 2 human scent 49.9 39.4 8.7
1 Dehydrolinalool vs. 2 human scent 20.1 59.2 20.6
1 Linalool vs. 2 human scent 14.9 56.8 28.4
1 Deet vs. 2 dehydrolinalool 48.8 22.5 29.2
1 Deet vs. 2 linalool 48.1 25.7 26.2
Table 4 (500 micro liter treatments)
 % Mosquitoes Entering 
Test Compound and AmountPort 1Port 2% Mosquitoes Remaining in Cage
1 Human scent vs. 2 human scent 47.3 46.8 5.9
1 Dehydrolinalool vs. 2 human scent 20.6 55.5 23.9
1 Linalool vs. 2 human scent 25.7 55.6 18.7
1 Deet vs. 2 dehydrolinalool 42.1 30.3 27.6
1 Deet vs. 2 linalool 49.5 23.1 27.3

Example 3



[0024] In a further test of the inhibiting ability of the compounds of this invention, the following field test was conducted using linalool as the inhibiting compound. The study was conducted on a site adjacent to a wooded wetland breeding area in Sarasota, Florida. A trap baited with 200 ml/min CO2, equivalent to the respiration of a 91 kg (200 lb) man, ran continuously each night as an experimental control. The trap collections were first used to count the mosquito population and were then examined to identify the species present. The mosquito population was about 91% Culex nigripalpus, the St. Louis encephalitis vector in Florida.

[0025] The experimental design was a 2 x 2 Latin Square. Tests were conducted in two open areas 24 meters (80 feet) apart labeled Locations 1 and 2. Each area was 2.4 meters x 2.4 meters (8 ft x 8 ft), i.e., 5.76 m2 (64 ft2). Wooden poles 1.38 meters (4.5 feet) high and having inhibiting compound dispensers thereon were driven into the ground at the corners of the square area. On alternate nights, one area was unprotected by inhibiting compound while the other area had inhibiting compound dispensed from the dispenser. In operation, the dispenser emitted linalool inhibitor having 95% active ingredient at a rate of 20 mg/hr to 40 mg/hr.

[0026] Landing counts were taken from the arms, legs and torso of a test subject known to be moderately attractive to mosquitoes who was seated in the center of the square area. At 15-minute intervals over a period of 2 to 3 hours during peak mosquito activity, the subject changed his position, alternating between Locations 1 and 2. If there was no activity for five minutes, the test subject walked around the inside perimeter of the square area in an attempt to draw attention to his presence. Mosquitoes were killed to prevent double counting.

[0027] The mosquitoes were observed to exhibit a behavior similar to swarming each evening around 6:45 to 7:00 PM. On some cue, they emerge en masse from the wooded wetland and fan out in a radial direction foraging for blood hosts. The period of peak activity is evidenced by a sharp increase in landing counts followed by a sharp decrease as the wave of outbound mosquitoes passes the test location. This behavior introduces two variables that must be taken into account. The first affects the experimental design and the second affects the interpretation of the results.

[0028] To be most accurate, an experimental trial must span a period before and after peak activity. Ending a trial at or near the time of peak activity, for example, will result in a larger landing count for the treatment used last, skewing the result. The starting time and duration of trials were adjusted to avoid distorting the landing counts.

[0029] It is also recognized that the landing counts represent both:
  1. 1. mosquitoes drawn to the human subject by his scent, and
  2. 2. mosquitoes that encounter the human subject because he is in their line of flight as they leave the water.


[0030] If the inhibitor impairs the mosquitoes' scent-tracking ability, it will affect the former but not the latter. This fact must be taken into account when interpreting the results.

[0031] The sites selected represent a worse case condition that is experienced only by those located adjacent to a breeding site and in the line of flight as the mosquitoes come off the water. For a measure of performance more typical of the average homeowner, a test was conducted from 7:00 AM to 9:00 AM in the morning when activity is not at its peak.

[0032] Linalool reduced the mosquito landing counts by an average of 53% over the three trials. The unprotected human subject experienced 286 landings compared to 135 landings when surrounded by linalool dispensed from the dispensers.

[0033] The range for individual trials is a reduction of landings by 36% to 68% during periods of peak activity and by 73% in the morning trial when mosquito activity was light.

[0034] These results indicate linalool's ability to reduce the landing counts of Culex nigripalpus on humans in open areas by inhibiting the mosquitoes' ability to track the human's olfactory emissions.


Claims

1. A method of inhibiting the ability of mosquitoes to sense a target by olfactory sensing of the target within a three dimensional environmental space having a land or base surface area, the method comprising dispensing into the atmosphere of the three dimensional environmental space an inhibiting effective amount of at least one inhibiting compound selected from the group consisting of 3-methyl-1-alken-3-ols of the formula:

and 3-methyl-1-alkyn-3-ols of the formula:

wherein R1 and R2 are each independently a saturated or unsaturated aliphatic hydrocarbon group containing from 1 to about 12 carbon atoms,
wherein the inhibiting effective amount ranges from 0.000054 g/hr/m2 (0.000005 g/hr/ft2) to 0.043 g/hr/m2 (0.004 g/hr/ft2) based on the square footage of the land or base surface area of the environmental space, wherein the target is a human or livestock.
 
2. The method according to Claim 1, wherein the inhibiting effective amount ranges from 0.000054 g/hr/m2 (0.000005 g/hr/ft2) to 0.0043 g/hr/m2 (0.0004 g/hr/ft2), preferably from 0.0016 g/hr/m2 (0.00015 g/hr/ft2) to 0.0022 g/hr/m2 (0.0002 g/hr/ft2) based on the square footage of the land or base surface area of the environmental space.
 
3. The method according to Claim 1 or 2, wherein the at least one inhibiting compound is selected from nerolidol, 3-methyl-1-octen-3-ol, linalool and dehydrolinalool.
 
4. The method according to Claim 3, wherein the at least one inhibiting compound comprises linalool.
 
5. The method according to Claim 3, wherein the at least one inhibiting compound comprises dehydrolinalool.
 
6. The method according to any of Claims 1 to 5, wherein the dispensing of the at least one inhibiting compound comprises dispensing by a method selected from volatilization, evaporation, atomization and ionic dispersion of the at least one inhibiting compound from a formulation comprising a vehicle containing the at least one inhibiting compound.
 
7. The method according to Claim 6, wherein the dispensing comprises fan-driven evaporation of the at least one inhibiting compound from a formulation in which the vehicle is a porous medium.
 
8. The method according to Claim 6, wherein the dispensing comprises fan-driven evaporation of the at least one inhibiting compound from a formulation in which the vehicle is a wax-like solution.
 
9. The method according to Claim 6, wherein the dispensing comprises atomization of the at least one inhibiting compound from the formulation.
 
10. The method according to Claim 6, wherein the dispensing comprises ionic dispersion of the at least one inhibiting compound from the formulation.
 
11. The method according to Claim 4, wherein the linalool is dispensed by fan-driven evaporation of linalool from a formulation of a porous medium containing linalool.
 
12. The method according to Claim 4, wherein the linalool is dispensed by fan-driven evaporation of linalool from a formulation of a wax-like solution containing linalool.
 
13. The method according to Claim 4, wherein the linalool is dispensed by atomization of linalool from a formulation of a vehicle and linalool.
 
14. The method according to Claim 4, wherein the linalool is dispersed by ionic dispersion of linalool from a formulation of a vehicle and linalool.
 
15. The method according to Claim 5, wherein the dehydrolinalool is dispensed by fan-driven evaporation of dehydrolinalool from a formulation of a porous medium containing dehydrolinalool.
 
16. The method according to Claim 5, wherein the dehydrolinalool is dispensed by fan-driven evaporation of dehydrolinalool from a formulation of a wax-like solution containing dehydrolinalool.
 
17. The method according to Claim 5, wherein the dehydrolinalool is dispensed by atomization of dehydrolinalool from a base composition.
 
18. The method according to Claim 5, wherein the dehydrolinalool is dispersed by ionic dispersion of dehydrolinalool from a formulation of a vehicle and dehydrolinalool.
 


Ansprüche

1. Ein Verfahren zum Hemmen der Fähigkeit von Mücken, ein Ziel durch olfaktorisches Wahrnehmen des Ziels in einem dreidimensional umgebenden Raum mit einem Land- oder Grundoberflächenbereich zu wittern, wobei das Verfahren Dispensieren einer hemmenden wirksamen Menge mindestens einer hemmenden Verbindung, ausgewählt aus der Gruppe bestehend aus 3-Methyl-1-alken-3-olen der Formel:

und 3-Methyl-1-alkin-3-olen der Formel:

in die Atmosphäre des dreidimensional umgebenden Raums umfasst,
wobei R1 und R2 jeweils unabhängig ein gesättigter oder ungesättigter aliphatischer Kohlenwasserstoffrest, der 1 bis etwa 12 Kohlenstoffatome enthält, sind,
wobei die hemmende wirksame Menge im Bereich von 0,000054 g/h/m2 (0,000005 g/h/Fuß2) bis 0,043 g/h/m2 (0,004 g/h/Fuß2), bezogen auf die Fläche des Land- oder Grundoberflächenbereichs des umgebenden Raums liegt, wobei das Ziel ein Mensch oder Viehbestand ist.
 
2. Das Verfahren nach Anspruch 1, wobei die hemmende wirksame Menge im Bereich von 0,000054 g/h/m2 (0,000005 g/h/Fuß2) bis 0,0043 g/h/m2 (0,0004 g/h/Fuß2), vorzugsweise von 0,0016 g/h/m2 (0,00015 g/h/Fuß2) bis 0,0022 g/h/m2 (0,0002 g/h/Fuß2), bezogen auf die Fläche des Land- oder Grundoberflächenbereichs des umgebenden Raums liegt.
 
3. Das Verfahren nach Anspruch 1 oder 2, wobei die mindestens eine hemmende Verbindung aus Nerolidol, 3-Methyl-1-octen-3-ol, Linalool und Dehydrolinalool ausgewählt ist.
 
4. Das Verfahren nach Anspruch 3, wobei die mindestens eine hemmende Verbindung Linalool umfasst.
 
5. Das Verfahren nach Anspruch 3, wobei die mindestens eine hemmende Verbindung Dehydrolinalool umfasst.
 
6. Das Verfahren nach einem der Ansprüche 1 bis 5, wobei das Dispensieren der mindestens einen hemmenden Verbindung Dispensieren durch ein Verfahren, ausgewählt aus Verflüchtigen, Verdampfen, Zerstäuben und ionischem Dispergieren der mindestens einen hemmenden Verbindung aus einer Formulierung, die einen Träger umfasst, der die mindestens eine hemmende Verbindung enthält, umfasst.
 
7. Das Verfahren nach Anspruch 6, wobei das Dispensieren Ventilator-betriebenes Verdampfen der mindestens einen hemmenden Verbindung aus einer Formulierung, in der der Träger ein poröses Medium ist, umfasst.
 
8. Das Verfahren nach Anspruch 6, wobei das Dispensieren Ventilator-betriebenes Verdampfen der mindestens einen hemmenden Verbindung aus einer Formulierung, in der der Träger eine wachsartige Lösung ist, umfasst.
 
9. Das Verfahren nach Anspruch 6, wobei das Dispensieren Zerstäuben der mindestens einen hemmenden Verbindung aus der Formulierung umfasst.
 
10. Das Verfahren nach Anspruch 6, wobei das Dispensieren ionisches Dispergieren der mindestens einen hemmenden Verbindung aus der Formulierung umfasst.
 
11. Das Verfahren nach Anspruch 4, wobei das Linalool durch Ventilator-betriebenes Verdampfen von Linalool aus einer Formulierung eines Linalool enthaltenden porösen Mediums dispensiert wird.
 
12. Das Verfahren nach Anspruch 4, wobei das Linalool durch Ventilator-betriebenes Verdampfen von Linalool aus einer Formulierung einer Linalool enthaltenden wachsartigen Lösung dispensiert wird.
 
13. Das Verfahren nach Anspruch 4, wobei das Linalool durch Zerstäuben von Linalool aus einer Formulierung eines Trägers und von Linalool dispensiert wird.
 
14. Das Verfahren nach Anspruch 4, wobei das Linalool durch ionisches Dispergieren von Linalool aus einer Formulierung eines Trägers und von Linalool dispergiert wird.
 
15. Das Verfahren nach Anspruch 5, wobei das Dehydrolinalool durch Ventilator-betriebenes Verdampfen von Dehydrolinalool aus einer Formulierung eines Dehydrolinalool enthaltenden porösen Mediums dispensiert wird.
 
16. Das Verfahren nach Anspruch 5, wobei das Dehydrolinalool durch Ventilator-betriebenes Verdampfen von Dehydrolinalool aus einer Formulierung einer Dehydrolinalool enthaltenden wachsartigen Lösung dispensiert wird.
 
17. Das Verfahren nach Anspruch 5, wobei das Dehydrolinalool durch Zerstäuben von Dehydrolinalool aus einer Basiszusammensetzung dispensiert wird.
 
18. Das Verfahren nach Anspruch 5, wobei das Dehydrolinalool durch ionisches Dispergieren von Dehydrolinalool aus einer Formulierung eines Trägers und von Dehydrolinalool dispergiert wird.
 


Revendications

1. Procédé d'inhibition de l'aptitude des moustiques à détecter une cible par détection olfactive de la cible dans un espace environnemental tridimensionnel présentant un champ ou une surface de base, le procédé comprenant la distribution dans l'atmosphère de l'espace environnemental tridimensionnel d'une quantité inhibante efficace d'au moins un composé inhibant choisi dans le groupe constitué de 3-méthyl-1-alcène-3-ols de la formule :

et de 3-méthyl-1-alcyn-3-ols de la formule :

où R1 et R2 sont chacun indépendamment un groupe hydrocarboné aliphatique saturé ou insaturé contenant de 1 à environ 12 atomes de carbone,
dans lequel la quantité inhibante efficace est de 0,000054 g/h/m2 (0,000005 g/h/pied2) à 0,043 g/h/m2 (0,004 g/h/pied2) rapportée au métrage en pieds carrés du champ ou de la surface de base de l'espace environnemental, dans lequel la cible est un humain ou du bétail.
 
2. Procédé selon la revendication 1, dans lequel la quantité inhibante efficace est de 0,000054 g/h/m2 (0,000005 g/h/pied2) à 0,0043 g/h/m2 (0,0004 g/h/pied2), de préférence de 0,0016 g/h/m2 (0,00015 g/h/pied2) à 0,0022 g/h/m2 (0,0002 g/h/pied2) rapportée au métrage en pieds carrés du champ ou de la surface de base de l'espace environnemental.
 
3. Procédé selon la revendication 1 ou 2, dans lequel le au moins un composé inhibant est choisi parmi le nérolidol, le 3-méthyl-1-octèn-3-ol, le linalool et le déhydrolinalool.
 
4. Procédé selon la revendication 3, dans lequel le au moins un composé inhibant comprend le linalool.
 
5. Procédé selon la revendication 3, dans lequel le au moins un composé inhibant comprend le déhydrolinalool.
 
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la distribution du au moins un composé inhibant comprend la distribution par un procédé choisi parmi la volatilisation, l'évaporation, l'atomisation et la dispersion ionique du au moins un composé inhibant à partir d'une formulation comprenant un véhicule contenant le au moins un composé inhibant.
 
7. Procédé selon la revendication 6, dans lequel la distribution comprend une évaporation actionnée par une soufflante du au moins un composé inhibant à partir d'une formulation dans laquelle le véhicule est un milieu poreux.
 
8. Procédé selon la revendication 6, dans lequel la distribution comprend une évaporation actionnée par une soufflante du au moins un composé inhibant à partir d'une formulation dans laquelle le véhicule est une solution semblable à une cire.
 
9. Procédé selon la revendication 6, dans lequel la distribution comprend l'atomisation du au moins un composant inhibant à partir de la formulation.
 
10. Procédé selon la revendication 6, dans lequel la distribution comprend la dispersion ionique du au moins un composé inhibant à partir de la formulation.
 
11. Procédé selon la revendication 4, dans lequel le linaldol est distribué par une évaporation actionnée par une soufflante de linalool à partir d'une formulation d'un milieu poreux contenant du linalool.
 
12. Procédé selon la revendication 4, dans lequel le linalool est distribué par une évaporation actionnée par une soufflante de linalool à partir d'une formulation d'une solution semblable à une cire contenant du linalool.
 
13. Procédé selon la revendication 4, dans lequel le linalool est distribué par atomisation de linalool à partir d'une formulation d'un véhicule et de linalool.
 
14. Procédé selon la revendication 4, dans lequel le linalool est dispersé par dispersion ionique de linalool à partir d'une formulation d'un véhicule et de linalool.
 
15. Procédé selon la revendication 5, dans lequel le déhydrolinalool est distribué par une évaporation actionnée par une soufflante de déhydrolinalool à partir d'une formulation d'un milieu poreux contenant du déhydrolinalool.
 
16. Procédé selon la revendication 5, dans lequel le déhydrolinalool est distribué par une évaporation actionnée par une soufflante de déhydrolinalool à partir d'une formulation d'une solution semblable à une cire contenant du déhydrolinalool.
 
17. Procédé selon la revendication 5, dans lequel le déhydrolinalool est distribué par atomisation de déhydrolinalool à partir d'une composition de base.
 
18. Procédé selon la revendication 5, dans lequel le déhydrolinalool est dispersé par dispersion ionique de déhydrolinalool à partir d'une formulation d'un véhicule et de déhydrolinalool.
 






Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description