(19)
(11)EP 2 583 495 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.03.2014 Bulletin 2014/13

(21)Application number: 11733714.7

(22)Date of filing:  29.04.2011
(51)International Patent Classification (IPC): 
H04W 24/10(2009.01)
(86)International application number:
PCT/SE2011/050531
(87)International publication number:
WO 2011/162665 (29.12.2011 Gazette  2011/52)

(54)

METHODS AND ARRANGEMENTS FOR PROCESSING OF MEASUREMENT DATA IN CELLULAR COMMUNICATION SYSTEMS

VERFAHREN UND ANORDNUNGEN ZUR VERARBEITUNG VON MESSDATEN IN MOBILFUNKSYSTEMEN

PROCÉDÉS ET DISPOSITIONS POUR LE TRAITEMENT DE DONNÉES DE MESURES DANS LES SYSTÈMES DE COMMUNICATIONS CELLULAIRES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 21.06.2010 US 356823 P

(43)Date of publication of application:
24.04.2013 Bulletin 2013/17

(73)Proprietor: Telefonaktiebolaget LM Ericsson (publ)
164 83 Stockholm (SE)

(72)Inventor:
  • PALM, Håkan
    S-352 61 Växjö (SE)

(74)Representative: Kühn, Friedrich Heinrich 
Ericsson AB Patent Unit Kista RAN 1 Torshamnsgatan 23
164 80 Stockholm
164 80 Stockholm (SE)


(56)References cited: : 
  
  • "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Minimization of drive-tests in Next Generation Networks; (Release 9)", 3GPP STANDARD; 3GPP TR 36.805, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V9.0.0, 21 December 2009 (2009-12-21), pages 1-24, XP050401520, [retrieved on 2009-12-21]
  • TD TECH: "Time stamp achievement and reporting in MDT", 3GPP DRAFT; R2-102495_TIME STAMP ACHIEVEMENT AND REPORTING IN MDT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Beijing, china; 20100412, 4 April 2010 (2010-04-04), XP050422385, [retrieved on 2010-04-04]
  • NOKIA SIEMENS NETWORKS ET AL: "Logged MDT principles", 3GPP DRAFT; R2-103191 LOGGED MDT PRINCIPLES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Montreal, Canada; 20100510, 4 May 2010 (2010-05-04), XP050423287, [retrieved on 2010-05-04]
  • ERICSSON ET AL: "Time stamp mechanism for Logged MDT", 3GPP DRAFT; R2-103903 MDT TIME STAMP PA4, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Stockholm, Sweden; 20100628, 22 June 2010 (2010-06-22), XP050451286, [retrieved on 2010-06-22]
  • TELIASONERA: "Possible measurements for minimising drive tests", 3GPP DRAFT; R2-092024 POSSIBLE MEASUREMENTS FOR MINIMISING DRIVE TESTS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Seoul, Korea; 20090316, 16 March 2009 (2009-03-16), XP050339911, [retrieved on 2009-03-16]
  • QUALCOMM EUROPE: "MDT: Measurement capability", 3GPP DRAFT; R2-094294, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Shenzhen, China; 20090818, 18 August 2009 (2009-08-18), XP050352538, [retrieved on 2009-08-18]
  • CATT: "Time stamp in Minimization Drive Test", 3GPP DRAFT; R2-096668_TIME STAMP IN MINIMIZATION DRIVE TEST, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Jeju; 20091109, 13 November 2009 (2009-11-13), XP050391189, [retrieved on 2009-11-03]
  • NOKIA CORPORATION ET AL: "Time stamp for minimization of drive test", 3GPP DRAFT; R2-095640, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Miyazaki; 20091012, 1 October 2009 (2009-10-01), XP050390155, [retrieved on 2009-10-06]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates to processing of measurement data. More particularly, the present invention relates to arrangements and methods for processing of measurement data in a user equipment and a network node comprised in a cellular communication system.

BACKGROUND



[0002] For next generation of mobile telecommunications systems 3rd Generation Partnership Project (3GPP) is in the process of defining solutions for user equipment (UE) measurement logging function and immediate reporting function called Minimization of the Drive Tests (MDT). The MDT study aims at assessing the feasibility, benefits and complexity of automating the collection of UE measurements to minimize the need of manual drive-tests. The work under the MDT study should define use cases and requirements for minimizing drive-tests in next generation LTE/HSPA networks. Also, based on the defined use cases and requirements, the MDT should focus on study the necessity of defining new UE measurements logging and reporting capabilities for minimizing drive tests and analyze the impact on the UE.

[0003] The use cases for the MDT will be given as following.
  • Radio coverage optimization
  • Mobility optimization
  • Network capacity optimization
  • Parameterization for common channels
  • Quality of Service verification
  1. 1. Radio coverage optimization; that is, information about radio coverage is essential for network planning, network optimization and Radio Resource Management (RRM) parameter optimization (e.g. idle mode mobility parameter setting, common channel parameterization), as well as backend network management activities, such as network dimensioning, CAPEX/OPEX planning and marketing. Additionally the detection of coverage problems (e.g. coverage holes, pilot pollution, low user throughput, etc.) in specific areas may be performed.
  2. 2. Mobility optimization; that is, mobility optimization is an important part of network operation. Information about mobility problems or failures can be used to identify localized lack of coverage or the need to adapt the network parameters setting, (e.g. in order to avoid too early or too late handover and to improve the handover success rate and overall network performance)
  3. 3. Network capacity optimization; that is, the operator may need to be able to determine if there is too much/little capacity in certain parts of the network. Such determination may help to determine placement of new cells, to configure common channels and to optimize other capacity related network parameters.
  4. 4. Parameterization for common channels; that is, user experience and/or network performance can be degraded by suboptimal configuration of common channels (e.g. random access, paging and broadcast channels). Detecting problems (e.g. on UL or DL common channel coverage) or analyzing the performance (e.g. connection setup delay) for the procedures associated with common channels, may help network parameter setting and configuration change for system performance optimization.
  5. 5. Quality of Service verification; that is, one of the objectives of the network performance analysis is the verification of the quality of service (e.g. user throughput). This may also allow detecting critical conditions and determining the need to change the network configuration, parameter settings or capacity extension.


[0004] In the following, UE measurement logs for minimizing drive tests will be described. The measurement logs may be taken at the occurrence of predefined "triggers", e.g. periodic trigger, a failure event. The following UE measurements (or similar functionality) are considered for UE-internal logging:
  1. 1. Periodical downlink pilot signal strength/quality measurements of serving cell and neighbour cells on same and other radio access technologies.
  2. 2. Serving cell becomes worse than threshold; that is, radio environment measurements are logged when the serving cell metric becomes worse than the configured threshold.
  3. 3. Transmit power headroom becomes less than threshold; that is, transmit power headroom and radio environment measurements are logged when UE transmit power headroom becomes less than the configured threshold.
  4. 4. Random access failure; that is, details on the random access and radio environment measurements are logged when a random access failure occurs.
  5. 5. Paging channel failure; that is, details of the radio environment, location, time and cell identity are logged at the point when the UE fails to decode the PCCH on the Paging channel for two consecutive times.
  6. 6. Broadcast channel failure; that is, details of the radio environment, location, time, cell identity and frequency are logged at the point when the UE fails to read the relevant DL common channels to acquire required system information for camping on a cell.
  7. 7. Radio link failure report; that is, radio measurements available at the UE are reported at the RLF occurrence.


[0005] The network can request the UE to perform logging of measurements. The UE executes measurements (e.g. periodical downlink pilot measurements) and logs these measurements internally in a sequential manner. Typically, the log stored internally in the UE will contain e.g. some hour of logged measurement information. For post-processing purpose, these logged measurements/events may be tagged with time information (e.g., time stamps).

[0006] When the UE has logged measurements the UE indicates to the network that it has an available measurement log. The network may then request the UE to deliver the measurement log. This procedure is illustrated in Figure 1. The UE sends 10 an indication to a network node, e.g. an eNodeB or a RNC (Radio Network Controller), that it has an available measurement log. The network node then determines 11 whether is wants to request the measurement log. If it determines to request the measurement log it sends 12 a request to the UE. Thereupon the UE delivers 13 the measurement log to the network node.

[0007] The network collects measurement logs from several UEs in different cells. By collecting and retrieving information from the measurement logs the network is able to perform optimization of radio coverage, mobility, network capacity and to perform parameterization for common channels and verification of QoS.

[0008] It has been agreed upon to include a time stamping for the MDT measurements. However, the timestamp does not need to be very accurate. It is recognized that a simple mechanism is sufficient. For example, during a log activity of e.g. one hour, one can assume that a drift of approximately ±10 s is acceptable.

[0009] The document "Study on Minimization of drive-tests in Nest Generation Networks; (Release 9)", 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; 3GPP TR 36.805, V9.0.0, 21 December 2009, pages 1-24, discusses automating the collection of UE measurements, i.e. MDT, by executing measurements in the UE. It further discloses storing the measurements in a measurement log wherein the measurements are linked to a time stamp that is available in the UE and receiving a request to deliver the log in the UE, Thereupon the log is delivered to the network node. However, the accuracy of the time information is undetermined.

[0010] The document "Time stamp achievement and reporting in MDT", TD TECH, 3GPP DRATFT; R2-102495, 4 April 2010 relates to the issue of the accuracy of time information in MDT. It discusses a mechanism of reporting time stamp via RRC signalling. A relative time is used for the time stamp of the measurement in the UE. The relative time is linked to a counter which is turned on in the UE when measurement is triggered. However, the network node does not know the accuracy of the time information in the log.

[0011] The document "Logged MDT principles", NOKIA SIEMENS NETWORKS et al, 3GPP DRAFT; R2-103191, 4 May 2010 relates to configuration and reporting of a measurement log for MDT but does not mention the accuracy of the time information.

[0012] Solutions using Global Positioning System (GPS), as well as other networkbroadcast time-of-day information have been discussed. A mechanism that e.g. uses System Frame Number (SFN) of the current cell as timing source has the potential of providing a very accurate time reference. However, a UE will change cells and occasionally even lose cell coverage causing problems with the time stamping during the performance of UE measurement logging function.

[0013] Most user equipments are equipped with a clock. However, in many cases the clocks of the user equipments are not synchronized with a common time base, e.g. the local time. If the UE utilizes the internal clock when time stamping measurement data, problems will arise when the network retrieves time stamped measurement information from the measurement logs and compare the time stamp measurement information from several UEs in a cell.

SUMMARY



[0014] The object of the present invention is to address some of the problems and disadvantages outlined above, and to provide methods and arrangements that enable processing of measurement data in a cellular communication system.

[0015] The above stated object is achieved by means of the methods and the arrangements according to the independent claims.

[0016] In accordance with a first aspect of embodiments, a method in a user equipment for enabling processing of measurement data is provided. The user equipment is configured to communicate with a network node comprised in a cellular communication system. The user equipment comprises a measurement log for storing measurement data and time reference information. Furthermore, the method comprising receiving a time reference from the network node. Moreover, an internal clock function is started at the reception of the time reference. One or more measurement is then executed and measurement data is stored with a determined value of the internal clock function in the measurement log. Furthermore, the method comprising sending an indication to the network node that the measurement log is available. A request to deliver the measurement log is received from the network node. Finally, the method comprising delivering the measurement log to the network node.

[0017] In accordance with a second aspect of embodiments, a user equipment for enabling processing of measurement data is provided. The user equipment is configured to communicate with a network node comprised in a cellular communication system. The user equipment comprises a storage unit for storing a measurement log in which measurement data and time reference information are stored. The user equipment further comprises a transceiver adapted to receive a time reference from the network node and a processor unit adapted to start an internal clock function when the time reference is received, execute a measurement, and store the measurement data with a determined value of the internal clock function in the measurement log. Moreover, the transceiver is further adapted to send an indication to the network node that the measurement log is available and to receive a request to deliver the measurement log from the network node and thereupon to deliver the measurement log to the network node.

[0018] In accordance with a third aspect of embodiments, a method in a network node for processing of measurement data is provided. The network node is comprised in a cellular communication system and configured to communicate with at least two user equipments. The method comprising, for each user equipment, sending a time reference to the user equipment. Furthermore, the method comprising receiving an indication from the user equipment that a measurement log is available and sending a request to deliver the measurement log to the user equipment. Moreover, the method comprising receiving the measurement log from the user equipment and comparing the measurement logs of at least two user equipments by comparing measurement data logged at a value of time of an internal clock function of the respective user equipment with respect to the sent time references.

[0019] In accordance with a fourth aspect of embodiments, a network node for processing of measurement data is provided. The network node is comprised in a cellular communication system and configured to communicate with at least two user equipments. The network node comprises a transceiver adapted to, for each user equipment, send a time reference to the user equipment and to receive an indication from the user equipment that a measurement log is available. The transceiver is further adapted to send a request to deliver the measurement log to the user equipment and to receive the measurement log from the user equipment. The network node further comprises a processor unit adapted to compare the measurement logs of at least two user equipments by comparing measurement data logged at a value of time of an internal clock function of the respective user equipment with respect to the sent time references.

[0020] An advantage of particular embodiments is that they provide a solution to the stated object which offers simple implementation and operational simplicity without requiring complex arrangements in the user equipment or in the network.

[0021] A further advantage of particular embodiments is that they provide a solution which does not require synchronization of clocks in the user equipment and the network.

[0022] Further advantages and features of embodiments will become apparent when reading the following detailed description in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS



[0023] For a better understanding, reference is made to the following drawings and preferred embodiments.

Figure 1 illustrates the prior art procedure of reporting of the measurement log from the user equipment to the network.

Figure 2 shows an exemplary embodiment of a structure of the user equipment measurement log stored internally in the user equipment and reported to the network node.

Figure 3 shows a flowchart of an exemplary embodiment of a method in a user equipment for enabling processing of measurement data.

Figure 4 shows a flowchart of an exemplary embodiment of a method in a network node for processing of measurement data.

Figures 5 is a block diagram illustrating the user equipment and the network node according to embodiments.


DETAILED DESCRIPTION



[0024] In the following description, for purposes of explanation and not limitation, specific details are set forth, such as particular sequences of steps and particular device configurations in order to provide a thorough understanding of the embodiments. It will be apparent to one skilled in the art that the embodiments may be practised in other embodiments that depart from these specific details. In the drawings, like reference signs refer to like elements.

[0025] Moreover, those skilled in the art will appreciate that the means and functions explained herein below may be implemented using software functioning in conjunction with a programmed microprocessor or general purpose computer, and/or using an application specific integrated circuit (ASIC). It will also be appreciated that while the current invention is primarily described in the form of methods and devices, the invention may also be embodied in a computer program product as well as a system comprising a computer processor and a memory coupled to the processor, wherein the memory is encoded with one or more programs that may perform the functions disclosed herein.

[0026] Embodiments are described herein by way of reference to particular example scenarios. Particular aspects are described in a non-limiting general context in relation to an LTE system. It should though be noted that the invention and its exemplary embodiments may also be applied to other types of radio access networks for processing measurement data.

[0027] In the following detailed description a number of embodiments are disclosed wherein the problem of unsynchronized internal clocks of user equipments in a cellular communication system is addressed by a solution where a mechanism relying on a standalone clock function in user equipments is provided. Embodiments described in more detail in the following provide a network node that distributes a time reference to a user equipment (UE), and wherein the UE, using an internal clock function, time-stamps the logged measurements and/or events relative to the received time reference. When the UE has logged measurements the UE indicates to the network node that it has an available measurement log. The network node may then request several UEs to deliver their measurement log, respectively. The network node is then able to retrieve time stamped measurement information from the measurement log of each UE relative the sent time reference. Furthermore, the network node is then able to compare measurement information from each UE in a cell provided at the same time interval in all UEs.

[0028] According to one exemplary embodiment, a network node comprised in a cellular communication system, e.g. a LTE system, communicates with UEs in a serving cell. The network node sends a time reference to a UE. For example, the network node could include the time reference in a MDT (Minimization of the Drive Tests) measurement configuration message sent to the UE when the network requests the UE to perform logging of measurements. The time reference could e.g. be a time-of-day and date indication. The exact content does not need not be standardized, and can instead be left for the choice of the operator of the cellular communication system. Furthermore, at reception of the MDT measurement configuration message including the time reference, the UE starts an internal clock function or a clock counter from zero, and steps it e.g. by one every second. The UE additionally stores the time reference in the measurement log. Thereupon the UE is able to "timestamp" each subsequently logged MDT measurement with the current value of the internal clock function, and adds this to the measurement log.

[0029] Figure 2 illustrates an exemplary embodiment of a structure of the measurement log stored internally in the UE and reported to the network node, including measurement and time information. The measurement log 20 comprises the time reference Initial MDT Time Ref 21 received from the network node. It further comprises a first MDT measurement 22 which is timestamped i.e. the MDT measurement is stored in the log with the current value of the internal clock function MDT_TIME at the time of measuring. The measurement log also comprises a second MDT measurement 23 which is timestamped in the same manner. The log may include several timestamped MDT measurements 24 as illustrated in Figure 2. Typically, the measurement log will include e.g. some hour of logged measurement information.

[0030] In Figure 3 an exemplary embodiment of a method in a UE for enabling processing of measurement data is illustrated. The UE is configured to communicate with a network node comprised in a cellular communication system. In a first step 30 the UE receives a time reference Tref from the network node. The time reference may be included in the same message which is sent to the UE from the network node requesting the UE to start logging measurements such as the MDT measurement configuration message. Then in a next step 31, the UE starts an internal clock function Tint upon the reception of the time reference Tref. The UE starts executing measurements in the cell in a further step 32. The measurement may be any of the measurements required for MDT functionality. For example, the measurement executed may be a downlink pilot signal strength measurement of serving or neighbour cell. It may also be a downlink pilot signal quality measurement of serving or neighbour cell. It should be noted that the measurements could be executed periodically in the UE. When the measurement is executed the UE stores 33 the measurement data in a measurement log in the UE. The measurement data is stored with a current value of the internal clock function Tint in the measurement log i.e. the measurement data is stored with a timestamp in the log. The UE sends 34 an indication to the network node that the measurement log is available. In a further step 35 the UE receives a request from the network node to deliver the measurement log to the network node. The UE then delivers 26 the measurement log comprising the timestamped measurement data and the time reference Tref to the network node.

[0031] In Figure 4 an exemplary embodiment of a method in a network node for processing of measurement data is illustrated. The network node is comprised in a cellular communication system and configured to communicate with at least two user equipments in a cell which is served by the network node. In a first step 40 the network node sends a time reference Tref to each UE. The time reference Tref may be included in the same message which is sent to the UE requesting the UE to start logging measurements, such as the MDT measurement configuration message. The UE will start logging measurement data in a measurement log in accordance with the previously described method. In a further step 41 an indication is received from the UE that a measurement log is available in the UE. Next, the network node sends 42 a request to deliver the measurement log to the UE. The network node receives the measurement log in a further step 43. Upon the reception of measurement logs of at least two UEs the network node can compare 44 the measurement logs. This step is performed by comparing measurement data logged at a value of time of an internal clock function of the respective user equipment with respect to the time references Tref sent to each UE, respectively.

[0032] Figure 5 is a schematic block diagram schematically illustrating an exemplary UE 510 that is configured to communicate with an exemplary network node 520 comprised in a cellular communication system. The UE 510 and network node 520 can be implemented using various components, both hardware and software. It should be noted that the network node may serve several UEs. However, for simplicity reasons only one UE is illustrated in the figure.

[0033] For example, as shown generally in Figure 5, such a UE 510 include a processor unit 512, one or more storage devices 514, an operating system (not shown) running on the processor unit 512 as well as a corresponding application, e.g., an application which processes measurement data in the manner described above. Additionally, such a network node 520 include a processor unit 522, one or more storage units 524, an operating system (not shown) running on the processor unit 522 as well as a corresponding application, e.g., an application which processes measurement data in the manner described above. Both the UE 510 and the network node 520 may comprise an interface unit 516, 526 to facilitate communications between the UE 510 and the network node 520. For example, the interface unit 516, 526 may include a transceiver capable of communicating wirelessly over an air interface, e.g., as specified by LTE, including hardware and software capable of performing the necessary modulating, coding, filtering and the like, as well as demodulating and decoding to process such signals.

[0034] The transceiver unit 518 comprised in the UE 510 is adapted to receive a time reference Tref from the network node 520. The processor unit 512 is adapted to store the received time reference Tref in a measurement log which may be comprised in the storage unit 514. The processor unit 512 is further adapted to start an internal clock function when receiving the time reference Tref from the network node 520. Furthermore, the processor unit 512 is adapted to execute measurements in the cell and to store the measurement data with a determined value of the internal clock function in the measurement log comprised in the storage unit 514. The transceiver 518 is adapted to send an indication to the network node 520 that the measurement log is available and to receive a request to deliver the measurement log from the network node 520. Finally, the transceiver 518 comprised in the UE 510 is further adapted to deliver the measurement log to the network node 520.

[0035] Moreover, the transceiver 528 comprised in the network node 520 is adapted to send a time reference Tref to the UE 510. It is further adapted to receive an indication from the UE 510 that a measurement log is available. The transceiver 528 is also adapted to send a request to deliver the measurement log to the UE 510 and then to receive the measurement log from the same. The processor unit 522 comprised in the network node 520 is adapted to then compare the measurement logs of at least two user equipments 510 by comparing measurement data logged at a value of time of an internal clock function of the respective user equipment 510 with respect to the sent time references Tref.

[0036] The embodiments may, of course, be carried out in other ways than those specifically set forth herein without departing from essential characteristics of the embodiments described. The present embodiments are to be considered in all respects as illustrative and not restrictive.


Claims

1. A method in a user equipment for enabling processing of measurement data, the user equipment is configured to communicate with a network node comprised in a cellular communication system, the user equipment comprises a measurement log for storing measurement data and time reference information, the method comprising

- executing (32) one or more measurement,

- storing (33) measurement data with a determined value of an internal clock function in the measurement log,

- receiving (35) a request to deliver the measurement log from the network node,

- delivering (36) the measurement log to the network node, the method characterized by further comprising

- deceiving (30) a time reference from the network node,

- starting (31) the internal clock function at the reception of the time reference,

- storing the time reference in the measurement log,

- sending (34) an indication to the network node that the measurement log is available.


 
2. The method according to claim 1, wherein the internal clock function is a counter.
 
3. The method according to claim 2, wherein the counter is stepped one step by every second.
 
4. The method according to any of claims 1 to 3, wherein the time reference is a time-of-day and date indication.
 
5. The method according to any of claims 1 to 4, wherein measurements are executed periodically.
 
6. The method according to any of claims 1 to 5, wherein the measurement is a downlink pilot signal strength measurement of serving cell or neighbour cell.
 
7. The method according to any of claims 1 to 5, wherein the measurement is a downlink pilot signal quality measurement of serving cell or neighbour cell.
 
8. A user equipment (510) for enabling processing of measurement data, the user equipment is configured to communicate with a network node (520) comprised in a cellular communication system, the user equipment comprises a storage unit (514) for storing a measurement log in which measurement data and time reference information are stored, the user equipment further comprises
a processor unit (512) adapted to

execute a measurement, and to

store the measurement data with a determined value of an internal clock function in the measurement log,

a transceiver (518) adapted to

receive a request to deliver the measurement log from the network node, and to

deliver the measurement log to the network node, the user equipment is characterized in that the transceiver (518) is further adapted to

receive a time reference from the network node, and the processor unit (512) is further adapted to

start the internal clock function when the time reference is received and to

store the time reference in the measurement log, the transceiver (518) is further adapted to

send an indication to the network node that the measurement log is available.


 
9. The user equipment according to claim 8, wherein the internal clock function is a counter.
 
10. The user equipment according to claim 9, wherein the counter is stepped one step by every second.
 
11. The user equipment according to any of claims 8 to 10, wherein the time reference is a time-of-day and date indication.
 
12. The user equipment according to any of claims 8 to 11, wherein measurements are executed periodically.
 
13. The user equipment according to any of claims 8 to 12, wherein the measurement is a downlink pilot signal strength measurement of serving cell or neighbour cell.
 
14. The user equipment according to any of claims 8 to 12, wherein the measurement is a downlink pilot signal quality measurement of serving cell or neighbour cell.
 
15. A method in a network node for processing of measurement data, the network node is comprised in a cellular communication system and configured to communicate with at least two user equipments, the method comprising, for each user equipment,

- sending (42) a request to deliver a measurement log to the user equipment,

- receiving (43) the measurement log from the user equipment, the method characterized by further comprising

- sending (40) a time reference to the user equipment,

- receiving (41) an indication from the user equipment that the measurement log is available,

- comparing (44) the measurement logs of at least two user equipments by comparing measurement data logged at a value of time of an internal clock function of the respective user equipment with respect to the sent time references.


 
16. The method according claim 15, wherein the time reference is a time-of-day and date indication.
 
17. The method according to claim 15 or 16, wherein the measurement logs comprise downlink pilot signal strength measurements of served cell or neighbour cell.
 
18. The method according to any of claims 15 or 16, wherein the measurement logs comprise downlink pilot signal quality measurements of served cell or neighbour cell.
 
19. A network node (520) for processing of measurement data, the network node is comprised in a cellular communication system and configured to communicate with at least two user equipments (510), the network node comprises a transceiver (528) adapted to, for each user equipment,
send a request to deliver a measurement log to the user equipment,
receive the measurement log from the user equipment, the network node characterized in that the transceiver (528) is further adapted to
send a time reference to the user equipment,
receive an indication from the user equipment that the measurement log is available, and further comprises a processor unit (522) adapted to
compare the measurement logs of at least two user equipments by comparing measurement data logged at a value of time of an internal clock function of the respective user equipment with respect to the sent time references.
 
20. The network node according claim 19, wherein the time reference is a time-of-day and date indication.
 
21. The network node according to claim 19 or 20, wherein the measurement logs comprise downlink pilot signal strength measurements of served cell or neighbour cell.
 
22. The network node according to any of claims 19 or 20, wherein the measurement logs comprise downlink pilot signal quality measurements of served cell or neighbour cell.
 


Ansprüche

1. Verfahren in einer Benutzereinrichtung zum Ermöglichen der Verarbeitung von Messdaten, wobei die Benutzereinrichtung so konfiguriert ist, dass sie mit einem Netzknoten kommuniziert, der in einem zellularen Kommunikationssystem enthalten ist, die Benutzereinrichtung ein Messprotokoll zum Speichern von Messdaten und Zeitreferenzinformationen umfasst, und das Verfahren umfasst:

- Ausführen (32) einer oder mehrerer Messungen,

- Speichern (33) von Messdaten mit einem bestimmten Wert einer internen Taktfunktion im Messprotokoll,

- Empfangen (35) einer Anforderung vom Netzknoten, das Messprotokoll zu liefern,

- Liefern (36) des Messprotokolls an den Netzknoten, wobei das Verfahren dadurch gekennzeichnet ist, dass es ferner umfasst:

- Empfangen (30) einer Zeitreferenz vom Netzknoten,

- Starten (31) der internen Taktfunktion bei Empfang der Zeitreferenz,

- Speichern der Zeitreferenz im Messprotokoll,

- Senden (34) einer Anzeige an den Netzknoten, das das Messprotokoll verfügbar ist.


 
2. Verfahren nach Anspruch 1, wobei es sich bei der internen Taktfunktion um einen Zähler handelt.
 
3. Verfahren nach Anspruch 2, wobei der Zähler jede Sekunde einen Schritt fortgeschaltet wird.
 
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei es sich bei der Zeitreferenz um eine Tageszeit- und Datumsangabe handelt.
 
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Messungen periodisch ausgeführt werden.
 
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei es sich bei der Messung um eine Messung einer Downlink-Pilotsignalstärke einer versorgenden Zelle oder einer Nachbarzelle handelt.
 
7. Verfahren nach einem der Ansprüche 1 bis 5, wobei es sich bei der Messung um eine Messung einer Downlink-Pilotsignalqualität einer versorgenden Zelle oder einer Nachbarzelle handelt.
 
8. Benutzereinrichtung (510) zum Ermöglichen der Verarbeitung von Messdaten, wobei die Benutzereinrichtung so konfiguriert ist, dass sie mit einem Netzknoten (520) kommuniziert, der in einem zellularen Kommunikationssystem enthalten ist, die Benutzereinrichtung eine Speichereinheit (514) zum Speichern eines Messprotokolls umfasst, in welchem Messdaten und Zeitreferenzinformationen gespeichert werden, und die Benutzereinrichtung ferner umfasst:

einen Prozessoreinheit (512), die ausgelegt ist zum

Ausführen einer Messung, und zum

Speichern der Messdaten mit einem bestimmten Wert einer internen Taktfunktion im Messprotokoll, einen Sendeempfänger (518), der ausgelegt ist zum

Empfangen einer Anforderung vom Netzknoten, das Messprotokoll zu liefern, und zum

Liefern des Messprotokolls an den Netzknoten, wobei die Benutzereinrichtung dadurch gekennzeichnet ist, dass der Sendeempfänger (518) ferner ausgelegt ist zum

Empfangen einer Zeitreferenz vom Netzknoten, und die Prozessoreinheit (512) ferner ausgelegt ist zum

Starten der internen Taktfunktion, wenn die Zeitreferenz empfangen wird, und zum

Speichern der Zeitreferenz im Messprotokoll, wobei der Sendeempfänger (518) ferner ausgelegt ist zum

Senden einer Anzeige an den Netzknoten, das das Messprotokoll verfügbar ist.


 
9. Benutzereinrichtung nach Anspruch 8, wobei es sich bei der internen Taktfunktion um einen Zähler handelt.
 
10. Benutzereinrichtung nach Anspruch 9, wobei der Zähler jede Sekunde einen Schritt fortgeschaltet wird.
 
11. Benutzereinrichtung nach einem der Ansprüche 8 bis 10, wobei es sich bei der Zeitreferenz um eine Tageszeit-und Datumsangabe handelt.
 
12. Benutzereinrichtung nach einem der Ansprüche 8 bis 11, wobei die Messungen periodisch ausgeführt werden.
 
13. Benutzereinrichtung nach einem der Ansprüche 8 bis 12, wobei es sich bei der Messung um eine Messung einer Downlink-Pilotsignalstärke einer versorgenden Zelle oder einer Nachbarzelle handelt.
 
14. Benutzereinrichtung nach einem der Ansprüche 8 bis 12, wobei es sich bei der Messung um eine Messung einer Downlink-Pilotsignalqualität einer versorgenden Zelle oder einer Nachbarzelle handelt.
 
15. Verfahren in einem Netzknoten zur Verarbeitung von Messdaten, wobei der Netzknoten in einem zellularen Kommunikationssystem enthalten und so konfiguriert ist, dass er mit mindestens zwei Benutzereinrichtungen kommuniziert, wobei das Verfahren für jede Benutzereinrichtung umfasst:

- Senden (42) einer Anforderung an die Benutzereinrichtung, ein Messprotokoll zu liefern,

- Empfangen (43) des Messprotokolls von der Benutzereinrichtung, wobei das Verfahren dadurch gekennzeichnet ist, dass es ferner umfasst:

- Senden (40) einer Zeitreferenz an die Benutzereinrichtung,

- Empfangen (41) einer Anzeige von der Benutzereinrichtung, dass das Messprotokoll verfügbar ist,

- Vergleichen (44) der Messprotokolle von mindestens zwei Benutzereinrichtungen durch Vergleichen von Messdaten, die bei einem Zeitwert einer internen Taktfunktion der jeweiligen Benutzereinrichtung protokolliert sind, in Bezug auf die gesendeten Zeitreferenzen.


 
16. Verfahren nach Anspruch 15, wobei es sich bei der Zeitreferenz um eine Tageszeit- und Datumsangabe handelt.
 
17. Verfahren nach einem der Ansprüche 15 oder 16, wobei die Messprotokolle Messungen von Downlink-Pilotsignalstärke einer versorgenden Zelle oder einer Nachbarzelle umfassen.
 
18. Verfahren nach einem der Ansprüche 15 oder 16, wobei die Messprotokolle Messungen von Downlink-Pilotsignalqualität einer versorgenden Zelle oder einer Nachbarzelle umfassen.
 
19. Netzknoten (520) zum Verarbeiten von Messdaten, wobei der Netzknoten in einem zellularen Kommunikationssystem enthalten und so konfiguriert ist, dass er mit mindestens zwei Benutzereinrichtungen (510) kommuniziert, wobei der Netzknoten einen Sendeempfänger (528) umfasst, der so ausgelegt ist, dass er für jede Benutzereinrichtung
eine Anforderung an die Benutzereinrichtung sendet, ein Messprotokoll zu liefern,
das Messprotokoll von der Benutzereinrichtung empfängt, wobei der Netzknoten dadurch gekennzeichnet ist, dass der Sendeempfänger (528) ferner ausgelegt ist zum
Senden einer Zeitreferenz an die Benutzereinrichtung,
Empfangen einer Anzeige von der Benutzereinrichtung, dass das Messprotokoll verfügbar ist, und ferner eine Prozessoreinheit (522) umfasst, die ausgelegt ist zum
Vergleichen der Messprotokolle von mindestens zwei Benutzereinrichtungen durch Vergleichen von Messdaten, die bei einem Zeitwert einer internen Taktfunktion der jeweiligen Benutzereinrichtung protokolliert sind, in Bezug auf die gesendeten Zeitreferenzen.
 
20. Netzknoten nach Anspruch 19, wobei es sich bei der Zeitreferenz um eine Tageszeit- und Datumsangabe handelt.
 
21. Netzknoten nach einem der Ansprüche 19 oder 20, wobei die Messprotokolle Messungen von Downlink-Pilotsignalstärke einer versorgenden Zelle oder einer Nachbarzelle umfassen.
 
22. Netzknoten nach einem der Ansprüche 19 oder 20, wobei die Messprotokolle Messungen von Downlink-Pilotsignalqualität einer versorgenden Zelle oder einer Nachbarzelle umfassen.
 


Revendications

1. Procédé dans un équipement d'utilisateur pour activer le traitement des données de mesure, l'équipement d'utilisateur est configuré pour communiquer avec un noeud de réseau compris dans un système de communication cellulaire, l'équipement d'utilisateur comprend un journal d mesure pour mémoriser les données de mesure et les informations de référence temporelle, le procédé comprenant de :

- exécuter (32) une ou des mesures,

- mémoriser (33) des données de mesure avec une valeur déterminée d'une fonction d'horloge interne dans le journal de mesure,

- recevoir (35) une demande pour délivrer le journal de mesure depuis le noeud de réseau,

- délivrer (36) le journal de mesure au noeud de réseau, le procédé étant caractérisé en ce qu'il comprend en outre de :

- recevoir (30) une référence temporelle depuis le noeud de réseau,

- démarrer (31) la fonction d'horloge interne à la réception de la référence temporelle,

- mémoriser la référence temporelle dans le journal de mesure,

- envoyer (34) une indication au noeud de réseau que le journal de mesure est disponible.


 
2. Procédé selon la revendication 1, dans lequel la fonction d'horloge interne est un compteur.
 
3. Procédé selon la revendication 2, dans lequel le compteur est incrémenté d'un cran à chaque seconde.
 
4. Procédé selon une quelconque des revendications 1 à 3, dans lequel la référence temporelle est une indication d'heure du jour et de date.
 
5. Procédé selon une quelconque des revendications 1 à 4, dans lequel les mesures sont exécutées périodiquement.
 
6. Procédé selon une quelconque des revendications 1 à 5, dans lequel la mesure est une mesure d'intensité de signal pilote en liaison descendante d'une cellule de desserte ou cellule voisine.
 
7. Procédé selon une quelconque des revendications 1 à 5, dans lequel la mesure est une mesure de qualité de signal pilote en liaison descendante d'une cellule de desserte ou cellule voisine.
 
8. Equipement d'utilisateur (510) pour permettre le traitement de données de mesure, l'équipement d'utilisateur est configuré pour communiquer avec un noeud de réseau (520) compris dans un système de communication cellulaire, l'équipement d'utilisateur comprend une unité de mémorisation (514) pour mémoriser un journal de mesure dans lequel des données de mesure et informations de référence temporelle sont mémorisées, l'équipement d'utilisateur comprend en outre :

une unité de processeur (512) adaptée pour

exécuter une mesure et
mémoriser les données de mesure avec une valeur déterminée d'une fonction d'horloge interne dans le journal de mesure,

un émetteur/récepteur (518) adapté pour

recevoir une demande pour délivrer le journal de mesure depuis le noeud de réseau et

délivrer le journal de mesure vers le noeud de réseau, l'équipement d'utilisateur est caractérisé en ce que l'émetteur/récepteur (518) est en outre adapté pour

recevoir une référence temporelle depuis le noeud de réseau, et l'unité de processeur (512) est en outre adaptée pour

démarrer la fonction d'horloge interne à la réception de la référence temporelle,

mémoriser la référence temporelle dans le journal de mesure, l'émetteur/récepteur (518) est en outre adapté pour

envoyer une indication au noeud de réseau que le journal de mesure ets disponible.


 
9. Equipement d'utilisateur selon la revendication 8, dans lequel la fonction d'horloge interne ets un compteur.
 
10. Equipement d'utilisateur selon la revendication 9, dans lequel le compteur est incrémenté d'un cran à chaque seconde.
 
11. Equipement d'utilisateur selon une quelconque des revendications 8 à 10, dans lequel la référence temporelle est une indication d'heure du jour et de date.
 
12. Equipement d'utilisateur selon une quelconque des revendications 8 à 11, dans lequel les mesures sont exécutées périodiquement.
 
13. Equipement d'utilisateur selon une quelconque des revendications 8 à 12, dans lequel la mesure est une mesure d'intensité de signal pilote en liaison descendante d'une cellule de desserte ou cellule voisine.
 
14. Equipement d'utilisateur selon une quelconque des revendications 8 à 12, dans lequel la mesure est une mesure de qualité de signal pilote en liaison descendante d'une cellule de desserte ou cellule voisine.
 
15. Procédé dans un noeud de réseau pour traiter des données de mesure, le noeud de réseau est compris dans un système de communication cellulaire et configuré pour communiquer avec au moins deux équipements d'utilisateur, le procédé comprenant, pour chaque équipement d'utilisateur:

- envoyer (42) une demande pour délivrer un journal de mesure à l'équipement d'utilisateur,

- recevoir (43) le journal de mesure depuis l'équipement d'utilisateur, le procédé étant caractérisé en ce qu'il comprend en outre

- envoyer (40) une référence temporelle à l'équipement d'utilisateur,

- recevoir (41) une indication depuis l'équipement d'utilisateur que le journal de mesure est disponible,

- comparer (44) les journaux de mesure d'au moins deux équipements d'utilisateurs en comparant les données de mesure journalisées à une valeur de temps d'une fonction d'horloge interne de l'équipement d'utilisateur respectif en ce qui concerne les références temporelles envoyées.


 
16. Procédé selon la revendication 15, dans lequel la référence temporelle est une indication d'heure du jour et de date.
 
17. Procédé selon les revendications 15 ou 16, dans lequel les journaux de mesure comprennent des mesures d'intensité de signal pilote en liaison descendantes d'une cellule desservie ou cellule voisine.
 
18. Procédé selon une quelconque des revendications 15 ou 16, dans lequel les journaux de mesure comprennent des mesures de qualité de signal pilote en liaison descendante d'une cellule desservie ou cellule voisine.
 
19. Noeud de réseau (520) pour traiter des données de mesure, le noeud de réseau est compris dans un système de communication cellulaire et configuré pour communiquer avec au moins deux équipements d'utilisateur (510), le noeud de réseau comprend un émetteur/récepteur (528) adapté pour, pour chaque équipement d'utilisateur,
envoyer une demande pour délivrer un journal de mesure à l'équipement d'utilisateur,
recevoir le journal de mesure depuis l'équipement d'utilisateur, le noeud de réseau étant caractérisé en ce que l'émetteur/récepteur (528) est en outre adapté pour
envoyer une référence temporelle à l'équipement d'utilisateur,
recevoir une indication depuis l'équipement d'utilisateur que le journal de mesure est disponible, et comprend en outre une unité de traitement (522) adaptée pour
comparer les journaux de mesure d'au moins deux équipements d'utilisateurs en comparant les données de mesure journalisées à une valeur de temps d'une fonction d'horloge interne de l'équipement d'utilisateur respectif en ce qui concerne les références temporelles envoyées.
 
20. Noeud de réseau selon la revendication 19, dans lequel la référence temporelle est une indication d'heure du jour et de date.
 
21. Noeud de réseau selon les revendications 19 ou 20, dans lequel les journaux de mesure comprennent des mesures d'intensité de signal pilote en liaison descendante d'une cellule desservie ou une cellule voisine.
 
22. Noeud de réseau selon une quelconque des revendications 19 ou 20, dans lequel les journaux de mesure comprennent des mesures de qualité de signal pilote en liaison descendante d'une cellule desservie ou cellule voisine.
 




Drawing




















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description