(19)
(11)EP 1 416 222 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.06.2011 Bulletin 2011/25

(21)Application number: 03020198.2

(22)Date of filing:  05.09.2003
(51)International Patent Classification (IPC): 
F23D 14/38(2006.01)
F23D 14/82(2006.01)

(54)

Torch with integrated flashback arrestor

Schweiss- und/oder Schneidbrenner mit integrierter Flammenrückschlagvorrichtung

Chalumeau avec dispositif anti-retour de flamme intégré


(84)Designated Contracting States:
DE FR GB IT SE

(30)Priority: 31.10.2002 US 285012

(43)Date of publication of application:
06.05.2004 Bulletin 2004/19

(73)Proprietor: Illinois Tool Works, Inc.
Glenview, Cook County IL 60025 (US)

(72)Inventor:
  • Wakeman, Robert W.
    Watertown, South Dakota 57201 (US)

(74)Representative: Trinks, Ole et al
Meissner, Bolte & Partner GbR P.O. Box 102605
86016 Augsburg
86016 Augsburg (DE)


(56)References cited: : 
FR-A- 1 448 292
US-A- 4 431 167
US-A- 5 407 348
US-A- 2 417 670
US-A- 4 664 621
US-A- 5 497 620
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] The present technique relates generally to torch systems, and more particularly, to flashback arrestors for gas torches. The present technique specifically provides a gas torch having a head-mounted flashback-arresting filter, such as a porous metal insert.

    [0002] In torch systems, such as gas welding and cutting torches, the undesirable backflow of a fuel-oxygen mixture and heating affects may cause a flame to propagate back into the torch system. This inward flame propagation is generally termed flashback. For example, if the gas torch is improperly lit or it is not purged after the depletion of fuel or oxygen, then there is a potential risk of mixed fuel and oxygen being forced back into the gas torch. If an ignition source is subsequently introduced to this fuel-oxygen mixture, then a flame front may propagate back through the tip, head, and body sections of the gas torch and potentially further into the torch system. The internal flame front generally accelerates through the torch system until it is extinguished or until it no longer has an adequate fuel-oxygen mixture to burn. The risks of damage and harm to the user also generally increase as the internal flame front propagates further into the torch system.

    [0003] Document FR 1 448 292 discloses a sintered flashback arrestor for use in a torch head, the torch head comprising inlets for gas and air. Document US 4,431,167 discloses a torch head with an adaptor made of non-porous material for minimizing flame blowback, the adaptor including grooves and channels for leading gas and air separately into the interior. The adaptor is designed with frustoconical sealing surfaces.

    [0004] Accordingly, a technique is needed for arresting flashback near the tip section of the gas torch.

    SUMMARY OF THE INVENTION



    [0005] The invention is directed at an industrial torch according to the object of claim 1 and at a method of operating an industrial torch according to the object of claim 13.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] The foregoing and other advantages and features of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:

    Figure 1 is perspective view of an exemplary gas torch system of the present technique;

    Figure 2 is a cross sectional side view of an exemplary gas torch of the gas torch system illustrated in Figure 1;

    Figure 3 is a cross sectional side view of exemplary head and tip sections of the gas torch illustrated in Figure 2;

    Figure 4 is a cross sectional side view of an exemplary flashback-arresting filter exploded from the head section illustrated in Figure 3;

    Figure 5 is a cross sectional side view of the flashback-arresting filter disposed in the head section.


    DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS



    [0007] As described in detail below, the present technique provides a system and method for arresting flashback in a torch system 10, such as illustrated in Figure 1. The illustrated torch system 10 includes a gas torch 12 coupled to oxygen and fuel supplies 14 and 16 via oxygen and fuel supply lines 18 and 20, respectively. In the illustrated embodiment, the gas torch 12 is configured as a handheld cutting torch. However, the gas torch 12 may comprise any other desired cutting torch configuration. The torch system 10 also may comprise an automated positioning system, such as a computer controlled robotic arm. The torch system 10 also may include one more heating mechanisms to preheat the oxygen and fuel being supplied to the gas torch 12. In any of these configurations, the torch system 10 of the present technique has an integral flashback arrestor disposed in the head of the gas torch 12, such that flashback is arrested near the tip of the gas torch 12.

    [0008] The torch system 10 also may have a variety of valves, pressure regulators, pressure gauges, and flow control mechanisms to facilitate the delivery of the oxygen and fuel to the gas torch 12. For example, the oxygen and fuel supplies 14 and 16 may have on/off valves 22 and 24, pressure regulators 26 and 28, and pressure gauges 30 and 32, respectively. The gas torch 12 also may have a variety of flow control mechanisms for the oxygen and fuel. For example, the gas torch 12 may have oxygen and fuel valves 34 and 36 to control the flow rates of oxygen and fuel through the gas torch 12. The gas torch 12 also has a high-pressure valve or trigger 38 to supply additional oxygen for a cutting application. However, as mentioned above, the gas torch 12 may embody any suitable configuration of oxygen and fuel supply components within the scope of the present technique.

    [0009] As illustrated in Figure 2, the gas torch 12 comprises a tip 40 coupled to a head 42, which is coupled to a body 44. The body 44 of the gas torch 12 has a handle 46 disposed about a high-pressure oxygen passageway 48, an oxygen passageway 50, and a fuel passageway 52. It also should be noted that the oxygen and fuel passageways 50 and 52 may be adapted to transport preheated oxygen and fuel, respectively. At a flow regulating section 54 of the body 44, the gas torch 12 has oxygen and fuel line couplings 56 and 58 that are interlockable with the oxygen and fuel supply lines 18 and 20, respectively. As discussed above, the oxygen and fuel valves 34 and 36 control the flow rates of oxygen and fuel through the oxygen and fuel passageways 50 and 52. The trigger 38 opens and closes the high-pressure supply of oxygen through the high-pressure oxygen passageway 48 to create a flame suitable for cutting.

    [0010] At the head 42 of the gas torch 12, the high-pressure oxygen passageway 48 extends into a high-pressure oxygen inlet 60, while the oxygen and fuel passageways 50 and 52 extend into oxygen and fuel inlets 62 and 64, respectively. The oxygen and fuel inlets 62 and 64 feed the oxygen and fuel through a head-mountable flashback-arresting filter 66. After passing through the flashback-arresting filter 66, the oxygen and fuel mixes in the head 42, ejects from the tip 40, and forms a flame downstream of the tip 40. Upon engaging the trigger 38, the high-pressure oxygen also passes through the head 42, ejects from the tip 40, and enhances the flame for cutting. Any suitable tip 40 may be used within the scope of the present technique.

    [0011] Figure 4 is a cross sectional side view of the flashback-arresting filter 66 exploded from the head 42. The flashback-arresting filter 66 functions to arrest flashback in the head 42 prior to its propagation and acceleration further upstream into the body 44, the oxygen and fuel lines 18 and 20, and so forth. In the illustrated embodiment, the flashback-arresting filter 66 has a generally annular filter structure 68, an outer seal or oxygen-fuel separator 70 disposed about the annular filter structure 68, and a threaded retainer 72 disposed at an end 74 of the annular filter structure 68. The various components of the flashback-arresting filter 66 may be formed from any suitable materials, such as stainless steel, copper, brass, and so forth. In one embodiment of the flashback-arresting filter 66, the annular filter structure 68 comprises stainless steel, the outer seal 70 comprises copper, and the threaded retainer 72 comprises brass.

    [0012] The annular filter structure 68 comprises a variety of filtering mechanisms, defining a porous metal filter. For example, the annular filter structure 68 may comprise a sintered metal filter element made of a particulate metal (e.g., a powdered stainless steel), which is pressed into shape and sintered to join the particulate metal into a porous metallic mass. However, any other suitable manufacturing process, such as metal injection molding, also may be used to form the annular filter structure 68. Given the random size, shape, and packing of the metal particles, the annular filter structure 68 has relatively random pores extending through the metallic mass. The particular size, direction, and characteristics of these random pores depend largely on the type of metal and manufacturing process used to create the annular filter structure 68. However, the foregoing random pores generally exhibit nonlinear passageways having relatively fine diameters, such as diameters less than 100 microns (e.g., 5-20 microns). In operation, these random pores cool and extinguish a flame front, i.e., flashback propagating back into the gas torch 12.

    [0013] As illustrated in Figure 5, the flashback-arresting filter 66 is insertable into a filter receptacle 76 of the head 42, such that the annular filter structure 68 is disposed adjacent the oxygen and fuel inlets 62 and 64. As mentioned above, the outer seal or oxygen-fuel separator 70 may be disposed between the oxygen and fuel inlets 62 and 64 to prevent mixing of the oxygen and fuel prior to its passage through the annular filter structure 68. The oxygen and fuel subsequently mixes downstream of the annular filter structure 68. The relatively fine porous nature of the annular filter structure 68 also reduces backflow of the oxygen-fuel mixture, thereby further reducing the potential risk of flashback upstream of the head 42. The outer seal 70 may be press-fit, shrink fit, snap-fit, or otherwise secured about the annular filter structure 68. For example, the annular filter structure 68 may have a groove to accept the outer seal 70. Alternatively, the annular filter structure 68 may have a variable diameter or wedge-shape to facilitate a compressive fit with the outer seal 70. The outer seal 70 also may have an outer wedge shape 80 that is sealable against a wedge section 82 in the filter receptacle 76. Any other suitable seal mechanism is within the scope of the present technique.

    [0014] The high-pressure oxygen inlet 60 also is sealed from the oxygen and fuel inlets 62 and 64 to prevent undesirable mixing upstream of the head 42. For example, the high-pressure oxygen inlet 60 may be coupled directly to the tip 40, e.g., through a passageway 78, such that the high-pressure oxygen does not mix with the oxygen and fuel from the inlets 62 and 64 until ejected from the tip 40.

    [0015] As mentioned above and illustrated in Figure 5, the flashback-arresting filter 66 also may be retained in the filter receptacle 76 via the threaded retainer 72. The threaded retainer 72 may be press-fit, shrink fit, snap-fit, or otherwise secured about the annular filter structure 68. For example, the annular filter structure 68 may have a groove to accept the threaded retainer 72. Alternatively, the annular filter structure 68 may have a variable diameter or wedge-shape to facilitate a compressive fit with the threaded retainer 72. Any other suitable attachment mechanism is within the scope of the present technique. In operation, the annular filter structure 60 may be secured tightly within the filter receptacle 76 by rotating the thread retainer 72 into internal threads 84 within the filter receptacle 76. Alternatively, the entire annular filter structure 68 may be compressively fit within the filter receptacle 76. An external retainer (not shown) also may be engaged with external retainer threads 86 to secure the tip 40 to the head 42.

    [0016] While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is defined by the following appended claims.


    Claims

    1. An industrial torch (12), comprising:

    a torch body (44) having first oxygen (50) and gas (52) supply passages;

    a high-pressure second oxygen supply passage (48);

    a torch head (42) coupled to the torch body (44) and comprising a flashback arrestor disposed in a path of first oxygen and gas flows through the torch head (42); and

    a torch tip (40) coupled to the torch head (42);

    wherein the flashback arrestor comprises an annular hollow insert (68) and a passageway (78) such that a high pressure second oxygen from a high pressure oxygen inlet (60) is directly coupled to the tip (40),

    characterized in that said flashback arrestor is a porous metallic filter (66) insertable into the head (42) within the path of a first oxygen and gas flow,

    wherein the porous metallic filter (66) has nonlinear passageways, and

    wherein the torch (12) has an oxygen-gas mixing region downstream of the flashback arrestor.


     
    2. The industrial torch of claim 1, wherein the annular insert (68) comprises a nonporous ring (70) disposed between the oxygen (62) and gas flow (64) regions.
     
    3. The industrial torch of claim 1, wherein the annular insert (68) comprises a threaded retainer ring (72).
     
    4. The industrial torch of claim 1, wherein the porous metallic filter (66) comprises random metal particulate having the nonlinear passageways extending thereabout.
     
    5. The industrial torch of claim 1, wherein the flashback arrestor comprises a seal (70) disposed between the oxygen (62) and gas (64) flows.
     
    6. The industrial torch of claim 1, wherein the head-mounted flashback arrestor is adapted to deter flame propagation upstream of the torch head (42).
     
    7. The industrial torch of claim 1, wherein the head-mounted flashback arrestor comprises a pressed and sintered metallic filter (66).
     
    8. The industrial torch of claim 1, wherein the head-mounted flashback arrestor comprises a metal injection molded filter (66).
     
    9. The industrial torch of claim 5, wherein the seal (70) comprises an annular metallic ring.
     
    10. The industrial torch of claim 1, wherein the head-mounted flashback arrestor comprises a porous metallic filter (66) having random passageways.
     
    11. The industrial torch of claim 10, wherein the random passageways comprises nonlinear pores having a diameter less than 100 microns.
     
    12. The industrial torch (12) of claim 1, wherein the oxygen (50) and gas (52) supplies are preheated supplies.
     
    13. A method of operating an industrial torch (12), comprising the acts of:

    separately flowing gas and oxygen through a body section (44) and into a head section (42) of the industrial torch (12);

    flowing the gas and oxygen through a flashback arrestor in the head section (42); and

    ejecting an oxygen-gas mixture from a tip section (40) coupled to the head section (42);

    characterized by the act of flowing the gas and oxygen through the flashback arrestor comprising the act of forcing the gas and oxygen through nonlinear passageways;

    the act of flowing the gas and oxygen through the flashback arrestor comprising the act of separately passing the gas and oxygen through the flashback arrestor; and

    the act of creating the oxygen-gas mixture within the head section (42) downstream of the flashback arrestor,

    the flashback arrestor being a porous metallic filter (66) insertable into the head (42) within the path of a first oxygen and gas flow.


     
    14. The method of claim 13, wherein the act of flowing the gas and oxygen through the flashback arrestor comprises the act of passing the gas and oxygen through a filtering mechanism (66) having random passageways.
     
    15. The method of claim 13, wherein the act of flowing the gas and oxygen through the flashback arrestor comprises the act of preventing flashback upstream of the head section (42).
     
    16. The method of claim 13, comprising the act of combusting the oxygen-gas mixture downstream of the tip section.
     
    17. The method of claim 13, comprising the act of terminating a flame propagating into the industrial torch (12) at the flashback arrestor.
     


    Ansprüche

    1. Industrieller Schweißbrenner (12) der umfasst:

    einen Schweißbrennerkörper (44) mit einem ersten Sauerstoffdurchlass (50) und einem Gaszufuhrdurchlass (52);

    einen zweiten Hochdruck-Sauerstoffzufuhrdurchlass (48);

    einen Schweißbrennerkopf (42), der mit dem Schweißbrennerkörper (44) gekoppelt ist und eine Flammenrückschlagsperre aufweist, die in einem Weg einer ersten Sauerstoffströmung und einer Gasströmung durch den Schweißbrennerkopf (42) angeordnet ist; und

    eine Schweißbrennerspitze (40), die mit dem Schweißbrennerkopf (42) gekoppelt ist;

    wobei die Flammenrückschlagsperre einen ringförmigen hohlen Einsatz (68) und einen Durchlassweg (78) umfasst, derart, dass zweiter Hochdrucksauerstoff von einem Hochdrucksauerstoffeinlass (60) direkt mit der Spitze (40) gekoppelt ist,

    dadurch gekennzeichnet, dass die Flammenrückschlagsperre ein poröser Metallfilter (66) ist, der in den Kopf (42) in dem Weg einer ersten Sauerstoffströmung und einer Gasströmung eingesetzt ist, wobei der poröse Metallfilter (66) nicht geradlinige Durchlasswege besitzt und

    wobei der Schweißbrenner (12) einen Sauerstoff/Gas-Mischbereich stromabseitig der Flammenrückschlagsperre besitzt.


     
    2. Industrieller Schweißbrenner nach Anspruch 1, wobei der ringförmige Einsatz (68) einen nicht porösen Ring (70) umfasst, der zwischen dem Sauerstoffströmungsbereich (62) und dem Gasströmungsbereich (64) angeordnet ist.
     
    3. Industrieller Schweißbrenner nach Anspruch 1, wobei der ringförmige Einsatz (68) einen mit Gewinde versehenen Rückhaltering (72) umfasst.
     
    4. Industrieller Schweißbrenner nach Anspruch 1, wobei der poröse Metallfilter (66) zufällig verteilte Metallpartikel enthält, um den die nicht geradlinigen Durchlasswege verlaufen.
     
    5. Industrieller Schweißbrenner nach Anspruch 1, wobei die Flammenrückschlagsperre eine Dichtung (70) umfasst, die zwischen der Sauerstoffströmung (62) und der Gasströmung (64) angeordnet ist.
     
    6. Industrieller Schweißbrenner nach Anspruch 1, wobei die am Kopf montierte Flammenrückschlagsperre dazu ausgelegt ist, eine Flammenausbreitung stromaufseitig des Schweißbrennerkopfes (42) zu verhindern.
     
    7. Industrieller Schweißbrenner nach Anspruch 1, wobei die am Kopf montierte Flammenrückschlagsperre einen gepressten und gesinterten Metallfilter (66) umfasst.
     
    8. Industrieller Schweißbrenner nach Anspruch 1, wobei die am Kopf montierte Flammenrückschlagsperre einen Metallspritzgussfilter (66) umfasst.
     
    9. Industrieller Schweißbrenner nach Anspruch 5, wobei die Dichtung (70) einen ringförmigen Metallring umfasst.
     
    10. Industrieller Schweißbrenner nach Anspruch 1, wobei die am Kopf montierte Flammenrückschlagsperre einen porösen Metallfilter (66) mit zufälligen Durchlasswegen besitzt.
     
    11. Industrieller Schweißbrenner nach Anspruch 10, wobei die zufälligen Durchlasswege nicht geradlinige Poren mit einem Durchmesser von weniger als 100 Mikrometern aufweisen.
     
    12. Industrieller Schweißbrenner (12) nach Anspruch 1, wobei die Sauerstoffzufuhr (50) und die Gaszufuhr (52) vorerwärmte Zufuhreinrichtungen sind.
     
    13. Verfahren zum Betreiben eines industriellen Schweißbrenners (12), das die folgenden Schritte umfasst:

    getrenntes Leiten von Gas und von Sauerstoff durch einen Körperabschnitt (44) und in einen Kopfabschnitt (42) des industriellen Schweißbrenners (12);

    Leiten des Gases und des Sauerstoffs durch eine Flammenrückschlagsperre im Kopfabschnitt (42); und

    Ausstoßen eines Sauerstoff/Gas-Gemisches von einem Spitzenabschnitt (40), der mit dem Kopfabschnitt (42) gekoppelt ist;

    dadurch gekennzeichnet, dass der Schritt des Leitens des Gases und des Sauerstoffs durch die Flammenrückschlagsperre den Schritt des Drängens des Gases und des Sauerstoffs durch nicht geradlinige Durchlasswege umfasst;

    der Schritt des Leitens des Gases und des Sauerstoffs durch die Flammenrückschlagsperre den Schritt des getrennten Schickens des Gases und des Sauerstoffs durch die Flammenrückschlagsperre umfasst; und

    der Schritt des Erzeugens des Sauerstoff/GasGemisches in dem Kopfabschnitt (42) stromabseitig der Flammenrückschlagsperre vorgesehen ist,

    die Flammenrückschlagsperre ein poröser Metallfilter (66) ist, der in den Kopf (42) in dem Weg einer ersten Sauerstoffströmung und einer Gasströmung einsetzbar ist.


     
    14. Verfahren nach Anspruch 13, wobei der Schritt des Leitens des Gases und des Sauerstoffs durch die Flammenrückschlagsperre den Schritt des Schickens des Gases und des Sauerstoffs durch einen Filtermechanismus (66), der zufällige Durchlasswege besitzt, umfasst.
     
    15. Verfahren nach Anspruch 13, wobei der Schritt des Leitens des Gases und des Sauerstoffs durch die Flammenrückschlagsperre den Schritt des Verhinderns eines Flammenrückschlags stromaufseitig des Kopfabschnitts (42) umfasst.
     
    16. Verfahren nach Anspruch 13, das den Schritt des Verbrennens des Sauerstoff/Gas-Gemisches stromabseitig des Spitzenabschnitts umfasst.
     
    17. Verfahren nach Anspruch 13, das den Schritt des Beendens einer sich im industriellen Schweißbrenner (12) ausbreitenden Flamme bei der Flammenrückschlagsperre umfasst.
     


    Revendications

    1. Chalumeau industriel (12), comprenant:

    un corps de chalumeau (44) comportant des premiers passages d'alimentation d'oxygène (50) et de gaz (52);

    un deuxième passage d'alimentation d'oxygène à haute pression (48);

    une tête de chalumeau (42) qui est couplée au corps de chalumeau (44) et qui comprend un dispositif anti-retour de flamme qui est disposé dans un chemin de premiers écoulements d'oxygène et de gaz à travers la tête de chalumeau (42); et

    un bec de chalumeau (40) qui est couplé à la tête de chalumeau (42)

    dans lequel le dispositif anti-retour de flamme comprend un insert annulaire creux (68) et un passage (78) de telle sorte qu'un deuxième écoulement d'oxygène à haute pression en provenance d'une entrée d'oxygène à haute pression (60) soit directement couplé au bec (40),

    caractérisé en ce que ledit dispositif anti-retour de flamme est un filtre métallique poreux (66) qui peut être inséré dans la tête (42) à l'intérieur du chemin du premier écoulement d'oxygène et de gaz, dans lequel le filtre métallique poreux (66) comporte des passages non linéaires, et dans lequel le chalumeau (12) comprend une région de mélange de l'oxygène et du gaz qui est située en aval du dispositif anti-retour de flamme.


     
    2. Chalumeau industriel selon la revendication 1, dans lequel l'insert annulaire (68) comprend un anneau non poreux (70) qui est disposé entre les régions d'écoulement d'oxygène (62) et de gaz (64).
     
    3. Chalumeau industriel selon la revendication 1, dans lequel l'insert annulaire (68) comprend une bague de retenue filetée (72).
     
    4. Chalumeau industriel selon la revendication 1, dans lequel le filtre métallique poreux (66) comprend des particules de métal aléatoires comportant des passages non linéaires qui s'étendent autour de celles-ci.
     
    5. Chalumeau industriel selon la revendication 1, dans lequel le dispositif anti-retour de flamme comprend un joint (70) qui est disposé entre les écoulements d'oxygène (62) et de gaz (64).
     
    6. Chalumeau industriel selon la revendication 1, dans lequel le dispositif anti-retour de flamme monté sur la tête est adapté pour empêcher la propagation de flamme en amont de la tête de chalumeau (42).
     
    7. Chalumeau industriel selon la revendication 1, dans lequel le dispositif anti-retour de flamme comprend un filtre métallique pressé et fritté (66).
     
    8. Chalumeau industriel selon la revendication 1, dans lequel le dispositif anti-retour de flamme monté sur la tête comprend un filtre métallique moulé par injection (66).
     
    9. Chalumeau industriel selon la revendication 5, dans lequel le joint (70) comprend un anneau métallique annulaire.
     
    10. Chalumeau industriel selon la revendication 1, dans lequel le dispositif anti-retour de flamme monté sur la tête comprend un filtre métallique poreux (66) qui comporte des passages aléatoires.
     
    11. Chalumeau industriel selon la revendication 10, dans lequel les passages aléatoires comprennent des pores non linéaires qui présentent un diamètre inférieur à 100 microns.
     
    12. Chalumeau industriel (12) selon la revendication 1, dans lequel les alimentations en oxygène (50) et en gaz (52) sont des alimentations préchauffées.
     
    13. Procédé de commande d'un chalumeau industriel (12), comprenant les étapes suivantes:

    faire s'écouler séparément du gaz et de l'oxygène à travers une section de corps (44) et dans une section de tête (42) du chalumeau industriel (12);

    faire s'écouler le gaz et l'oxygène à travers un dispositif anti-retour de flamme dans la section de tête (42); et

    éjecter un mélange d'oxygène et de gaz à partir d'une section de bec (40) qui est couplée à la section de tête (42);

    caractérisé par:

    l'étape qui consiste à faire s'écouler le gaz et l'oxygène à travers le dispositif anti-retour de flamme, comprenant l'étape qui consiste à forcer le gaz et l'oxygène à travers des passages non linéaires;

    l'étape qui consiste à faire s'écouler le gaz et l'oxygène à travers le dispositif anti-retour de flamme, comprenant l'étape qui consiste à faire passer séparément le gaz et l'oxygène à travers le dispositif anti-retour de flamme; et

    l'étape qui consiste à créer le mélange d'oxygène et de gaz à l'intérieur de la section de tête (42) en aval du dispositif anti-retour de flamme,

    le dispositif anti-retour de flamme étant un filtre métallique poreux (66) qui peut être inséré dans la tête (42) à l'intérieur du chemin d'un premier écoulement d'oxygène et de gaz.


     
    14. Procédé selon la revendication 13, dans lequel l'étape d'écoulement de gaz et d'oxygène à travers le dispositif anti-retour de flamme comprend l'étape de passage du gaz et de l'oxygène à travers un mécanisme de filtre (66) qui comporte des passages aléatoires.
     
    15. Procédé selon la revendication 13, dans lequel l'étape d'écoulement du gaz et de l'oxygène à travers le dispositif anti-retour de flamme comprend l'étape d'empêchement d'un retour de flamme en amont de la section de tête (42).
     
    16. Procédé selon la revendication 13, comprenant l'étape de combustion du mélange d'oxygène et de gaz en aval de la section de bec.
     
    17. Procédé selon la revendication 13, comprenant l'étape d'arrêt de propagation de flamme dans le chalumeau industriel (12) au dispositif anti-retour de flamme.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description