(19)
(11)EP 1 533 495 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 04026714.8

(22)Date of filing:  10.11.2004
(51)International Patent Classification (IPC): 
F02B 75/04(2006.01)
F02F 3/00(2006.01)

(54)

INTERNAL COMBUSTION ENGINE

BRENNKRAFTMASCHINE

MOTEUR À COMBUSTION INTERNE


(84)Designated Contracting States:
DE FR GB

(30)Priority: 19.11.2003 JP 2003388641

(43)Date of publication of application:
25.05.2005 Bulletin 2005/21

(73)Proprietor: NISSAN MOTOR COMPANY LIMITED
Yokohama-shi, Kanagawa 221-0023 (JP)

(72)Inventors:
  • Aoyama, Shunichi
    Yokosuka-shi Kanagawa 237-0066 (JP)
  • Moteki, Katsuya
    Tokyo 150-0001 (JP)
  • Ushijima, Kenshi
    Kamakura-shi Kanagawa 248-0013 (JP)
  • Takahashi, Naoki
    Yokohama-shi Kanagawa 223-0062 (JP)

(74)Representative: Grünecker Patent- und Rechtsanwälte PartG mbB 
Leopoldstraße 4
80802 München
80802 München (DE)


(56)References cited: : 
WO-A-03/029701
JP-A- 2002 174 131
JP-A- 11 343 802
US-A- 3 403 605
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to an internal combustion engine according to the preamble of independent claim 1. Such an internal combustion engine can be taken from the prior art document JP 2002-174131 A.

    [0002] Japanese Patent Application Publication No. 2001-227367 discloses a variable compression ratio mechanism of an internal combustion engine using a multilink piston crank mechanism. This mechanism links a piston and a crankpin with each other by an upper link and a lower link. One end of the upper link is connected with the piston via a piston pin. The other end of the upper link is connected with the lower link via a first connection pin. The lower link is mounted rotatably on the crankpin of a crankshaft. This mechanism restrains movement of the lower link by a control link having one end connected with the lower link via a second connection pin. The other end of the control link is supported on a lower part of a cylinder block, for example, via a cam mechanism. The center of swinging motion of the other end of the control link can be shifted by the cam mechanism so as to vary a top dead center of the piston, and thereby vary a compression ratio of the engine.

    [0003] Performances of an inner-cylinder injection engine, such as a diesel engine or an inner-cylinder direct injection gasoline engine, largely depend on a shape of a combustion chamber and a characteristic of a gas flow. For a diesel engine, the combustion chamber shape and the gas flow characteristic are significant factors in determining not only an emission performance but an output performance because the combustion chamber shape and the gas flow characteristic greatly influence an air utilization rate during a full-load operation. One of measures for enlarging an engine displacement and increasing an engine output of such internal combustion engine is to elongate a piston stroke. However, with a general single-link piston crank mechanism, elongating a piston stroke to a long stroke and thereby making a displacement per cylinder larger than a certain value may raise a tendency of causing a poor combustion at a low speed operation. In a gasoline engine, when a volume displacement per cylinder becomes large, flame propagation takes a relatively long time, and therefore makes a combustion unstable at a low speed operation where a gas flow is small. If the engine is set with a high compression ratio or an advanced ignition timing to improve such poor combustion, the engine becomes prone to a knocking, which is not appropriate for practical use as an internal combustion engine. Further, in an inline four-cylinder internal combustion engine, elongating a piston stroke may cause a sharp increase in secondary inertia vibration of the piston, and thereby aggravate a noise vibration characteristic. Besides, elongating a piston stroke may entail an increase in size of the internal combustion engine.

    [0004] It is an object of the present invention to provide an internal combustion engine as indicted above having an engine displacement enlarged without increasing a basic size of the engine or aggravating a noise vibration characteristic.

    [0005] According to the present invention said object is solved by an internal combustion engine having the features of independent claim 1. Preferred embodiments are laid down in the dependent claims.

    [0006] Accordingly, it is provided an internal combustion engine includes: a piston reciprocating in a cylinder; a crankshaft including a counterweight having an outermost portion to cross an imaginary extension line extended from a piston pin in an axial direction of the piston pin when the piston is located in proximity of a bottom dead center; and a piston-crank linking mechanism linking the piston with the crankshaft.

    [0007] Hereinafter the present invention is illustrated and explained by means of preferred embodiments in conjunction with the accompanying drawings. In the drawings wherein:

    FIG. 1 is a vertical sectional view showing a variable compression ratio mechanism used in an internal combustion engine according to an embodiment of the present invention.

    FIGS. 2A, 2B, 2C and 2D are illustrations used for explaining a basic operation of a multilink piston crank mechanism used in the variable compression ratio mechanism. Said FIGS. 2A, 2B, 2C, and 2D does not illustrate the entire combination of the features of the independent claim but provides explanation for understanding the invention.

    FIG. 3 is a vertical sectional view of a piston used in the multilink piston crank mechanism of FIG. 1, as taken along a plane orthogonal to the axis of a crankshaft.

    FIG. 4 is a side sectional view of the piston of FIG. 3, as taken along a plane parallel to the axis of the crankshaft.

    FIG. 5 is a perspective cutaway view of the piston of FIG. 3.

    FIG. 6 is a side view of the piston of FIG. 3.

    FIG. 7 is a side sectional view showing a positional relationship of the piston at a bottom dead center and a counterweight used in the internal combustion engine of FIG. 1.

    FIG. 8 is a diagram for explaining a piston stroke of a general single-link piston crank mechanism of earlier technology.

    FIG. 9 is a diagram for explaining a piston stroke of the multilink piston crank mechanism of FIG. 1. Said FIG. 9 does not illustrate the entire combination of the features of the independent claim but provides explanation for understanding the invention.

    FIG. 10 is a graph showing a piston stroke characteristic of the multilink piston crank mechanism of FIG. 1.

    FIG. 11 is a graph showing a piston acceleration characteristic of the multilink piston crank mechanism of FIG. 1. Said FIG. 11 does not illustrate the entire combination of the features of the independent claim but provides explanation for understanding the invention.


    DETAILED DESCRIPTION OF THE INVENTION



    [0008] FIG. 1 is a vertical sectional view showing a variable compression ratio mechanism used in an internal combustion engine according to an embodiment of the present invention. In this example, the internal combustion engine of this example is an inner-cylinder direct injection gasoline engine. The variable compression ratio mechanism is composed of a multilink piston crank mechanism or piston-crank linking mechanism or linkage including a lower link 4, an upper link 5 and a control link 10.

    [0009] The internal combustion engine of FIG. 1 includes a crankshaft 1, and a cylinder block 18 housing cylinders 19, and also includes the multilink piston crank mechanism and a piston 8 for each of cylinders 19. Crankshaft 1 includes a journal portion 2 and a crankpin 3 for each cylinder. Journal portion 2 is supported rotatably on a main bearing of cylinder block 18. Crankpin 3 is eccentric from journal portion 2 by a predetermined distance. Lower link 4 is connected rotatably with crankpin 3. Crankshaft 1 also includes counterweights 15 and crank webs 16. Each of crank webs 16 connects journal portion 2 and crankpin 3. Counterweights 15 each extend from crank web 16 in a direction away from crankpin 3, and include a circumferential portion formed in an arc-shape around journal portion 2. Counterweights 15 oppose each other across crankpin 3 in an axial direction of crankpin 3. Piston 8 reciprocates in cylinder 19 by combustion pressure.

    [0010] Lower link 4 is divisible into right and left portions, and includes a connection hole surrounded by the right and left portions. Crankpin 3 is fit in the connection hole.

    [0011] Upper link 5 includes a lower end connected rotatably with one end of lower link 4 by a first connection pin 6, and an upper end connected rotatably with piston 8 by a piston pin 7.

    [0012] The internal combustion engine of FIG. 1 also includes a control shaft 12. Control link 10 includes an upper end connected rotatably with the other end of lower link 4 by a second connection pin 11, and a lower end connected rotatably with a lower part of cylinder block 18 via control shaft 12. Control link 10 thereby restrains movement of lower link 4. The lower part of cylinder block 18 forms a part of the engine body. Control shaft 12 is supported rotatably on the engine body, and includes an eccentric cam 12a which is eccentric from an axis of the rotation of control shaft 12. The lower end of control link 10 is fit rotatably over eccentric cam 12a.

    [0013] The rotational position of control shaft 12 is controlled by a compression ratio control actuator operating in accordance with a control signal from an engine control unit.

    [0014] With the above-described variable compression ratio mechanism using the multilink piston crank mechanism, when control shaft 12 is rotated by the compression ratio control actuator, the central position of eccentric cam 12a varies relative to the engine body. This varies the position of the lower end of control link 10 which is supported movably relative to the engine body by eccentric cam 12a and control shaft 12. The variation of the support position of control link 10 varies a stroke of piston 8, and a vertical position of piston 8 at a top dead center (TDC). Thus, the variable compression ratio mechanism can vary a compression ratio of the engine. In this example, at least control shaft 12 forms a support position varying section to vary the position of the lower end of control link 10 relative to the engine body.

    [0015] FIGS. 2A, 2B, 2C and 2D are illustrations used for explaining a basic operation of the multilink piston crank mechanism. FIGS. 2A to 2D illustrate cyclic operations of the elements of the mechanism at every 90° CA (crank angle) in the course of the crankshaft making one rotation (360° CA). FIG. 2B indicates the top dead center (TDC) of piston 8. As shown in FIG. 2B, varying the position of the lower end of control link 10 shifts piston 8 in a vertical direction of the cylinder, and thereby varies the compression ratio.

    [0016] FIG. 10 is a graph showing a piston stroke characteristic of the multilink piston crank mechanism. FIG. 11 is a graph showing a piston acceleration characteristic of the multilink piston crank mechanism. The above-described multilink variable compression ratio mechanism using the multilink piston crank mechanism can provide a piston stroke characteristic approximate to simple harmonic oscillation by setting a link dimension determined by lower link 4, upper link 5 and control link 10. Especially, as shown in FIG. 10, the multilink variable compression ratio mechanism can exhibit a piston stroke characteristic which is more approximate to simple harmonic oscillation than a piston stroke characteristic of a general single-link piston crank mechanism. Then, as shown in FIG. 11, a piston acceleration of piston 8 of the multilink variable compression ratio mechanism is leveled, and a maximum inertial force is largely reduced in the proximity of the top dead center (TDC). When the multilink variable compression ratio mechanism exhibits the above-mentioned piston stroke characteristic approximate to simple harmonic oscillation, a piston speed of piston 8 in the proximity of the top dead center is approximately 20% slower than that of the single-link piston crank mechanism.

    [0017] FIG. 3 is a vertical sectional view of piston 8 taken along a plane orthogonal to the axis of crankshaft 1. FIG. 4 is a side sectional view of piston 8 taken along a plane parallel to the axis of crankshaft 1. FIG. 5 is a perspective cutaway view of piston 8. FIG. 6 is a side view of piston 8. Piston 8 of this example is cast integrally by using an aluminum alloy, and includes a piston crown or piston head portion 21, piston-ring groove portions 22, and first and second skirt portions 23. Piston head portion 21 has a relatively thick circular form including a circumferential portion formed around a circumferential direction of the piston head portion 21. Piston-ring groove portions 22 are formed in the circumferential portion of piston head portion 21 in the circumferential direction. In FIGS. 3 to 6, piston 8 includes three piston-ring groove portions 22. First and second skirt portions 23 are formed, respectively, on thrust and counterthrust sides of the circumferential direction of piston 8, and extend from the circumferential portion downwardly along an inner circumference of cylinder 19. A projected shape of each of skirt portions 23, as viewed from a direction orthogonal to the axis of piston pin 7, is substantially rectangular, as shown in FIG. 6. As shown in FIG. 7, each of skirt portions 23 has a width substantially equal to or shorter than an overall length of piston pin 7, as compared in a direction parallel to the axis of piston pin 7. That is, each of skirt portions 23 is provided in a considerably small range in the circumferential direction.

    [0018] Piston 8 also includes a pair of pin boss portions 24 formed at a central part of piston 8 and spaced from each other. Each of pin boss portions 24 protrudes at a central part of the underside of piston head portion 21, and includes a pin hole 25 extending through pin boss portion 24 in the axial direction of piston pin 7. Ends of piston pin 7 are fit rotatably in pin holes 25. Each of pin holes 25 includes a pair of oil grooves 26 formed in an inside surface of pin hole 25 and extending in the axial direction of piston pin 7.

    [0019] FIG. 7 is a side sectional view showing upper link 5, counterweight 15 and piston 8 at a bottom dead center. FIG. 9 is a diagram for explaining a stroke of piston 8. Upper link 5 of this example is made of steel. The upper end of upper link 5 extends through a gap between pin boss portions 24. Piston pin 7 is pressed into the upper end of upper link 5 at the gap, and thereby connects the upper end of upper link 5 with piston 8, as shown in FIG. 7. The lower end of upper link 5 is branched into two parts supporting both ends of first connection pin 6, and thereby is connected with lower link 4, as shown in FIG. 9.

    [0020] At the upper and lower ends of upper link 5, piston pin 7 and first connection pin 6 have an equal axial length. Besides, piston pin 7 and first connection pin 6 receive a basically equal load. Therefore, piston pin 7 and first connection pin 6 have an equal diameter or sectional size.

    [0021] Pin boss portions 24 and piston pin 7 form a piston connection structure for connecting piston 8 with upper link 5. A size of the piston connection structure, as measured in the axial direction of piston pin 7, is considerably smaller than a diameter of each of piston 8 and cylinder 19, as shown in FIGS. 7 and 9.

    [0022] When piston 8 is located in the proximity of the bottom dead center, an outermost portion of counterweight 15 crosses an imaginary extension line extended from piston pin 7 in the axial direction, as shown in FIG. 7. That is, when piston 8 is located in the proximity of the bottom dead center, the outermost portion of counterweight 15 passes the side of pin boss portion 24 and piston pin 7 without conflicting with pin boss portion 24 and piston pin 7. Thus, at the bottom dead center, piston 8 is located at a considerably small distance from the axis of crankshaft 1. Piston 8 of FIG. 7 is located closer to the axis of crankshaft 1 than the piston of FIG. 2D and FIG. 11-IV. FIG. 2D and FIG. 11-IV are illustrations used for explaining a basic operation of the multilink piston crank mechanism, and therefore depicts counterweight 15 spaced from piston pin 7 in the vertical direction.

    [0023] FIG. 8 shows a piston stroke of a piston 102 combined with a general single-link piston crank mechanism 101 of earlier technology. FIG. 9 shows a piston stroke of the multilink piston crank mechanism of this embodiment. The piston strokes are each indicated by an arrow between a top dead center and a bottom dead center. The piston stroke of FIG. 9 is elongated largely, compared to the piston stroke of FIG. 8. Thus, the multilink piston crank mechanism of this embodiment can increase an engine displacement of the internal combustion engine without increasing a size of the engine. As an example, the multilink piston crank mechanism of this embodiment can elongate the piston stroke by approximately 20%.

    [0024] Piston 8 of this embodiment includes the small skirt portions 23 as mentioned above. Therefore, when counterweight 15 passes the side of pin boss portion 24, counterweight 15 does not conflict with skirt portion 23, as shown in FIGS. 7 and 9. In this invention, skirt portion 23 does not need to be formed with a large degree of strength or rigidity, but can be formed with a minimum size, because the multilink piston crank mechanism of this invention undergoes a smaller amount of side thrust load acting to tilt piston 8 than a general single-link piston crank mechanism. Specifically, piston 8 undergoes a maximum combustion pressure in an early stage of an expansion stroke, and therefore, in the proximity of the stage of FIG. 2C, piston head portion 21 undergoes a maximum load. In this stage, upper link 5 is postured substantially upright with a considerably small inclination with respect to the axis of cylinder 19, as indicated in FIG. 2C and FIG. 9. Especially, the inclination of upper link 5 with respect to the axis of cylinder 19 can be made smaller than an inclination of a connecting rod of the single-link piston crank mechanism of FIG. 8. Therefore, piston 8 of this invention undergoes a smaller side thrust load, and can include the small skirt portions 23.

    [0025] As mentioned above, when the multilink piston crank mechanism of this embodiment provides the piston stroke characteristic approximate to simple harmonic oscillation, the piston acceleration of piston 8 is leveled, and the maximum inertial force is largely reduced in the proximity of the top dead center. Therefore, pin boss portion 24 receiving piston pin 7 can be made smaller as mentioned above.

    [0026] Besides, if single-link piston crank mechanism 101 of FIG. 8 includes a crankpin offset farther from the center of a crankshaft and thereby elongates the piston stroke of piston 102 to a long stroke, piston 102 undergoes a larger amount of side thrust load. In this case, piston 102 not only cannot include a small skirt portion, and but cannot operate appropriately to serve as a practically usable engine. By contrast, the multilink piston crank mechanism of this invention can elongate the piston stroke without piston 8 undergoing a large amount of side thrust load, and thus piston 8 can properly include the small skirt portions 23.

    [0027] The multilink piston crank mechanism of this invention is preferred for use in an inline four-cylinder engine. Generally, in such an inline four-cylinder engine, elongating a piston stroke may cause a sharp increase in secondary inertia vibration of the piston, and thereby aggravate a noise vibration characteristic. By contrast, the multilink piston crank mechanism of this invention can provide the piston stroke characteristic approximate to simple harmonic oscillation, and thus can increase an engine displacement by elongating the piston stroke without aggravating such noise vibration characteristic.

    [0028] Further, when the multilink piston crank mechanism of this invention exhibits the piston stroke characteristic approximate to simple harmonic oscillation, the piston speed of piston 8 in the proximity of the top dead center becomes slower than the single-link piston crank mechanism. Thus, the multilink piston crank mechanism of this invention secures a sufficient time for a combustion at a same combustion rate, as compared to the single-link piston crank mechanism, and thus can enable an excellent combustion in a combustion chamber having a large displacement per cylinder.

    [0029] Piston 8 of FIGS. 3 to 6 includes two piston rings or compression rings 27 between three piston-ring groove portions 22. Piston 8 of FIG. 7 includes one compression ring 27 between two piston-ring groove portions 22. Piston 8 of this invention includes small pin boss portion 24 and piston pin 7, and therefore has a lightweight lower part. Thus, piston 8 including one compression ring 27 is advantageous not only in stabilizing the behavior of piston 8 around piston pin 7, but in elongating the piston stroke.

    [0030] As mentioned above, the internal combustion engine of this invention may be an inline four-cylinder engine including: first, second, third and fourth cylinders 19 arranged in line; first, second, third and fourth pistons 8 reciprocating respectively in the first, second, third and fourth cylinders 19; a crankshaft 1 including first, second, third and fourth counterweights 15 each having an outermost portion to cross an imaginary extension line extended from one of first, second, third and fourth piston pins 7 in an axial direction of the piston pin 7 when one of the first, second, third and fourth pistons 8 is located in proximity of a bottom dead center; and first, second, third and fourth piston-crank linking mechanisms linking the first, second, third and fourth pistons 8, respectively, with the crankshaft 1.


    Claims

    1. An internal combustion engine, comprising:

    a piston (8) including a piston head section (21) having first and second skirt portions (23) and a pin boss portion (24), the piston (8) reciprocating in a cylinder (19);

    a multi link piston-crank linking mechanism (4, 5, 10) linking the piston (8) and the piston pin (7) with a crankshaft (1), the multi link piston-crank linking mechanism including an upper link (5); a lower link (4) and a control link (10); and the crankshaft (1) including a counterweight (15) having an outermost portion, wherein the upper link (5) has a first end connected with the piston (8) by the piston pin (7); the lower link (4) has a first end connected with a second end of the upper link (5) by a first connection pin (6), and is mounted rotatably on a crankpin (3) of the crankshaft (1); and the control link (10) has a first end connected with a second end of the lower link (4) by a second connection pin (11) and a second end supported movably relative to a body of the internal combustion engine,

    characterized in that

    the counterweight (15) having the outermost portion crosses an imaginary extension line extended from the piston pin (7) in an axial direction of the piston pin (7) when the piston (8) is located in proximity of a bottom dead center (BDC), such that the outermost portion of the counterweight (15) passes a side of the pin boss portion (24) of the piston (8) and the piston pin (7) without conflicting with the pin boss portion (24) and each of the first and second skirt portions (23) of the piston (8) and the piston pin (7) and the counterweight (15) projects outwardly beyond the piston head portion (21) of the piston (8) in the axial direction of the piston pin (7), when the piston (8) is located in proximity of the bottom dead center (BDC), wherein the upper link (5) is positioned with a small inclination with respect to an axis of the cylinder (19) when the piston (8) is located at a position at which the piston (8) undergoes a maximum combustion pressure.


     
    2. An internal combustion engine according to claim 1, characterized in that the piston pin (7) and the first connection pin (6) are substantially equal to each other in axial length.
     
    3. An internal combustion engine according to claim 1 or 2, characterized in that the pin boss portion includes first and second pin boss portions (24) receiving first and second (both) ends of piston pin (7), respectively; and the first end of the upper link (5) extends through a gap between the first and second pin boss portions (24), and is fit over the piston pin (7).
     
    4. An internal combustion engine according to any of the claims 1 to 3, characterized in that the first and second skirt portions (23) are formed respectively on thrust and counterthrust sides of a circumferential direction of the piston (8).
     
    5. An internal combustion engine according to any of the claims 1 to 4, characterized by a support position varying section (12) to vary a position of the second end of the control link (10) relative to the body of the internal combustion engine, and thereby to vary a compression ratio of the internal combustion engine.
     
    6. An internal combustion engine according to claim 5, characterized in that the support position varying section includes a control shaft (12) supported rotatably on the body of the internal combustion engine, and including an eccentric cam (12a) fit rotatably in the second end of the control link (10).
     
    7. An internal combustion engine according to any of the claims 1 to 6, characterized in that the piston-crank linking mechanism (4, 5, 10) links the piston (8) with the crankshaft (1) so that the piston (8) reciprocates in the cylinder (19) in accordance with rotation of the crankshaft (1) with a piston stroke having a characteristic approximate to simple harmonic oscillation.
     
    8. An internal combustion engine according to any of the claims 1 to 7, characterized in that the internal combustion engine is configured as an inline four-cylinder engine.
     
    9. An internal combustion engine according to any of the claims 1 to 8, characterized in that the crankshaft (1) includes two of the counterweights (15) on opposite sides of a crankpin (3).
     
    10. An internal combustion engine according to any of the claims 1 to 9, characterized in that the piston (8) includes a compression ring (27) in a piston-ring groove (22).
     


    Ansprüche

    1. Eine Brenn-Kraft-Maschine mit innerer Verbrennung, die umfasst:

    einen Kolben (8), der einen Kolben-Kopf-Abschnitt (21), der erste und zweite Hemd-Abschnitte (23) hat, und einen Kolben-Bolzen-Abschnitt (24) umfasst, der Kolben (8) geht in einem Zylinder (19) hin und her;

    einen Multi-Lenker-Kolben-Kurbel-Verbindungs-Mechanismus (4, 5, 10), der den Kolben (8) und den Kolben-Bolzen (7) mit einer Kurbel-Welle (1) verbindet, der Multi-Lenker-Kolben-Kurbel-Verbindungs-Mechanismus beinhaltet einen oberen Lenker (5); einen unteren Lenker (4) und einen Steuer-Lenker (10); und die Kurbel-Welle (1) beinhaltet ein Ausgleichs-Gewicht (15), dass einen am weitesten außen liegenden Abschnitt hat, wobei der obere Lenker (5) ein erstes Ende hat, das mit dem Kolben (8) durch den Kolben-Bolzen (7) verbunden ist; der untere Lenker (4) hat ein erstes Ende, das mit einem zweiten Ende des oberen Lenkers (5) durch einen ersten Verbindungs-Stift (6) verbunden ist, und drehbar an einem Kurbel-Zapfen (3) der Kurbel-Welle (1) montiert ist; und der Steuer-Lenker (10) hat ein erstes Ende, das mit einem zweiten Ende des unteren Lenkers (4) durch einen zweiten Verbindungs-Stift (11) verbunden ist, und ein zweites Ende, das bewegbar relativ zu einem Körper der Brenn-Kraft-Maschine mit innerer Verbrennung gelagert ist,

    dadurch gekennzeichnet, dass

    das Ausgleichs-Gewicht (15), das den am weitesten außen liegenden Abschnitt hat, eine imaginäre Erstreckungs-Linie kreuzt, die sich von dem Kolben-Bolzen (7) in einer Axial-Richtung des Kolben-Bolzens (7) erstreckt, wenn der Kolben (8) in der Nähe von einem unteren Tot-Punkt (BDC) angeordnet ist, so dass der am weitesten außen liegende Abschnitt des Ausgleichs-Gewichts (15) eine Seite von dem Kolben-Bolzen-Abschnitt (24) von dem Bolzen (8) und dem Kolben-Bolzen (7) passiert, ohne mit dem Kolben-Bolzen-Abschnitt (24) und jedem von den ersten und zweiten Hemd-Abschnitten (23) des Kolbens (8) und des Kolben-Bolzens (7) in Konflikt zu geraten, und das Ausgleichs-Gewicht (15) steht nach außen über dem Kolben-Kopf-Abschnitt (21) des Kolbens (8) in der Axial-Richtung des Kolben-Bolzens (7) vor, wenn der Kolben-Bolzen (8) in der Nähe des unteren Tot-Punkts (BDC) positioniert ist, wobei der obere Lenker (5) mit einer kleinen Neigung mit Bezug auf eine Achse des Zylinders (19) positioniert ist, wenn der Kolben (8) an einer Position angeordnet ist, an welcher der Kolben (8) einem maximalen Verbrennungs-Druck unterliegt.


     
    2. Eine Brenn-Kraft-Maschine mit innerer Verbrennung gemäß Anspruch 1, dadurch gekennzeichnet, dass der Kolben-Bolzen (7) und der erste Verbindungs-Stift (6) im Wesentlichen gleich zueinander in der axialen Länge sind.
     
    3. Eine Brenn-Kraft-Maschine mit innerer Verbrennung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Kolben-Bolzen-Abschnitt erste und zweite Kolben-Bolzen-Abschnitte (24) beinhaltet, die jeweils erste und zweite (beide) Enden des Kolben-Bolzens (7) aufnehmen; und das erste Ende des oberen Lenkers (5) erstreckt sich durch einen Spalt zwischen den ersten und zweiten Kolben-Bolzen-Abschnitten (24) und ist über dem Kolben-Bolzen (7) eingesetzt.
     
    4. Eine Brenn-Kraft-Maschine mit innerer Verbrennung gemäß zu irgendeinem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die ersten und zweiten Hemd-Abschnitte (23) jeweils an Last- und Gegen-Last-Seiten einer Umfangsrichtung des Kolbens (8) ausgebildet sind.
     
    5. Eine Brenn-Kraft-Maschine mit innerer Verbrennung gemäß zu irgendeinem der Ansprüche 1 bis 4, gekennzeichnet durch einen Lager-Positions-Variations-Abschnitt (12), um eine Position des zweiten Endes des Steuer-Lenkers (10) relativ zu dem Körper von der Brenn-Kraft-Maschine mit innerer Verbrennung zu variieren und dadurch ein Verdichtungs-Verhältnis der Brenn-Kraft-Maschine mit innerer Verbrennung zu variieren.
     
    6. Eine Brenn-Kraft-Maschine mit innerer Verbrennung gemäß Anspruch 5, dadurch gekennzeichnet, dass der Lager-Positions-Variations-Abschnitt eine Steuer-Welle (12) beinhaltet, die drehbar an dem Körper der Brenn-Kraft-Maschine mit innerer Verbrennung gelagert ist, und einen exzentrischen Nocken (12a) beinhaltet, der drehbar in dem zweiten Ende des Steuer-Lenkers (10) eingesetzt ist.
     
    7. Eine Brenn-Kraft-Maschine mit innerer Verbrennung gemäß zu irgendeinem der Ansprüche (1) bis (6), dadurch gekennzeichnet, dass der Kolben-Kurbel-Verbindungs-Mechanismus (4, 5, 10) den Kolben (8) mit der Kurbel-Welle (1) verbindet, so dass der Kolben (8) in dem Zylinder (19) gemäß der Drehung der Kurbel-Welle (1) hin und her geht, mit einem Kolben-Hub, der eine Charakteristik annähernd zu einer einfachen harmonischen Oszillation hat.
     
    8. Eine Brenn-Kraft-Maschine mit innerer Verbrennung gemäß zu irgendeinem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Brenn-Kraft-Maschine als eine Reihen-Vier-Zylinder-Maschine konfiguriert ist.
     
    9. Eine Brenn-Kraft-Maschine mit innerer Verbrennung gemäß zu irgendeinem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Kurbel-Welle (1) zwei von den Ausgleichs-Gewichten (15) an gegenüberliegenden Seiten von einem Kurbel-Zapfen (3) hat.
     
    10. Eine Brenn-Kraft-Maschine mit innerer Verbrennung gemäß zu irgendeinem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Kolben (8) einen Kompressions-Ring (27) in einer Kolben-Ring-Nut (22) beinhaltet.
     


    Revendications

    1. Moteur à combustion interne comprenant :

    un piston (8) incluant une section de tête de piston (21) comportant des première et seconde parties formant chemise (23) et une partie formant bossage d'axe (24), le piston (8) allant et venant dans un cylindre (19),

    un mécanisme de liaison piston -vilebrequin à liaisons multiples (4, 5, 10) reliant le piston (8) et l'axe de piston (7) à un vilebrequin (1), le mécanisme de liaison piston - vilebrequin à liaisons multiples incluant une liaison supérieure (5), une liaison inférieure (4) et une liaison de commande (10) ; et le vilebrequin (1) incluant un contrepoids (15) présentant la partie la plus externe, dans laquelle la liaison supérieure (5) comporte une première extrémité reliée au piston (8) grâce à l'axe de piston (7) ; la liaison inférieure (4) comporte une première extrémité reliée à une seconde extrémité de la liaison supérieure (5) grâce à une première broche de raccordement (6), et elle est montée tout en pouvant tourner sur un maneton (3) du vilebrequin (1) ; et la liaison de commande (10) comporte une première extrémité reliée à une seconde extrémité de la liaison inférieure (4) grâce à une seconde broche de raccordement (11) et une seconde extrémité supportée tout en pouvant se déplacer par rapport au corps du moteur à combustion interne,

    caractérisé en ce que

    le contrepoids (15), présentant la partie la plus externe, croise une droite imaginaire d'extension qui s'étend depuis l'axe de piston (7) dans la direction axiale de l'axe de piston (7) lorsque le piston (8) est situé à proximité du point mort bas (BDC), de sorte à ce que la partie la plus externe du contrepoids (15) dépasse le côté de la partie formant bossage d'axe (24) du piston (8) et de l'axe de piston (7) sans entrer en conflit avec la partie formant bossage d'axe (24) et chacune des première et seconde parties formant chemise (23) du piston (8) et l'axe de piston (7), et le contrepoids (15) dépasse vers l'extérieur au-delà de la partie formant tête de piston (21) du piston (8) dans la direction axiale de l'axe de piston (7) lorsque le piston (8) est situé à proximité du point mort bas (BDC), la liaison supérieure (5) étant positionnée avec une faible inclinaison par rapport à l'axe du cylindre (19) lorsque le piston (8) est situé à une position à laquelle le piston (8) subit une pression maximale de combustion.$$$


     
    2. Moteur à combustion interne selon la revendication 1, caractérisé en ce que l'axe de piston (7) et la première broche de raccordement (6) sont de longueurs axiales sensiblement égales l'une et l'autre.
     
    3. Moteur à combustion interne selon la revendication 1 ou la revendication 2, caractérisé en ce que la partie formant bossage d'axe inclut des première et seconde parties formant bossage d'axe (24) recevant respectivement des première et seconde extrémités (les deux) de l'axe de piston (7) ; et la première extrémité de la liaison supérieure (5) s'étend au travers d'un intervalle ménagé entre les première et seconde parties formant bossage d'axe (24), et elle est ajustée par-dessus l'axe de piston (7).
     
    4. Moteur à combustion interne selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les première et seconde parties formant chemises (23) sont respectivement formées sur les côtés de poussée et de contre-poussée de la direction circonférentielle du piston (8).
     
    5. Moteur à combustion interne selon l'une quelconque des revendications 1 à 4, caractérisé par une section de variation de position de support (12) destinée à faire varier la position de la seconde extrémité de la liaison de commande (10) par rapport au corps du moteur à combustion interne et ainsi à faire varier le taux de compression du moteur à combustion interne.
     
    6. Moteur à combustion interne selon la revendication 5, caractérisé en ce que la section de variation de position de support inclut un arbre de commande (12) supporté tout en pouvant tourner sur le corps du moteur à combustion interne, et incluant une came excentrée (12a) ajustée en pouvant tourner dans la seconde extrémité de la liaison de commande (10).
     
    7. Moteur à combustion interne selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le mécanisme de liaison piston - vilebrequin (4, 5, 10) relie le piston (8) au vilebrequin (1) de sorte à ce que le piston (8) puisse aller et venir dans le cylindre (19) en fonction de la rotation du vilebrequin (1) avec une course de piston présentant une caractéristique se rapprochant d'une oscillation harmonique simple.
     
    8. Moteur à combustion interne selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le moteur à combustion interne est configuré comme un moteur à quatre cylindres en ligne.
     
    9. Moteur à combustion interne selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le vilebrequin (1) inclut deux des contrepoids (15) sur les côtés opposés d'un maneton (3).
     
    10. Moteur à combustion interne selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le piston (8) inclut une bague de compression (27) logée dans une gorge de segment de piston (22).
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description