(19)
(11)EP 0 375 857 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
12.01.1994 Bulletin 1994/02

(21)Application number: 89118890.6

(22)Date of filing:  11.10.1989
(51)International Patent Classification (IPC)5B65B 9/06

(54)

Packaging method and apparatus

Verpackungsverfahren und -vorrichtung

Procédé et appareil d'emballage


(84)Designated Contracting States:
CH DE FR IT LI NL SE

(30)Priority: 28.12.1988 JP 335157/88

(43)Date of publication of application:
04.07.1990 Bulletin 1990/27

(73)Proprietor: FUJI MACHINERY CO., LTD.
Nagoya Aichi (JP)

(72)Inventors:
  • Seko, Kiyoshi NAGOYA FACTORY FUJI MACH. CO. LTD.
    Nagoya Aichi (JP)
  • Hatano, Masato NAGOYA FACTORY FUJI MACH. CO. LTD.
    Nagoya Aichi (JP)
  • Suzuki, Shigeki NAGOYA FACTORY FUJI MACH. CO. LTD.
    Nagoya Aichi (JP)

(74)Representative: Prüfer, Lutz H., Dipl.-Phys. 
Harthauser Strasse 25d
81545 München
81545 München (DE)


(56)References cited: : 
US-A- 4 525 977
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to a packaging method according to the preamble of claim 1 and a packaging apparatus according to the preamble of claim 2.

    [0002] Such an apparatus is disclosed in document US-A-4,525,977. In such a packaging macine, packaging articles are successively packed into a packaging film having been shaped into a tubular form, and the longitudinal end portions of the tubular film are subjected to lengthwise sealing on the overlapping faces, followed by crosswise sealing and cutting of the tubular packaging film on both sides of each packaging article, to produce a number of pillow type packages. In this connection, the means for sealing the tubular packaging film crosswise (hereinafter referred to as "end sealing") is generally composed of a pair of sealers (each equipped with a cutting knife) which are disposed to oppose each other on the upper and lower sides of the film feeding route.

    [0003] A film is continuously fed, so that when the film is sealed and cut by a pair of sealers by engaging them with the film, the movement of the sealers must be synchronized with the speed of feeding the film. Accordingly, in a rotary end sealing mechanism usually employed in such lateral pillow package making machine, nonuniform motion is imparted to the rotation of the pair of sealers to allow the peripheral rotation speed of the sealers in sealing and cutting motion may be synchronized with the film feeding speed.

    [0004] In the prior art this synchronization is carried out in such a manner that not only during the actual seal phase, but also during the dive-in phase in which the tips of the sealers come into contact with the film the horizontal speed of the sealer tips is equal to the feed speed of the film. It follows therefrom that, in particular when the height of the packaging article is great, the distance between two subsequent articles must be great and no tight packaging can be achieved, because the tips of the sealers interfere with the rear end of the preceding packaging article or the fore end of the following packaging article during their sealing and cutting motions.

    [0005] It is the object of the present invention to achieve a tight packaging of the articles in which the cut pitch of the film is reduced as much as possible, so that a good appearance for the finished package and economical packaging is achieved.

    [0006] This object is achieved by a packaging method defined in claim 1 and a packaging apparatus defined in claim 2.

    [0007] As has been described above, according to the packaging method of this invention, the actual package length can be set to a small value and packages having a tightly applied film thereon can be obtained regardless of the height of the packaging article, so that the film can be saved, contributing greatly to reduction in the running cost, and also packages with good appearance can be obtained. It should be noted that, while in the embodiment shown in the drawings, rotary sealing mechanism Will be described as the sealers for the end seal mechanism, another sealing mechanism in which sealers are brought apart vertically from each other in arcuate routes after sealing and cutting motion and move horizontally can also be employed. While the embodiment will be described referring to a bag making/packing/sealing packaging machine has been described, the method and apparatus according to this invention can suitably be employed in other types of packaging machines.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] Fig. 1 shows a block diagram of the control circuit for practicing the packaging method according to this invention.

    [0009] Fig. 2 shows schematically a perspective view of a packaging machine in which the present invention can suitably be practiced.

    [0010] Fig. 3(a) schematically illustrates the final state of crosswise sealing according to the method of this invention.

    [0011] Fig. 3(b) schematically illustrates the final state of crosswise sealing according to a conventional method.

    [0012] Fig. 4(a) schematically illustrates the state where the crosswise sealing is being applied according to the method of this invention.

    [0013] Fig. 4(b) schematically illustrates the state where the crosswise sealing is being applied according to the conventional method.

    [0014] Fig. 5 is a graph showing a position control curve of the sealers in the end seal mechanism according to this invention.

    [0015] Fig. 6 is a graph showing a position control curve of the sealers in the conventional end seal mechanism.

    [0016] Fig. 7 schematically illustrates the horizontal movement of the tips of the sealers with the rotational motion of the pair of sealers, wherein the direction of the movement is indicated with arrows A.

    [0017] Fig. 8 schematically illustrates a state, after completion of sealing and cutting, where the actual package length is greatly reduced compared with that according to the conventional packaging method.

    DETAILED DESCRIPTION OF THE INVENTION



    [0018] Next, the packaging method according to this invention will be described correlated with the apparatus in which the method of this invention is practiced by way of preferred embodiment referring to the attached drawings. Fig. 2 schematically shows a perspective view of an exemplary bag making/packing/sealing packaging machine in which the present method can be employed. This packaging machine is equipped with a motor A which is intended for driving a conveyor 12 for feeding packaging articles 10 one by one; a rotary encoder RE₁ which monitors the position of feeding each packaging article 10 which is fed on downstream by means of the attachments 14 disposed on the conveyor 12 with a predetermined interval and generates feed zero position signal; a servo motor B which is intended for driving rolls 32 for delivering a film 16; and a servo motor C which is intended for driving an end seal mechanism 20.

    [0019] Further, as shown in Fig. 1, the above packaging machine is also equipped with a control circuit 22 which processes various data including the zero position signal referring to the position of feeding out each packaging article 10, cut pitch of cutting the film, etc. to be generated from the rotary encoder RE₁, upon receipt of such inputted data, whereby the servo motor B for feeding the film 16 and the servo motor C for driving the end seal mechanism 20 are designed to be controlled respectively based on the control signals obtained after processing the data in this control circuit 22.

    [0020] The conveyor 12 is provided with positioning attachments 14 disposed on an endless chain 24 with a predetermined pitch, so that the packaging articles 10 may be pushed forward unit by unit with a predetermined interval by the respective attachment 14 to feed them into a downstream bag making device 26 successively. This conveyor 12 is driven by the motor A via a power transmission mechanism comprising a timing belt and pulleys disposed on the illustrated drive shaft 28. The motor A is, for example, an alternative current induction motor, and variable speed control thereof is performed by a variable speed controller 30 such as an inverter as shown in Fig. 1.

    [0021] The rotary encoder RE₁ is provided on the drive shaft 28 to continually monitor the position of the attachment 14 disposed on the feeding conveyor 12, that is the position of feeding the packaging articles 10 into the downstream bag making device 26. The feed zero position signals generated from the rotary encoder RE₁ for the position of feeding the packaging articles 10 are inputted in a control circuit 22 to be described later.

    [0022] The film 16 delivered from a web roll (not shown) is held between the pair of delivering rolls 32 and fed out toward the bag making device 26 disposed downstream of the feeding conveyor 12. The film 16 passed through the bag making device 26 to be shaped into a tubular bag 16a is fed downstream with the overlapping faces of the longitudinal end portions being held between a pair of feeding rolls 34 and is simultaneously subjected to center sealing with a pair of sealing rolls 36. The pair of delivering rolls 32 are driven by the servo motor B via a power transmission system comprising timing belts and pulleys as illustrated in the drawing.

    [0023] The power from the servo motor B is further diverged via a drive shaft 38 such that the pairs of feeding rolls 34 and sealing rolls 36 may be driven synchronously. The revolution of the servo motor B is continually detected by a rotary encoder RE₂, and the revolution number is fed back to the control circuit 22 to achieve servo control of the servo motor B. In this connection, register marks (not shown) are printed along the longitudinal end portion of the film 16 with a predetermined interval, which are read and detected by a sensor S₁ comprising photoelectric elements as shown in Fig. 2.

    [0024] Sealers 40 of the end seal mechanism 20 are rotationally driven by the servo motor C via a belt transmission system, and the rotation of the servo motor C is also servo-controlled by a rotary encoder RE₃. As the sealers 40 besides the illustrated rotary sealing mechanism, a sealing mechanism of a system in which sealers horizontally move synchronously toward the direction of feeding the tubular bag 16a, and after completion of sealing and cutting motion, they are brought apart vertically from each other in arcuate routes and move horizontally can also be employed efficiently.

    [0025] In a rotary system in which the rotation of the sealers 40 is included, an end seal zero position sensor S₂ is provided, so that, when a register mark of the tubular bag 16a passes between the detection surfaces of the photoelectric sensor S₁ before generation of feed zero position signal (standard signal) for the end seal mechanism to be detected by the zero position sensor S₂, the sensor S₂ may detect the time lag to issue a deceleration command to the servo motor B via the control circuit 22; on the contrary, when the register mark passes between the detection surfaces of the photoelectric sensor S₁ after generation of the standard signal, the sensor S₂ may detect the time lag to issue an acceleration command to the servo motor B to effect positioning of the printed register mark.

    [0026] The control circuit 22 shown in Fig. 1 has a buit-in central processing unit (CPU) containing an operational section 42 which functionally performs operational processing of inputted data, a motor control section 44 which performs controls of the motor A, servo motor B and servo motor C, and a register section 56 in which control data are registered. A control panel 54 has keys for inputting various data, a button for commanding start/stop of the packaging machine, a speed setting dial, etc., and the keyed-in data are recorded at the register section 56 via a control panel interface 58.

    [0027] Now referring to the data which are to be inputted at the control panel 54, names of several tens of different packaging articles and their respective packaging data can be registered in the built-in memory in the main body. If any changes in the specifications of the packaging article should occur, numerical data for the cut pitch which depends on the cut length of the film 16 for one package, the height of the packaging article 10 and the set value of heater temperature are inputted by means of the operational members such as keys. Further, (1) the feed zero position mark signals from the rotary encoder RE₁ which monitors the position of the attachment 14; (2) the register mark signals from the photoelectric sensor S₁ which reads and detects the register marks printed on the film 16 and (3) the end seal zero position signals from the end seal zero position sensor S₂ which detects rotation of the sealers 40 are introduced via the sensor inputting interface 60 to the register section 56 as digital input data.

    [0028] The speed of the motor A is variably controlled by a variable speed controller 30 typified by an inverter, and to this variable speed controller 30 is directly given a speed command for the motor A from the speed control dial. On the other hand, the servo motor B which performs delivery of the film 16 and the servo motor C which effects and sealing of the tubular bag 16a are adapted to be servo-controlled by a servo amplifier 48 and a servo amplifier 50, respectively.

    [0029] The feed zero position signals from the rotary encoder RE₁ are inputted in the servo control section 46 in the motor control section 44 to show the present position of the attachment 14 to the servo motor B and servo motor C. Likewise, the rotation signals from the rotary encoder RE₂ which detects the rotation number of the servo motor B are inputted in the servo control section 46 and the servo amplifier 48. Further, the rotation signals from the rotary encoder RE₃ which detects the rotation number of the servo motor C are also inputted in the servo control section 46 and the servo amplifier 50.

    [0030] Incidentally, a basic sequence control section 52 is designed to process various input conditions to send signals for starting and stopping the motor A to the variable speed controller 30 and also to detect abnormality to stop the function of the variable speed controller 30.

    [0031] The central processing unit (CPU) is designed to process inputted data such as the cut pitch of cutting the film 16 and the height of the packaging article 10 to determine the motion curve of the pair of sealers 40 and the timing that the sealers 40 engage with each other. The nonuniform rotation control circuit shown with the reference number 66 directs the end seal mechanism 20 to perform a predetermined nonuniform rotation upon receipt of the command from the central processing unit.

    (BASIC MOTION OF THE PACKAGING MACHINE)



    [0032] To describe first the basic motions of this packaging machine, packaging data including the cut pitch for cutting the film 16, height of the packaging article 10 and sealing temperature are inputted by means of the operational members, such as the keys, provided on the control panel 54, prior to starting of the machine, and these data are registered in the memory of the register section 56 via the control panel interface 58. Further, speed command is preliminarily given to the variable speed controller 30 by means of the speed setting dial to set the revolution of the motor A.

    [0033] After completion of the setting of synchronous operation, the machine is started by pressing a start button not shown, whereby the motor A, servo motor B and servo motor C start to rotate altogether. The feeding conveyor 12 is driven by the motor A, and the packaging articles 10 are pushed forward unit by unit by the respective attachment 14 disposed on the conveyor 12. Feed zero position signals from the rotary encoder RE₁ are inputted in the servo control section 46 to indicate the position of the attachment 14 forwarding the packaging article 10. The rotation signals from the rotary encoder RE₂ disposed to the servo motor B are inputted in the servo control section 46 and the servo amplifier 48, and the rotation signals from the rotary encoder RE₃ disposed to the servo motor C are inputted in the servo motor control section 46 and the servo amplifier 50.

    [0034] The packaging data including the cut for cutting the film 16, height of the packaging article 10 and sealing temperature registered in the memory of the register section 56 are operationally processed at the operational section 42 to give commands to the control section 44. At the servo control section 46, the rotations of the servo motors B and C are synchronously controlled based on the data for the positions of the attachments 14 in terms of the feed zero position signals from the rotary encoder RE₁. Thus, according to the timing for feeding the packaging article 10 into the tubular bag 16a, delivery of the film 16 by the servo motor B and the nonuniform rotation of the sealers 40 by the servo motor C are achieved efficiently. Incidentally, any change in the cut pitch for cutting the film 16, the height of the packaging article 10 and/or the sealing temperature in accordance with the package order change can be speedily coped with by modifying the data by means of the operational members such as keys on the control panel 54.

    (MOTION DEVELOPMENT IN A PREFERRED EMBODIMENT)



    [0035] Next, motion development in a preferred embodiment according to the present packaging method will be described. According to the embodiment, the present positions of the sealers 40 are controlled by varying the rotation speed thereof relative to the timing of feeding the packaging articles 10 such that the sealers 40 may not interfere with the packaging articles 10 at least within the range of ± 45° at the point that the sealers 40 are rotationally engaged with each other, that is the sealers 40 are set such that their peripheral rotation speed may always be higher than the speed of feeding the packaging article 10. To achieve this, the data for the cut pitch for cutting the film 16 and the height of the packaging article 10 are preliminarily inputted at the control panel 54, since these data significantly participate in such setting. When the pair of sealers 40 are to be engaged with each other, the peripheral rotation speed of the sealers 40 is controlled to correspond to the speed of feeding the film 16.

    [0036] These controls are achieved by giving a direction of predetermined nonuniform rotation from the nonuniform rotation control circuit 66 to the end seal mechanism 20 upon receipt of such command from the central processing unit. In this context, the speed control curve for the motor C for driving the end seal mechanism 2, which can be determined according to the following functional expression, is as shown in Fig. 5. In this calculation, the sealing mechanism is assumed to be of the illustrated rotational type.
    Z:
    ratio of cut pitch to circumferential length drawn by the tip of end sealer
    G:
    function for speed rate
    P:
    film cut pitch
    H:
    height of the packaging article
    D:
    rotation diameter of the end sealing mechanism (distance from center of the rotary shaft to the tip of end sealer x 2)
    Q₁₁:
    present angle of the rotary encoder RE₁ for the conveyor when the end sealer is at an angle of 45° (present location of packaging article under feed)
    f,f′:
    function for the present location of packaging article under feed relative to the end sealer angle
    Q₁:
    feed angle
    F:
    function for the end sealer angle relative to the present location of packaging article under feed
    Q₃:
    angle of the end sealer relative to the present location of packaging article under feed
    W₁₃:
    peripheral speed of the end sealer at the point of inflection











    ... timing curve until the zone of ± 45° from the end sealer engagement position


    ... timing curve after the zone of ± 45° from the end sealer engagement position
       While this embodiment describes the control within at least ± 45° from the point of sealer engagement, such control can be practiced within ± 90° from the point of sealer engagement.

    [0037] As shown in Fig. 4(a), according to this invention, the rotation speed of the rotating sealers 40 can be set such that they may not interfere with the packaging article 10 by varying the rotation speed of the sealers 40 at the timing when the packaging article 10 reaches the end sealing position to control the present position of the sealers, whereby the peripheral rotation speed of the sealers may always be higher than the speed of feeding the film, whereupon the speed of the transversal movements (shown with Arrow A in Fig. 7) at the tips of the pair of sealers 40 is controlled to correspond to the speed of feeding the film 10. After completion of sealing and cutting, a tightly packaged article having a reduced package length as shown in Fig. 3(a) can be obtained. The actual package length of the final article is, as shown in Fig. 8, can be reduced 10 mm at each cut end (20 mm in total) per one package length regardless of the height of the packaging article 10.


    Claims

    1. A packaging method comprising

    - shaping a film (16) into a tubular form (16a);

    - packaging articles (10) into the tubular form (16a); and

    - sealing the film (16) between the articles (10) by means of a pair of sealers (40) disposed to oppose each other on the upper and lower sides of the film (16);

    - wherein a nonuniform rotation motion of the pair of sealers (40) is varied corresponding to the cut pitch for cutting the film (16) and to the height of the articles (10) within an angle range of at least ±90° from the point of engagement of the pair of sealers (40) so that the sealers (40) may not interfere with the articles (10);

    - the peripheral rotation speed of the pair of sealers (40) corresponds to the speed of feeding the film (16) during the engagement of the pair of sealers (40); and

    - the peripheral rotation speed of pairs of sealers (40) decreases from a first point of inflection before the sealing is completed and increases after the sealing is completed until a second point of inflection in the diagram of the rotational position (Q₃) of the pair of sealers (40) versus the feed portion (Q₁) of the packaging articles (10) is reached;

    characterized in that the peripheral rotation speed is lower after the second point of inflection and before the first point of inflection.
     
    2. A packaging apparatus comprising
    a conveyor (12) for feeding packaging articles (10);
    a rotary encoder (RE₁) which monitors the present location of the packaging articles (10) under feed to generate feed timing signals;
    an end seal mechanism (20) which drives a pair of sealers (40) to effect crosswise sealing of a film (16) having been shaped into a tubular form;
    a central processing unit which processes input data such as cut pitch for cutting the film (16), height of the packaging articles (10), etc. to determine the motion curve of the pair of sealers (40), the timing of sealer engagement and the speed of feeding the film (16); and
    a nonuniform rotation control circuit (66) which commands predetermined nonuniform rotation to the end seal mechanism (20) in response to the command from the central processing unit;
    wherein said nonuniform rotation control circuit (66) is designed such that the rotation speed of the pair of rotating sealers (40) is varied relative to the timing of feeding the packaging articles (10) corresponding to the cut pitch for cutting the film (16) and the height of the packaging articles (10) so that the sealers (40) may not interfere with the packaging articles (10) whereby to control the present position of the sealers (40), the peripheral rotation speed of the sealers (40) is set such that it may be higher than the speed of feeding the film (16), the rotational peripheral speed of the sealers (40) is controlled such that it may correspond to the speed of feeding the film (16) under engagement of the pair of sealers (40), and
    the peripheral rotational speed of the sealers (40) passes through a maximum value at a first and second inflection point positioned in the range between ±45° and ±90° from the point of engagement and is decreased after the first inflection point and increased before the second inflection point,
    characterized in that said nonuniform rotation control circuit (66) is designed such that the peripheral rotational speed of the sealers (40) is decreased after said second inflection point and increased before said first inflection point.
     


    Ansprüche

    1. Verpackungsverfahren mit:

    - Formen eines Filmes (16) in eine röhrenförmige Form (16a);

    - Packen von Artikeln (10) in die röhrenförmige Form (16a) und

    - Siegeln des Filmes (16) zwischen den Artikeln (10) mittels eines Paares von Versiegelungselementen (40), die einander gegenüber auf der oberen und unteren Seite des Filmes vorgesehen sind;

    - wobei eine nichtgleichförmige Rotationsbewegung des Paares von Versiegelungselementen (40) gemäß dem Schneideabstand zum Schneiden des Filmes (16) und der Höhe der Artikel (10) innerhalb eines Winkelbereiches von mindestens ±90°von dem Eingriffspunkt des Paares von Versiegelungselementen (40) variiert wird, so daß die Versiegelungselemente (40) sich nicht mit den Artikeln (10) stören;

    - die Umfangsrotationsgeschwindigkeit des Paares von Versiegelungselementen (40) der Geschwindigkeit des Vorschiebens des Filmes (16) während des Eingriffes des Paares von Versiegelungselementen (40) entspricht; und

    - die Umfangsrotationsgeschwindigkeit des Paares von Versiegelungselementen (40) von einem ersten Wendepunkt abnimmt, bevor das Siegeln beendet ist, und zunimmt, nachdem das Siegeln beendet ist, bis ein zweiter Wendepunkt in dem Diagramm der Rotationsposition (Q₃) des Paares von Versiegelungselementen (40) gegen den Vorschubabschnitt (Q₁) der Verpackungsartikel (10) erreicht ist;

    dadurch gekennzeichnet, daß die Umfangsrotationsgeschwindigkeit niedriger nach dem zweiten Wendepunkt und vor dem ersten Wendepunkt ist.
     
    2. Verpackungsgerat mit:
    einem Förderband (12) zum Vorschieben von Verpackungsartikeln (10);
    einem Rotationsencoder (RE₁), der die gegenwärtige Anordnung der Verpackungsartikel (10) unter Vorschub überwacht, zum Erzeugen von Vorschubzeitpunktsignalen;
    einem Endversiegelungsmechanismus (20) der ein Paar von Versiegelungselementen (40) zum Bewirken einer Quersiegelung eines Filmes (16) antreibt, der in eine röhrenförmige Form geformt ist;
    einer zentralen Verarbeitungseinheit, die Eingangsdaten wie Schneideabstand zum Schneiden des Filmes (16), Höhe der Verpackungsartikel (10) usw. verarbeitet, zum Bestimmen der Bewegungskurve des Paares von Versiegelungselementen (40), des Zeitpunktes des Eingriffes der Versiegelungselemente und der Geschwindigkeit des Vorschiebens des Filmes (16); und
    einer nichtgleichförmigen Rotationssteuerschaltung (66), die eine vorbestimmte nichtgleichförmige Rotation dem Entsiegelmechanismus (20) als Reaktion auf den Befehl von der zentralen Verarbeitungseinheit befiehlt;
    wobei die nichtgleichförmige Rotationssteuerschaltung (66) so ausgelegt ist, daS die Rotationsgeschwindigkeit des Paares von rotierenden Versiegelungselementen (40) relativ zu dem Zeitpunkt des Vorschiebens der Verpackungsartikel (10) variiert wird entsprechend dem Schneideabstand zum Schneiden des Filmes (16) und der Höhe der Verpackungsartikel (10), so daß die Versiegelungselemente (40) sich nicht mit den Verpackungsartikeln (10) stören können, wodurch zum Steuern der gegenwärtigen Position der Versiegelungselemente (40) die Umfangsrotationsgeschwindigkeit der Versiegelungselemente (40) so eingestellt ist, daß sie höher sein kann als die Geschwindigkeit des Vorschiebens des Filmes (16), die Umfangsrotationsgeschwindigkeit der Versiegelungselemente (40) so gesteuert ist, daß sie der Geschwindigkeit des Vorschiebens des Filmes (16) unter Eingriff des Paares von Versiegelungselementen (40) entspricht, und
    die Umfangsrotationsgeschwindigkeit der Versiegelungselemente (40) durch einen maximalen Wert an einem ersten und einem zweiten Wendepunkt in einem Bereich zwischen ±45° und ±90° von dem Eingriffspunkt geht und verringert wird nach dem ersten Wendepunkt und vor dem zweiten Wendepunkt erhöht wird,
    dadurch gekennzeichnet, daß die nichtgleichförmige Rotationssteuerschaltung (66) so ausgelegt ist, daS die Umfangsrotationsgeschwindigkeit der Versiegelungselemente (40) nach dem zweiten Wendepunkt verringert wird und vor dem ersten Wendepunkt erhöht wird.
     


    Revendications

    1. Procédé d'emballage consistant à :

    - mettre un film (16) à une forme tubulaire (16a);

    - emballer des objets (10) dans la forme tubulaire (16a); et

    - sceller le film (16) entre les objets (10) au moyen d'une paire d'organes de scellement (40) disposés face à face sur les côtés supérieur et inférieur du film (16) ;

    - dans lequel un mouvement de rotation non uniforme de la paire d'organes de scellement (40) varie avec le pas de découpage pour couper le film (16) et en fonction de la hauteur des objets (10) dans un intervalle angulaire d'au moins ± 90° par rapport au point d'attaque de la paire d'organes de scellement (40), de manière que les organes de scellement (40) ne puissent pas interférer avec les objets (10) ;

    - la vitesse de rotation périphérique de la paire d'organes de scellement (40) correspond à la vitesse d'avancement du film (16) pendant l'attaque de la paire d'organes de scellement (40) ; et

    - la vitesse de rotation périphérique des paires d'organes de scellement (40) décroît à partir du premier point d'inflexion avant que le scellement ne soit exécuté et croît après que le scellement a été achevé, jusqu'à ce qu'on ait atteint un deuxième point d'inflexion de la courbe représentant la position en rotation (Q₃) de la paire d'organes de scellement (40) en fonction de la partie d'avance (Q₁) des objets à emballer (10) ;

       caractérisé en ce que la vitesse de rotation périphérique est plus basse après le deuxième point d'inflexion et avant le premier point d'inflexion.
     
    2. Installation d'emballage comprenant :
       un transporteur (12) servant à faire avancer les objets à emballer (10) ;
       un codeur rotatif (RE₁) qui surveille la position actuelle des objets (10) à emballer qui sont en cours d'avance pour engendrer des signaux de minutage de l'avance ;
       un mécanisme de scellement d'extrémité (20) qui entraîne une paire d'organes de scellement (40) pour effectuer un scellement transversal d'un film (16) qui a été mis à une forme tubulaire ;
       une unité de traitement centrale qui traite les données d'entrée telles que le pas de découpage adopté pour couper le film (16), la hauteur des objets (10) à emballer, etc., pour déterminer la courbe du mouvement de la paire d'organes de scellement (40), le minutage de l'attaque des organes de scellement et la vitesse de l'avance du film ; et
       un circuit (66) de commande non uniforme de la rotation qui commande une rotation non uniforme prédéterminée au mécanisme de scellement d'extrémité (20) en réponse à l'ordre émis par l'unité de traitement centrale ;
       dans lequel ledit circuit (66) de commande de rotation non uniforme est conçu de manière que la vitesse de rotation de la paire d'organes de scellement tournants (40) varie en fonction du minutage de l'avancement des objets (10) à emballer, qui correspond au pas de découpage adopté pour couper le film (16) et en fonction de la hauteur des objets (10) à emballer de manière que les organes de scellement (40) ne puissent pas interférer avec les objets (10) à emballer, afin de commander la position actuelle des organes de scellement (40), la vitesse de rotation périphérique des organes de scellement (40) est réglée de manière qu'elle soit plus élevée que la vitesse d'avancement du film (16), la vitesse de rotation périphérique des organes de scellement (40) est commandée de telle manière qu'elle puisse correspondre à la vitesse d'avancement du film (16) dans la situation d'attaque de la paire d'organes de scellement (40), et
       la vitesse de rotation périphérique des organes de scellement (40) passe par une valeur maximale à un premier et un deuxième points d'inflexion placés dans l'intervalle en ± 45° et ± 90° à partir du point d'attaque et est diminuée après le premier point d'inflexion et augmentée après le deuxième point d'inflexion ;
    caractérisée en ce que ledit circuit (66) de commande de rotation non uniforme est conçu de telle manière que la vitesse de rotation périphérique des organes de scellement (40) soit diminuée après ledit deuxième point d'inflexion et augmentée avant ledit premier point d'inflexion.
     




    Drawing