(19)
(11)EP 0 129 523 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.09.1989 Bulletin 1989/39

(21)Application number: 84850183.9

(22)Date of filing:  13.06.1984
(51)International Patent Classification (IPC)4C25C 7/02, C25B 11/02, C02F 1/46

(54)

An electrode chamber unit intended for an electrochemical cell having a porous percolation electrode

Elektrodenkammereinheit für eine elektrochemische Zelle mit einer porösen Filterelektrode

Unité de chambre à électrode pour une cellule électrochimique ayant une électrode poreuse percolante


(84)Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE

(30)Priority: 17.06.1983 SE 8303494

(43)Date of publication of application:
27.12.1984 Bulletin 1984/52

(73)Proprietor: ElectroCell Systems AB
S-183 66 Täby (SE)

(72)Inventors:
  • Bjäreklint, Ake
    S-186 00 Vallentuna (SE)
  • Simonsson, Daniel
    S-183 44 Täby (SE)

(74)Representative: Henningsson, Gunnar et al
AWAPATENT AB, Box 45086
104 30 Stockholm
104 30 Stockholm (SE)


(56)References cited: : 
EP-A- 122 736
DE-A- 2 904 539
DE-A- 2 622 497
DE-A- 2 948 579
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical field



    [0001] The present invention relates to the field of electrochemical cells, particularly electrolytic cells, which contain at least one porous percolation electrode in the form of a bed of electrically conductive particles. More specifically the invention relates to a structure of an electrode in the form of a bed of conductive grains, or rather to a complete electrode chamber unit which can very easily be assembled into an electrochemical cell of the filter press configuration. The invention relates to the field of electrode chamber units in the form of beds of conductive grains, and it is simple to construct electrochemical cells with the desired number of units, with the desired thickness of the respective electrodes, with counter electrodes with the same structure as the electrode chamber units or counter electrodes of another type, e.g. solid plates etc., which in turn enables a simple disassembling of the cell, exchange or regeneration of individual electrodes, adjustment of cell structure and size to the intended field of use etc.

    [0002] The invention further relates to an electrochemical cell including the above-mentioned electrode chamber units and to a method of producing such an electrochemical cell.

    Background of the invention



    [0003] The discharge of heavy metals in different waste-waters contaminates the surface water and disturbs the biological purification processes in municipal sewage plants. The dominating purification technique currently used is chemical precipitation of the metals as hydroxides. Hydroxide sludge is obtained as a final product, which results in transport and deposition costs. Metal ions have been replaced by sodium or calcium ions in the wastewater, which further means that this salt-bearing water cannot be returned to the process.

    [0004] The ideal method of purifying wastewaters containing heavy metals would be a precipitation of the metals in a pure form with simultaneous desalination of the water to a purity allowing recycling in the process. The present invention enables an electrolytic metal precipitation which gives these advantages. Electrolytic metal precipitation from diluted solutions has previously not come into industrial use, due to the fact that conventional electrolysis with planar electrodes requires too large electrode areas to give a satisfactory purification effect, with the low final contents which are required these days (approximately 1 ppm). Under these conditions the electrolysis process is controlled by the transport of metal ions to the electrode surface (the cathode). To achieve a high material transport rate per volumetric unit, and thereby a small reactor volume, the cathode can instead be formed in accordance with the invention as a percolated porous body or a stable particulate bed with a high specific area.

    [0005] The basic principle of using beds of conductive grains as electrodes to obtain high specific areas is indeed described 'in the literature..In this connection reference is made to e.g. DOS 2,622,497, DOS 2,904,539, US 3,974,049, 3,859,195, 3,459,646, 3,647,653 and 3,650,925 and DE 2,424,091, 2,620,792, 2,705,007 and 2,723,708 and US 4,123,340 and 4,217,191 and SE 413,446. However, none of these more or less sophisticated structures should be particularly suitable for industrial application with the severe requirements now made on wastewaters, and the structures are furthermore so fixed in thier constructions that they cannot be adapted or modified simply and easily to different applications or conditions, as is the case with the electrode chamber units in accordance with the present invention. Furthermore, EP 122,736 published 24.10.84, mentions the use of electrically conductive particles in connection with a filter press electrochemical cell.

    [0006] Cell structures of the filter press type are indeed also known, reference e.g. being made to US 4,274,939 and to DE-A-2948579, but in these cases the electrodes are of completely different structures, viz. in the form of solid plates or hanging carbon fibers respectively, which structures cannot possibly be compared with the beds of conductive grains which have so far been used within the field of porous percolation electrodes. Other examples of frames with solid electrodes are those disclosed in DE 3,221,371 A1 and SU 619 551.

    [0007] The art of using a bed of conductive grains as a percolation electrode must be considered specifically distinct from the art of using planar electrodes. Frames with planar electrodes have been known for a long time.

    [0008] This document in one embodiment sets forth a method and device wherein packed bed technology is combined with a thin sheet filter press arrangement.

    [0009] The present invention has been found particularly usable in conjunction with the purification of wastewaters, e.g. washing water from the galvanizing industry, or mine water, but the new electrode chamber units and cells are by no means limited to just this use, but one of the great advantages of the invention is just that electrochemical cells can be tailored for practically any kind of electrochemical reaction of the electrolysis type. The current conductors of the electrode chamber units according to the invention can be implemented in different ways, most important, however, being that they do not disturb the electrolyte flow through the bed to any appreciable extent.

    Disclosure of invention



    [0010] The electrode chamber unit in accordance with the invention includes at least one substantially flat frame having a thickness within the range of 0.2-5 cm and defining a central opening that is filled with the electrically conductive grains so that these form a flat porous bed within said opening, the grains being kept in place within the central opening of the frame by sufficiently dense separators, which are arranged to cover the central opening on either side of the frame to form an electrode chamber, the frame being provided with at least one hole for supply and at least one hole for discharge of electrolyte, where said holes are in communication via inlet and outlet channels respectively with the central opening of the frame, and the frame including current conductors for the supply of electric current to the conductive particles via said frame, said current conductors comprising an electrode element located within said bed which element is a substantially flat tongue arranged with a space to the edge of the central opening or a metal net the dimensions of which are similar to or smaller than the dimensions of the central opening, and conducting means inserted through the peripheral edge of the frame.

    [0011] By the expression "at least one frame" it is to be understood in the present case that an alternative to a thick frame is two or more thinner frames, which make it possible to work with one and the same frame thickness but still vary the thickness of the electrode. In such a case the frames are placed against each other and can be regarded in relation to the remaining components of the electrode chamber unit as a single cohesive frame, the term "frame" being used for the sake of simplicity even in the cases where two or more frames are used in one and the same electrode.

    [0012] However, both the frame and the separators are preferably made in a polymeric material, thus enabling the achievement of the above-mentioned advantages, particularly if this polymeric material is a thermoplastic, injection mouldable material. The material for the frame and the separators respectively does not necessarily need to be the same polymeric material. Thus, polyethylene and polypropylene can be mentioned as examples of suitable materials for the frame, whereas the separator, if made from another material than the frame, can be moulded e.g. from polyamide or polyester. In this connection it can also be mentioned that in the applications requiring ion-selective diaphragms, these diaphragms can also function as separators. Thus, in this case the diaphragm has a double function. Separate diaphragms can be used of course, which is illustrated more closely below.

    [0013] Since one and the same frame of the electrode chamber unit in accordance with the invention contains holes for the supply as well as holes for the discharge of electrolyte, an electrochemical cell made up from the electrode chamber units will function in a way where the electric current and electrolyte flow are directed in a cross-flow pattern in relation to each other, which has been found to give considerably better performance than in those cases where the electric current and electrolyte flow are directed in a concurrent or countercurrent flow in relation to each other.

    [0014] The central opening of the frame, and thereby the electrode bed, can be given different configurations, but it has been found that particularly favourable flow conditions and performances are achieved if the central opening has a substantially rectangular shape. The ratio longside:shortside of the rectangle is suitably at least 2:1 and preferably at least 4:1, a particularly favourable range being 4:1-10:1. Furthermore, if the channels for supply and discharge of electrolyte to and from the central opening open out in the respective shortside of the rectangle, i.e. at opposing shortsides, advantageous conditions for the electrolysis are achieved.

    [0015] Particularly in the case of metal recovery from diluted solutions, there is a requirement for low ohmic losses and the avoidance of secondary reactions, apart from the requirement of a large electrode surface per unit of volume and good material transfer, which are met by the electrode chamber unit in accordance with the invention. In turn, this means that the thickness of the electrode frame, and thereby of the electrode, should be kept comparatively small compared with the length and width, respectively, of the frame. In absolute numbers this more specifically means that the frame generally has a thickness within the range of 0.2-5 cm, more preferably 0.5-2 cm and most preferably 0.5-1 cm. By the structure of the new units in accordance with the invention, as well as the opportunity of assembling electrochemical cells with the desired capacities by assembling a desired number of frames, the small bed thickness does not involve any disadvantage.

    [0016] With regard to the electrode material, the requirements of the particulate electrode are the following: a good electrical conductor, chemically inert, usable both as a cathode and an anode and cheapness. The material which presently has shown to meet these demands in the best way is graphite, which is thus the preferred material for the conductive particles, but the invention is of course not limited to the use of this material only, since the idea is applicable to all other materials with similar properties.

    [0017] The size of the electrically conductive particles is easily determined by one skilled in the art for each individual case, depending on the particular conditions applying to the application in question. In general, however, the risk of channel formations and the requirement of reasonable pressure drops contradict too small particles or grains in the bed. A balance must be struck with the requirement of high specific area, which grows inversely proportional to the particle size. A usable range for particle size is, however, 0.5-5 mm, preferably 1-2 mm. Furthermore, the best purification conditions have been found to occur when the particles have an irregular shape, this being often preferable to a homogeneous spherical shape.

    [0018] An important demand on the electrode chamber units is that they give good mutual sealing in the electrochemical cell in which they are incorporated. For this reason the frame should preferably be surrounded on either side by a separate gasket, which is suitably a planar or flat gasket. Apart from its purely sealing function, the gasket can also have the function of regulating the packing density of the bed of the electrically conductive particles. This means that the gasket is preferably manufactured from a soft or elastic material, e.g. rubber, which can be compressed, or allowed to expand, respectively, in response to how tightly it is required to pack the bed.

    [0019] To enable the cell to operate as a continuous concentrator, where large volumes of low-concentrated waste solution are refined into small volumes of highly concentrated metal solution, there is further required in this special application dense and effective ion-selective diaphragms, i.e. in this case anion-selective diaphragms. In order that this diaphragm will not be punctured by the particles in the bed it is suitably disposed such that it is protected by the separator. In accordance with a preferable embodiment this is done by selecting as the separator a net or fabric or cloth material, preferably a polymeric material which surrounds the diaphragm on both sides. The separator net or fabric must be so dense as to protect the diaphragm from said puncturing by the electrically conductive particles, while at the same time not being so dense as to disturb the electrolytic current.

    [0020] Current supply via the frame is required to the electrically conductive particle bed. The current conductors can be implemented in different ways, most important being that they do not disturb the electrolyte flow through the bed to any appreciable extent. As was mentioned above one embodiment of current supplier which has been found to fulfil this requirement is one in the form of a substantially flat tongue arranged in the bed of conductive particles, the tongue being connectable to a current source via bar-like elements, preferably of a substantially circular cross-section which are inserted through the peripheral edge of the frame. It has been found that the tongue should be thrust a distance into the bed, i.e. with a space to the edge of the central opening of the frame, whereby the electrolyte flow is disturbed as little as possible. A particularly preferred combination of materials in this case is a graphite tongue with rodlike elements of titanium. Another embodiment of current conductor which has also been found effective is a large-mesh metal net, e.g. expanded metal of titanium, arranged inside the bed, its dimensions being similar to or smaller than the dimensions of the central opening of the frame.

    [0021] For the supply of electrolyte from the holes of the frame to its central opening there is at least one channel. In accordance with a preferable embodiment of the invention, this channel contains means enabling the electrolyte to be distributed over the entire width of the central opening of the frame, so that the electrolyte flow will be uniform over the entire bed. According to a variant, these means are several smaller channels, but other embodiments of such distribution or throttling means are conceivable. In the corresponding way, the channel for discharge of electrolyte from the particle bed is suitably provided with similar distribution means.

    [0022] Another particularly preferable embodiment of the electrode chamber unit in accordance with the invention is represented by the case where the frame has two holes for the inlet and two holes for the discharge of electrolyte with separate channels from both holes to the central opening. If these channels are arranged to open out on opposite sides of the central opening, this means that one and the same frame is usable both as an anode and a cathode in the cell, by rotating the anode or cathode frames by 180° in relation to each other. The thickness of each electrode can be varied discretely by several frames with the same orientations and without intermediate separators being assembled into a common thicker electrode frame.

    [0023] The invention further relates to an electrochemical cell, which includes or is constructed solely from the above-described electrode chamber units. The electrochemical cell in accordance with the invention is thus constructed according to the filter press principle with electrodes being arranged in central openings in frames provided with holes for supply and discharge of electrolyte respectively to and from the electrode. At least one kind of electrode (anode or cathode) consequently consists of porous percolating electrodes, while the counter electrodes can be solid or sintered plates arranged in similar or identical frames.

    [0024] In the cases where the anodes as well as the cathodes are to be porous percolation electrodes, the electrode chamber units mentioned above, which have two holes for inlet and two holes for discharge of electrolyte are suitably used, the frames being turned 180° in relation to each other.

    [0025] In the electrochemical cell according to the invention the shortside of the central opening, in the case where the central opening is a rectangle, is arranged along a horizontal plane. By this the electrolyte flow will be directed upwardly or downwardly in the vertical plane.

    [0026] It will be seen from the above that the expression "electrochemical cell" is used in a broad sense, i.e. not in the sense of a single cell with only one anode and one cathode, but a cell with the desired number of anodes and cathodes. Synonymous expressions in conjunction with the present invention are thus "electrochemical reactor" or "electrolysis apparatus".

    [0027] The term "separator" in the present case also intends to convey a broad meaning which means that the separator is not necessarily arranged between two electrodes, but ultimately it may also constitute the end plate of the cell and "separate" the outermost electrode from the surroundings.

    [0028] According to another aspect of the present invention, a method is provided for producing or assembling the electrochemical cell described above. Distinguishing for this method is that a separator is placed horizontally, the first separator according to the definition above usually consisting of the end plate of the cell, that at least one frame is placed on top of the separator; that the central opening of the frame is filled with the particles of the electrically conductive material; that the next separator is placed thereupon so as to keep the particles in place; and then optionally an ion-selective diaphragm or membrane; and on top thereof another separator, and that the procedure is repeated with the number of electrode chamber units which are to be included in the electrochemical cell, the units then being locked together with conventional locking or clamping means.

    [0029] In agreement with what has been discussed above, gaskets of an elastic material, e.g. rubber, are used between the frames in accordance with a preferred embodiment of the method, the central opening being filled with the conductive particles up to the edge of the gasket, and the gaskets being compressed to obtain the desired packing density for the conductive particles. This compression, together with the above-mentioned locking, can e.g. be made with through-going metal rods with screwed ends for nuts. Another example of the clamping means are so-called snap-on means, by which the plastic frames can be connected to each other, although these means can be more difficult to implement as compression means.

    [0030] The electrochemical cell in accordance with the invention is especially useful for the purification of wastewaters, particularly for the purification of water contaminated by heavy metals.

    [0031] However, the cell claimed is by no means limited to this particular use, one of the great advantages of the invention being instead the new possibilities of tailoring an electrochemical cell for practically every type of electrochemical reaction. Other examples of fields of uses will be illustrated below and can moreover be easily worked out by one skilled in the art. The size of the cell can be simply adjusted to the needs by selection of a suitable number of frames, where each frame is built up for a given capacity. To increase the total reliability and reduce the risks of leakage it may be advisable not to make the individual modules too large. The desired size of the plant can be obtained instead by a connection in parallel of several modules or by a connection in series of parallel modules. Among further advantages in this connection there can be mentioned doubled electrolyte speed in the electrodes for the same total residence time in the system, which gives an improved material transport, and that the lower current loading in the second step means that the electrode thickness can be increased and the total diaphragm area thereby decreased. The electrode thickness can be increased in discrete steps by putting together several frames for each electrode.

    Drawings



    [0032] The invention will now be disclosed more in detail with reference to the accompanying drawings, on which

    Fig. 1 is a so-called exploded view of an electrochemical cell in accordance with the invention, constructed according to the filter press principle and containing an embodiment of the electrode chamber unit in accordance with the invention;

    Fig. 2 illustrates the cell of Fig. 1 in the assembled condition;

    Fig. 3 illustrates an embodiment of a current conductor intended for use in the electrode chamber unit in accordance with the invention; and

    Fig. 4 illustrates another embodiment of a current conductor for use in the electrode chamber unit in accordance with the invention.



    [0033] The cell illustrated by an exploded view in Fig. 1 contains a number of cathodes 1 and anodes 2, which are of the same principle structures. The electrode as well as the counter electrode are built up from a frame 3 with a rectangular form defining a central opening 4, which is also of a substantially rectangular shape, although the rectangle has oblique corners for providing a more homogeneous electrolyte flow across the electrode. The central opening 4 is filled with a porous bed 5 of electrically conductive particles. This bed 5 covers substantially the entire opening 4, but for the sake of clarity only part thereof is shown in the Figure. The reason for this is that the Figure also shows the current conductor 6. In the illustrated case this conductor 6 is an expanded metal net embedded in the particle bed 5. Rod-like members 7 furthermore project via the edge of the frame 3 for supply of current to the metal net 6. In the illustrated embodiment, the elements 7 from the cathodes are directed towards the viewer, while the corresponding elements from the anodes are not visible but are directed in the opposite direction, so that it will be simpler to keep apart the current conductors to the respective kind of electrode. Each frame is furthermore provided with two holes 8 for inlet and two holes 9 for discharge of electrolyte. In the illustrated case, the electrolyte is fed to the cathodes 1 via the right hand hole 8 while it is fed to the anodes 2 via the left hand hole 8. The arrow drawn in full thus represents the electrolyte flow to and from the cathodes while the arrow drawn with a dashed line represents the corresponding flow to and from the anodes.

    [0034] On either sides of each cathode 1 and each anode 2 there is a separator net 10 of the same configuration as the central opening of the respective electrode. This net 10 is surrounded by a gasket 11 of an elastic material, said gasket enabling regulation of the packing density for the particles of the conductive material.

    [0035] In the illustrated embodiment the electrode chamber unit also includes an ion-selective diaphragm 12 arranged between two separators 10.

    [0036] As will be seen from the Figure, the gaskets 11 and diaphragm 12 are also provided with electrolyte passage holes in register with the holes 8 and 9, respectively, in the electrodes.

    [0037] The cell from Fig. 1 is illustrated in Fig. 2 in an assembled state, additional illustrated details being end plates 13, e.g. of metal, with inlet holes 14 and outlet holes (not visible) for electrolyte, rods 15 and nuts 16 for clamping the cell together in an assembled condition. As is clear from the above description, the end plates 13 are called separators forthe sake of simplicity and forthe purpose of the invention, although they have a different structure and partially another function than the separators 10.

    [0038] Fig. 3 illustrates an embodiment of a current supplier for the electrode chamber units in accordance with the invention, more specifically an expanded metal net 17 with rod-like elements 18. This embodiment of the current supplier is the one illustrated in Fig. 1, where the net thus has reference numeral 6 and the rods the numeral 7. In this case the net is of substantially the same shape as the central opening 4 in the frame 3.

    [0039] Fig. 4 illustrates another variation of the current supplier with a considerably smaller tongue 19 having rod-like elements 20 connected thereto, i.e. the tongue is intended to occupy only a portion of the central opening in the frame.

    Examples



    [0040] The invention is finally illustrated by the following non-restricting working examples.

    Experimental procedure -



    [0041] The experiments were carried out while varying the following parameters: input concentration, kind of metal ion, flow rate, graphite grain size and electrolyte resistivity. Most of the experiments were carried out with a single particulate electrode of the type described, closed in on either side by an anion-selective diaphragm (Selemion ASV from Asahi Glass, Japan) and counter electrodes of lead plates. A polypropylene net was also applied as a separator between the lead electrodes and the diaphragms. Experiments were also carried out with several particulate electrodes (four, every second cathodic and every second anodic) according to Fig. 1.

    [0042] The feed solution was stored at room temperature in a polyethylene container having a volume of 60 liters. The solution was pumped into the cell by a centrifugal pump via a calibrated flow meter (rotameter). The flow rate was regulated by a valve on the pump pressure side. The metal concentrations in the feed solution and the discharge solution were determined with the aid of an atom absorption spectrophotometer (Varion AA-275). The pH of said feed and discharge solutions were measured with a glass electrode.

    [0043] The recirculating anode solution was a 0.1 M KZS04 solution. The anode reaction was a generation of oxygen.

    [0044] The solution was allowed to pass through the particulate bed in a single pass.

    Results


    Copper precipitation



    [0045] Experiments were made with both synthetic solutions made up from KsS04 (0.1-0.5 M) solutions and CUS04 to the desired concentration, and authentic waste solutions from the surface finishing industry.

    [0046] The results are apparent from Table 1 below.


    Zinc precipitation



    [0047] Due to the very non-precious nature of zinc (electrode potential=-0.76 V relative to a hydrogen gas electrode) an electrochemical precipitation of zinc is very difficult. A series of experiments with different pH:s were carried out. The results are presented in Table 2:



    [0048] As expected, the purification effect was not as good as for copper. The higher the pH value the better is the purification.

    The effect of the resistivity



    [0049] With very dilute solutions the electrolyte resistivity can be very low. A trial series was therefore carried out with varying contents of supporting electrolyte in the precipitation of copper.

    [0050] The results are accounted for in Table 3 (dp=1.2 mm).



    [0051] Experiments were also made with a complete cell consisting of two particulate anodes and two particulate cathodes; see Fig. 1. The same experimental procedure was used as above. The experiments embraced copper precipitation only. The results corresponded substantially to those in Table 1.


    Claims

    1. An electrode chamber unit which is intended for use in an electrochemical cell of the filter press type and having at least one porous percolation electrode in the form of a bed of electrically conductive grains, and which includes at least one substantially flat frame (3) having a thickness within the range of 0.2-5 cm and defining a central opening (4) that is filled with the electrically conductive grains so that these form a flat porous bed (5) within said opening, the grains being kept in place within the central opening of the frame by sufficiently dense separators (10), which are arranged to cover the central opening on either side of the frame to form an electrode chamber, the frame being provided with at least one hole (8) for supply and at least one hole (9) for discharge of electrolyte, where said holes are in communication via inlet and outlet channels respectively with the central opening of the frame and the frame including current conductors for the supply of electric current to the conductive particles via said frame, said current conductors comprising an electrode element (6, 17, 19) located within said bed which element is a substantially flat tongue arranged with a space to the edge of the central opening or a metal net the dimensions of which are similar to or smaller than the dimensions of the central opening, and conducting means (7, 18, 20) inserted through the peripheral edge of the frame.
     
    2. An electrode chamber unit as claimed in claim 1, characterized in that the central opening (4) has a substantially rectangular shape where the ratio of long side:short side of the rectangle is at least 2:1, and that the channels for supply and discharge respectively of the electrolyte open out in the respective short sides of the rectangle.
     
    3. An electrode chamber unit as claimed in claim 2, characterized in that the ratio of long side:short side of the rectangle is at least 4:1.
     
    4. An electrode chamber unit as claimed in claim 3, characterized in that the ratio of long side:short side of the rectangle is within the range of 4:1-10:1.
     
    5. An electrode chamber unit as claimed in any one of the preceding claims, characterized in that the frame (3) is enclosed on either side by a gasket (11) of an elastic material, which enables an adjustment of the packing density for the particles of the conductive material.
     
    6. An electrode chamber unit as claimed in claim 5, characterized in that said gasket is of rubber.
     
    7. An electrode chamber unit as claimed in any one of the preceding claims, characterized in that it includes an ion-selective diaphragm (12) arranged between two separators (10), the separators being of a net or fabric material, preferably a polymeric material, which is sufficiently dense to prevent the conductive particles from puncturing the diaphragm but not so dense as to disturb the electrolytic flow.
     
    8. An electrode chamber unit as claimed in any one of the preceding claims, characterized in that the conducting means inserted through the peripheral edge on the frame are rod-like elements.
     
    9. An electrode chamber unit as claimed in claim 8, characterized in that said rod-like elements have a substantially circular cross section.
     
    10. An electrode chamber unit as claimed in claim 8 or 9, characterized in that the current conductor consists of a graphite tongue (19) with rod-like elements (20) of titanium.
     
    11. An electrode chamber unit as claimed in any one of claims 1-9, characterized in that said metal net is of expanded metal.
     
    12. An electrode chamber unit as claimed in any one of claims 1-9 and 11, characterized in that said metal net is of titanium.
     
    13. An electrode chamber unit as claimed in any one of the preceding claims, characterized in that the channels for supply and discharge of electrolyte, respectively, contain means for distributing the electrolyte across the entire width of the central opening of the frame.
     
    14. An electrode chamber unit as claimed in claim 13, characterized in that said means for distributing the electrolyte is a plurality of smaller channels.
     
    15. An electrode chamber unit as claimed in any of the preceding claims, characterized in that the frame has two holes (8) for supply and two holes (9) for discharge of electrolyte, with separate channels to the central opening (4), the channels opening out on opposite sides of the central opening in a manner such that the frame is usable as an electrode of opposite polarity by a simple rotating by 180°.
     
    16. An electrode chamber unit as claimed in any one of the preceding claims, characterized in that the frame has a thickness of 0.5-2 cm.
     
    17. An electrode chamber unit as claimed in any one of the preceding claims, characterized in that the electrically conductive grains are of graphite.
     
    18. An electrode chamber unit as claimed in any one of the preceding claims, characterized in that the frame as Well as the separators are of a polymeric material.
     
    19. An electrochemical cell built up in accordance with the filter press principle with the electrodes arranged in central openings defined by frames which frames are provided with holes for supply and discharge of electrolyte to and from the electrode, respectively, characterized in that it includes electrode chamber units according to any one of claims 1-18.
     
    20. An electrochemical cell as claimed in claim 19, characterized in that the short side of the central opening is arranged along a horizontal plane.
     
    21. An electrochemical cell as claimed in any of claims 19 or 20, characterized in that it is constructed solely from said electrode chamber units, the anode frames being rotated 180° in relation to the cathode frames.
     
    22. A method of producing an electrochemical cell in accordance with any of claims 19-21, characterized by placing a separator (13) horizontally, mounting at least one of said frames (3) on top of the separator, filling the central opening (4) of the frame with grains of the electrically conductive material, placing the next separator (10) thereupon so as to keep the grains in place, and repeating the procedure with the number of electrode chamber units which are to be included in the electrochemical cell, and locking the units to each other with conventional locking means (15, 16).
     
    23. A method as claimed in claim 22, characterized by placing gaskets (11) from an elastic material between the frames (3), and by filling the central opening (4) with the conductive grains up to the edge of the gasket and compressing the gaskets to the desired packing density of the conductive grains.
     


    Ansprüche

    1. Elektrodenkammereinheit, welche für die Verwendung in einer elektrochemischen Zelle vom Filterpressentyp vorgesehen ist und zumindest eine poröse Filterelektrode in Form einer Schicht von elektrisch leitfähigen Körnern hat, und welche zumindest einen im wesentlichen flachen Rahmen (3) aufweist, der eine Dicke im Bereich von 0,2 bis 5 cm hat und eine zentrale Öffnung (4) festlegt, die mit den elektrisch leitfähigen Körnern gefüllt ist, so daß diese eine flache poröse Schicht (5) innerhalb der Öffnung bilden, wobei die Körner innerhalb der zentralen Öffnung des Rahmens durch ausreichend dichte Trenneinrichtungen (10) an Ort und Stelle gehalten werden, welche so angeordnet sind, daß sie die zentrale Öffnung auf jeder Seite des Rahmens abdecken, so daß sie eine Elektrodenkammer bilden, der Rahmen mit zumindest einem Loch (8) für die Zufuhr und zumindes einem Loch (9) für die Abgabe von Elektrolyt versehen ist, wobei die Löcher über Einlaß- bzw. Auslaßkanäle mit der zentralen Öffnung des Rahmens in Verbindung stehen und der Rahmen Stromleiter für die Zufuhr eines elektrischen Stromes zu den leitfähigen Partikeln durch den Rahmen aufweist, die Stromleiter ein Elektrodenelement (6, 17, 19) aufweisen, welches in dem Bett angeordnet ist, wobei dieses Element eine im wesentlichen flache Zunge ist, die im Abstand zur Kante der zentralen Öffnung angeordnet ist oder ein Metallnetz, dessen Abmessungen ähnlich sind oder kleiner als die Abmessungen der zentralen Öffnungen, und Leitungseinrichtungen (7, 18, 20) durch die umlaufende Kante des Rahmens eingesetzt sind.
     
    2. Elektrodenkammer nach Anspruch 1, dadurch gekennzeichnet, daß die zentrale Öffnung (4) eine im wesentlichen rechteckige Gestalt hat, wobei das Verhältnis lange Seite zu kurzer Seite des Rechteckes zumindest 2:1 beträgt, und daß die Kanäle für die Zufuhr bzw. Abgabe des Elektrolyts sich zu den entsprechenden kurzen Seiten des Rechteckes öffnen.
     
    3. Elektrodenkammereinheit nach Anspruch 2, dadurch gekennzeichnet, daß das Verhältnis langer Seite zu kurzer Seite des Rechteckes zumindest 4:1 beträgt.
     
    4. Elektrodenkammereinheit nach Anspruch 3, dadurch gekennzeichnet, daß das Verhältnis lange Seite zu kurzer Seite des Rechteckes im Bereich zwischen 4:1 bis 10:1 liegt.
     
    5. Elektrodenkammereinheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Rahmen (3) auf jeder Seite durch eine Dichtung (11) aus einem elastischen Material eingeschlossen ist, welche eine Einstellung der Pakkungsdichte der Teilchen aus leitfähigem Material ermöglicht.
     
    6. Elektrodenkammereinheit nach Anspruch 5, dadurch gekennzeichnet, daß die Dichtung aus Gummi besteht.
     
    7. Elektrodenkammereinheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß sie eine ionenselektive Scheidewand (12) aufweist, welche zwischen zwei Trenneinrichtungen (10) angeordnet ist, wobei die Trenneinrichtungen aus einem Netz- oder Gewebematerial bestehen, vorzugsweise einem polymeren Material, welches ausreichend dicht ist um zu verhindern, daß die leitfähigen Partikel die Scheidewand durchstoßen, jedoch nicht so dicht, daß es den Fluß des Elektrolyts stört.
     
    8. Elektrodenkammereinheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Leitungseinrichtung, die durch die umlaufende Kante des Rahmens eingesetzt ist, aus stangenartigen Elementen besteht.
     
    9. Elektrodenkammereinheit nach Anspruch 8, dadurch gekennzeichnet, daß die stangenartigen Elemente einen im wesentlichen kreisförmigen Querschnitt haben.
     
    10. Elektrodenkammereinheit nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß der Stromleiter aus einer Graphitzunge mit stangenartigen Elementen aus Titan besteht.
     
    11. Elektrodenkammereinheit nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Metallnetz aus Streckmetall besteht.
     
    12. Elektrodenkammereinheit nach einem der Ansprüche 1 bis 9 und 11, dadurch gekennzeichnet, daß das Metallnetz aus Titan besteht.
     
    13. Elektrodenkammereinheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Kanäle für die Zufuhr bzw. die Abgabe von Elektrolyt Mittel zum Verteilen des Elektrolyts über die gesamte Breite der zentralen Öffnung des Rahmens enthalten.
     
    14. Elektrodenkammereinheit nach Anspruch 13, dadurch gekennzeichnet, daß die Einrichtungen zum Verteilen des Elektrolyts aus einer Mehrzahl kleinerer Kanäle bestehen.
     
    15. Elektrodenkammereinheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Rahmen zwei Löcher (8) für die Zufuhr und zwei Löcher (9) für die Abgabe von Elektrolyt hat, mit getrennten Kanälen zu der zentralen Öffnung (4), wobei die Kanäle sich zu entgegengesetzten Seiten der zentralen Öffnung hin in einer Weise öffnen, daß der Rahmen als Elektrode entgegengesetzter Polarität durch eine einfache Drehung von 180° verwendbar ist.
     
    16. Elektrodenkammereinheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Rahmen eine Dicke von 0,5 bis 2 cm hat.
     
    17. Elektrodenkammereinheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die elektrisch leitfähigen Körner aus Graphit bestehen.
     
    18. Elektrodenkammereinheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Rahmen ebenso wie die Abtrenneinrichtungen aus polymerem Material bestehen.
     
    19. Elektrochemische Zelle, die nach dem Filterpressenprinzip aufgebaut ist, wobei die Elektroden in zentralen Öffnungen angeordnet sind, die durch Rahmen festgelegt werden, wobei die Rahmen mit Löchern für die Zufuhr bzw. Abgabe von Elektrolyt zu bzw. von der Elektrode versehen sind, dadurch gekennzeichnet, daß sie Elektrodenkammereinheiten nach einem der Ansprüche 1 bis 18 aufweist.
     
    20. Elektrochemische Zelle nach Anspruch 19, dadurch gekennzeichnet, daß die kurze Seite der zentralen Öffnung entlang einer horizontalen Ebene angeordnet ist.
     
    21. Elektrochemische Zelle nach einem der Ansprüche 19 oder 20, dadurch gekennzeichnet, daß sie allein aus den genannten Elektrodenkammereinheiten aufgebaut ist, wobei die Anodenrahmen um 180° relativ zu den Kathodenrahmen gedreht sind.
     
    22. Verfahren zum Herstellen einer elektrochemischen Zelle gemäß einem der Ansprüche 19 bis 21, gekennzeichnet durch horizontales Anordnen einer Trenneinrichtung (13), Befestigen mindestens eines des Rahmen (3) oben auf der Abtrenneinrichtung, Füllen der zentralen Öffnung (4) des Rahmens mit Körnern aus elektrisch leitfähigem Material, Anordnen oder nächsten Abtrenneinrichtung (10) darauf, so daß die Körner an Ort und Stelle gehalten werden, und Wiederholen des Vorganges mit der Anzahl von Elektrodenkammereinheiten, welche in der elektrochemischen Zelle eingeschlossen werden sollen, und Verriegeln der Einheiten miteinander mit üblichen Verriegelungseinrichtungen (15, 16).
     
    23. Verfahren nach Anspruch 22, gekennzeichnet durch Anordnen von Dichtungen (11) aus einem elastischen Material zwischen den Rahmen (3) und durch Füllen der zentralen Öffnung (4) mit den leitfähigen Körnern bis zur Kante der Dichtung und Zusammenpressen der Dichtungen auf die gewünschte Packungsdichte der leitfähigen Körner.
     


    Revendications

    1. Unité formant chambre à électrode, destinée à être utilisée dans une cellule électrochimique du type filtre-presse et comportant au moins une électrode poreuse de filtration se présentant sous la forme d'un lit de grains électriquement conducteurs, et comprenant au moins un cadre sensiblement plat (3) possédant une épaisseur dans la gamme de 0,2-5 cm et définissant une ouverture centrale (4) remplie par les grains électriquement conducteurs de telle sorte que ces derniers forment un lit plat poreux (5) à l'intérieur de ladite ouverture, les grains étant maintenus en place à l'intérieur de l'ouverture centrale du cadre par des séparateurs (10) suffisamment denses, qui sont disposés de manière à recouvrir l'ouverture centrale de chaque côté du cadre afin de former une chambre pour une électrode, le cadre comportant au moins un trou (8) pour l'introduction de l'électrolyte et au moins un trou (9) pour l'évacuation de l'électrolyte, et dans laquelle lesdits trous sont en communication par l'intermédiaire de canaux respectifs d'entrée et de sortie avec l'ouverture centrale dudit câble et ce dernier comprenant des conducteurs de courant servant à envoyer un courant électrique aux particules conductrices par l'intermédiaire dudit cadre, lesdits conducteurs de courant comprenant un élément formant électrode (6, 17, 19) situé à l'intérieur dudit lit, cet élément étant constitué par une bande sensiblement plate disposée en étant séparée du bord de l'ouverture centrale ou d'un treillis métallique, dont les dimensions sont semblables ou inférieures aux dimensions de l'ouverture centrale, tandis que des moyens conducteurs (7, 18, 20) sont insérés dans le bord périphérique du cadre.
     
    2. Unité formant chambre à électrode selon la revendication 1, caractérisée en ce que l'ouverture centrale (4) possède une forme sensiblement rectangulaire, le rapport grand côté:petit côté du rectangle étant égal au moins à 2:1, et que les canaux servant respectivement à amener et évacuer l'électrolyte débouchent dans les petits côtés respectifs du rectangle.
     
    3. Unité formant chambre à électrode selon la revendication 2, caractérisée en ce que le rapport côté long:côté court du rectangle est égal à au moins 4:1.
     
    4. Unité formant chambre à électrode selon la revendication 3, caractérisée en ce que le rapport côté long:côté court du rectangle se situe dans la gamme 4:1-10:1.
     
    5. Unité formant chambre à électrode selon l'une quelconque des revendications précédentes, caractérisée en ce que le cadre (3) est entouré sur ses côtés par un joint (11) réalisé en un matériau élastique, qui permet un réglage de la densité de tassement des particules du matériau conducteur.
     
    6. Unité formant chambre à électrode selon la revendication 5, caractérisée en ce que ledit joint est en caoutchouc.
     
    7. Unité formant chambre à électrode selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comporte un diaphragme (12) sélectif pour les ions et disposé entre les deux séparateurs (10), les séparateurs étant constitués par un matériau en forme de treillis ou de tissu, de préférence un matériau polymérique, suffisamment dense pour empêcher les particules conductrices de perforer le diaphragme, mais pas suffisamment dense pour perturber le flux électrolytique.
     
    8. Unité formant chambre à électrode selon l'une quelconque des revendications précédentes, caractérisée en ce que les moyens conducteurs insérés dans le bord périphérique du cadre sont des éléments en forme de tiges.
     
    9. Unité formant chambre à électrode selon la revendication 8, caractérisée en ce que lesdits éléments en forme de tiges possèdent une section transversale sensiblement circulaire.
     
    10. Unité formant chambre à électrode selon la revendication 8 ou 9, caractérisée en ce que le conducteur de courant est constitué par une bande de graphite (19) comportant des éléments en forme de tiges (20) en titane.
     
    11. Unité formant chambre à électrode selon l'une quelconque des revendications 1-9, caractérisée en ce que ledit treillis métallique est formé par un métal déployé.
     
    12. Unité formant chambre à électrode selon l'une quelconque des revendications 1-9 et 11, caractérisée en ce que ledit treillis métallique est en titane.
     
    13. Unité formant chambre à électrode selon l'une quelconque des revendications précédentes, caractérisée en ce que les canaux prévus respectivement pour l'introduction et l'évacuation de l'électrolyte contiennent des moyens pour répartir l'électrolyte sur toute la largeur de l'ouverture centrale du cadre.
     
    14. Unité formant chambre à électrode selon la revendication 13, caractérisée en ce que lesdits moyens de répartition de l'électrolyte sont constitués par une pluralité de canaux plus petits.
     
    15. Unité formant chambre à électrode selon l'une quelconque des revendications précédentes, caractérisée en ce que le cadre comporte deux trous (8) d'amenée de l'électrolyte et deux trous (9) d'évacuation de l'électrolyte, avec des canaux séparés aboutissant à l'ouverture centrale (4), les canaux débouchant sur des côtés opposés de l'ouverture centrale de telle sorte que le cadre peut être utilisé en tant qu'électrode possédant une polarité opposée, moyennant une simple rotation sur 180°.
     
    16. Unité formant chambre à électrode selon l'une quelconque des revendications précédentes, caractérisée en ce que le cadre possède une épaisseur de 0,5-2 cm.
     
    17. Unité formant chambre à électrode selon l'une quelconque des revendications précédentes, caractérisée en ce que les grains électriquement conducteurs sont formés de graphite.
     
    18. Unité formant chambre à électrode selon l'une quelconque des revendications précédentes, caractérisée en ce que le cadre ainsi que les séparateurs sont réalisés en un matériau polymèrique.
     
    19. Cellule électrochimique construite selon le principe du filtre-presse et comportant des électrodes disposées dans des ouvertures centrales définies par des cadres pourvus de trous servant respectivement à introduire et évacuer l'électrolyte en direction et à partir de l'électrode, caractérisée en ce qu'elle comporte des unités formant chambres à électrode selon l'une quelconque des revendications 1-18.
     
    20. Cellule électrochimique selon la revendication 19, caractérisée en ce que le petit côté de l'ouverture est disposé le long d'un plan horizontal.
     
    21. Cellule électrochimique selon l'une quelconque des revendications 19 ou 20, caractérisée en ce qu'elle est constituée uniquement à partir desdites unités formant chambres à électrode, les cadres formant anodes étant tournés de 180° par rapport aux cadres formant cathodes.
     
    22. Procédé pour fabriquer une cellule électrochimique selon l'une quelconque des revendications 19-21, caractérisé en ce qu'il consiste à disposer un séparateur (13) horizontalement, à monter au moins l'un desdits cadres (3) à la partie supérieure du séparateur, à remplir l'ouverture centrale (4) du cadre avec des grains d'un matériau électriquement conducteur, à placer le séparateur suivant (10) sur le cadre de manière à maintenir les grains en position et à répéter cette procédure un nombre de fois égal au nombre d'unités à chambre à électrodes, qui doivent être contenues dans la cellule électrochimique, et à verrouiller les unités les unes aux autres à l'aide de moyens classiques de verrouillage (15, 16).
     
    23. Procédé selon la revendication 22, caractérisé en ce qu'il consiste à mettre en place des joints (11) réalisés en un matériau élastique entre les cadres (3) et remplir l'ouverture centrale (4) avec les grains conducteurs jusqu'au niveau du bord du joint et à comprimer les joints de manière à obtenir la densité désirée de tassement des grains conducteurs.
     




    Drawing