(19)
(11)EP 0 275 712 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.1992 Bulletin 1992/30

(21)Application number: 87311500.0

(22)Date of filing:  29.12.1987
(51)International Patent Classification (IPC)5A01G 9/24, A01G 31/02

(54)

Method and structure for environmental control of plant growth

Verfahren und Anlage zur Pflanzenaufzucht in einem kontrollierten Klima

Procédé et structure de culture de plantes dans un environnement contrôlé


(84)Designated Contracting States:
BE CH DE FR GB IT LI NL

(30)Priority: 30.12.1986 US 947636

(43)Date of publication of application:
27.07.1988 Bulletin 1988/30

(73)Proprietor: Sprung, Philip Davis
Calgary Alberta T2R 0B7 (CA)

(72)Inventor:
  • Sprung, Philip Davis
    Calgary Alberta T2R 0B7 (CA)

(74)Representative: Matthews, Graham Farrah et al
BROOKES & MARTIN Incorporating MATTHEWS, HADDAN & CO. High Holborn House 52/54, High Holborn
London, WC1V 6SE
London, WC1V 6SE (GB)


(56)References cited: : 
EP-A- 0 038 213
EP-A- 0 197 398
FR-A- 1 230 351
US-A- 3 807 088
US-A- 4 366 646
US-A- 4 587 159
EP-A- 0 142 989
WO-A-86/06928
GB-A- 1 443 517
US-A- 4 198 783
US-A- 4 430 828
  
  • THE TEXTILE MANUFACTURER, vol. 97, no. 1161, August/September 1971, page 329; "Textile roof for cycling stadium"
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] This invention relates to a method and apparatus for environmental control of plant growth, and more particularly to a method and structure for growing plants in harsh environmental conditions.

[0002] Traditional greenhouse structures, consisting of transparent panes of glass forming a roof to enclose a growing area, drawing air from the outside and having a heater for winter months, while adequate for many purposes, possess many shortcomings which make them unsuitable for year-round production of many types of fruits and vegetables in certain climatic conditions, e.g. in far Northern or far Southern climates where temperature and light conditions may be poor. In addition, because such greenhouses often are not well sealed against the outside environment, unsuitable temperature differentials may be created within. As well, outside air which may contain substances which are not conducive to proper growth of plants, is permitted to enter. Also, by-products from the heater system, which often is a natural gas or oil furnace, may be present in the environment within such greenhouses again causing reduced plant growth. The water which is used in such greenhouses is often local water and again may contain impurities or compositions which impede plant growth. There is an increasing awareness of the detrimental impact of impurities in the air or water on plant growth. In addition, the concentration of elements required for plant growth such as calcium, nitrogen and phosphorous in water being fed to plants in conventional greenhouses may change from day-to-day, resulting in irregular plant growth.

[0003] As a result, in recent years there has been a trend towards development of controlled environment horticultural or agricultural installations. For example, Canadian patent No. 1,097,075 of Miller issued March 10, 1981 describes and illustrates a nutrient supply system for such a controlled environment agricultural installation incorporating nutrient film techniques in which plant root masses are arranged to be wetted by contact with a small stream of liquid nutrient. Capillary attraction or wicking then is relied upon to extend the nutrient-wetted area over and through the entire root mass. Nutrient supply is achieved by positioning the plant roots in long troughs and flowing a thin stream of liquid nutrient along the bottom of the trough permitting the stream to contact each of the plant root masses as it flows along. Excess nutrient is recycled usually after any needed replenishment of its compositional elements.

[0004] Such attempts in a greenhouse to control the various conditions responsible for plant growth have, heretofore been extremely limited in scope. Thus, for example, in Miller Canadian Patent No 1,097,075, only the nutrient feed is controlled. In Canadian Patent No 982,426 of Delano et al issued January 27, 1976, a method of controlling the amount of solar heat and light which enters a glass or plastic greenhouse is described wherein a liquid is coated on the glass or plastic film of the greenhouse. The liquid dries into a coating which is transparent under certain conditions. In Canadian Patent No 955,748 of Glatti et al issued October 8, 1984, the light passing through a translucent covering of a greenhouse is partially controlled by coating the inner surface of the translucent covering with a surface-active agent, which surface-active agent reduces the contact angle of water-condensate droplets formed on the inner surface thereof to below 75°.

[0005] Other patents of general background interest describing different types of greenhouse structures include US Patent No 4,195,441 of Baldwin issued April 1, 1980 (solar greenhouse in which plants are used as solar collectors to absorb solar radiation and store it in a heat reservoir beneath the greenhouse) and US Patent No 4,452,256 of Kranz issued October 5, 1582 (greenhouse structure including a central hub and arms comprising growth chambers extending radially outwardly therefrom).

[0006] In US Patent Specification No 3,807,088 (Jones) there is disclosed a controlled environment structure within which to grow horticultural plants comprising a base, a translucent impermeable shell mounted and supported on said base to sealingly enclose a predetermined space within which horticultural plants are to be grown against external environmental conditions, temperature monitor and temperature control means for the space, and control means electronically associated with the temperature monitor and control means, and control means and control means and programmed to provide optimum temperature conditions for the plants being cultivated in the space, the temperature control means comprising heater means, and cooling means including means for generating a mist cloud for evaporation within said shell and subsequent condensing on an internal surface of said shell to cool the structure.

[0007] The disclosure of US Patent Specification No 3,807,088 also encompasses a method of plant husbandry which comprises growing plants in a space within a translucent shell mounted on a base, the environment within the space being sealed against external environmental air conditions, controlling the temperature, humidity and carbon dioxide conditions within the space to ensure that optimum conditions for plant growth are maintained, controlling the plant root nutrient and water conditions by control means electronically associated with monitor and control devices for the temperature, humidity and carbon dioxide, for optimum plant growth, and generating a mist cloud of vapour within the space for temperature and humidity control.

[0008] While previous attempts to provide controlled environment horticultural installations have apparently been successful for the limited purposes for which they were developed, attempts to provide a comprehensive controlled environment horticultural installation and method in which all or most of the environmental factors required for proper plant husbandry are controlled has not as yet been developed. It is an object of the present invention to provide such an installation and method.

[0009] More particularly, it is an object of the present invention to provide a structure and method for the production of horticultural crops, in which, inter alia, temperature, relative humidity, carbon dioxide and other factors essential for proper plant growth are monitored and controlled.

[0010] It is a further object of the present invention to provide a controlled environmental horticultural installation which will permit large scale production of horticultural crops even in external environmental conditions which are normally detrimental to plant growth and horticultural production.

[0011] According to the present invention there is provided a controlled environment structure within which to grow horticultural plants comprising a base, a translucent impermeable shell mounted and supported on said base to sealingly enclose a predetermined space within which horticultural plants are to be grown against external environmental conditions, temperature monitor and temperature control means for the space, relative humidity monitor and humidity control means for the space, carbon dioxide monitor and carbon dioxide control means for the space, control means electronically associated with the temperature monitor and control means, humidity monitor and carbon dioxide monitor and control means and programmed to provide optimum temperature, humidity and carbon dioxide conditions for the plants being cultivated in the space, the temperature control means comprising (i) heater means and (ii) cooling means including means for generating a mist cloud for evaporation within said shell and subsequent condensing on an internal surface of said shell to cool the structure, characterised in that said shell is a heat-conductive stressed fabric shell, in that said control means is a microprocessor control means, in that said cooling means further comprises spray means for controlled spraying of a film of water through the air onto the external surface of said shell to provide for condensation of water on said internal surface of said shell, and in that the structure comprises means for collecting and recycling condensates from said internal surface of said shell.

[0012] Preferred features of the invention are set out in the dependent claims. In a preferred embodiment of the present invention, the structure further comprises plant root nutrient monitor means and plant root nutrient control means for plants grown within the space. The microprocessor means is electronically associated with the plant root nutrient monitor and control means and is programmed to provide optimum nutrient concentration conditions for nutrient solution being fed to the roots of the plants being cultivated in the space.

[0013] Further according to the invention there is provided a method of plant husbandry which comprises growing plants in a said controlled environment structure, the environment within the space being sealed against external environmental air conditions, said method comprising controlling the temperature, humidity and carbon dioxide conditions within the space to ensure that optimum conditions for plant growth are maintained, controlling the plant root nutrient and water conditions by control means electronically associated with monitor and control devices for the temperature, humidity and carbon dioxide, for optimum plant growth, and generating a mist cloud of vapour within the space for temperature and humidity control, characterised in that said shell is a stressed fabric shell, in that said control means is a microprocessor control means, and by spraying a film of water through the air onto the external surface of said shell to cool said shell and collecting and recycling the condensate from the internal surface of said shell.

[0014] The structure and method according to the present invention provide a controlled environment horticultural installation which permits large scale horticultural production over increased periods of time even at low solar angles such as experienced in winter time in Canadian cities such Calgary or Norther United States cities such as Minneapolis or Seattle. Increased plant growth including increased yields of fruit and vegetables are achieved. In addition the invention provides the ability to control the internal environment of the structure to permit the year round growth of crops which could not otherwise grow in the natural environment at a particular location, even in traditional greenhouse structures. While the control and monitor systems for the various environmental factors may present costs which are greater than those which would be incurred for a conventional greenhouse without such systems, the increased yields from crops grown in such controlled environment conditions and the increased concentration of crops which can be grown tend to more than offset the increased costs. Also because of the sealed environment within which the crops are grown, herbicides and pesticides become virtually unnecessary.

[0015] These and other objects and advantages of the invention will become apparent upon reading the following detailed description and upon referring to the drawings in which:

FIGURE 1 is a partial schematic plan view of a controlled environment structure in accordance with the present invention, illustrating several of the control and monitor systems incorporated in such structure,

FIGURE 2 is a partial, perspective view of an external spray system for controlled spraying of a film of water over the external surface of the shell of the structure according to the present invention,

FIGURE 3 is an elevation section view along line III-III of Figure 1, through one of the production areas,

FIGURE 4 is a partial perspective view of a portion of the nutrient delivery system of the structure, and

FIGURE 5 is a partial perspective view of the interior of one of the shells of the structure of Figure 1 illustrating the water collection system for the interior surfaces of the shell of the structure.



[0016] In the drawings, similar features have been given similar reference numerals.

[0017] Turning to FIGURE 1 there is illustrated a partial schematic plan view of a structure 2 in accordance with the present invention, illustrating many of the features of the structure which permit the control of the environment within elongated, radially positioned production areas 4 and immature crop development areas 6 in central annular corridor 7 of structure 2. In addition, structure 2 has a central control area 8 where a microprocessor 10, the function of which will be described in more detail hereinafter, is located. Each production area 4 is connected as illustrated to central corridor area 7 and may be sealed from the corridor and other production areas, for example to maintain differing aerial environments from one production area 4 to another which differing crops may require.

[0018] The production and immature crop development areas 4 and 6 are enclosed by a translucent impermeable stressed fabric shell 12 (FIGURE 3) situated on a base 14, the shell and base enclosing predetermined spaces (e.g. production areas 4 or immature crop development area 6). Shell 12 is preferably made of a technically woven polyvinyl chloride coated polyester scrim fabric, with about a 95% light translucency. Such a fabric is highly effective in providing natural light inside the structure and is heat conductive. The fabric is preferably lightweight e g 3kg/m² (18 ounces per square yard) and flame resistant, as well as resistant to oil, chemicals, greases, rot, mildew and certain types of bacteria which attack polyvinyl chlorides and which are prevalent in a mist environment. It is preferably held between arched rib members 15 which rest on the base, the rib members being spread to tension the fabric for example as described in my US Patent No 4,137,687 issued February 6, 1979.

[0019] In addition, as can be seen in Figure 3, the delivery of light to the interior of the structure is further enhanced by the fact that there are very few pipes, waterlines or other physical obstructions allowed above the growing root area. Also, as illustrated in Figure 3 base 14 for production area 4 is elevated and preferably surrounded by reflective surface 16, which may be a light coloured surface e.g. of reflective plastic, or, water ponds as illustrated, ice surfaces (in below-freezing temperatures) or the like. In this manner, even when there is a low solar angle, light is transmitted by reflection, as well as directly, into the structure through shell 12. As can be seen in Figure 3, the sides which make up shell 12 extend upward, from base 14, in convex fashion and meet at crest 18, forming two sides 20 and 22 for the shells of each of the elongated production areas 4.

[0020] The shells 12 extend over corresponding bases 14 of each of the areas illustrated in Figure 1 to seal the environment within such areas against external environmental air conditions. This is an important aspect of the invention since it makes possible the close control of environmental conditions within each of the areas of the structure, such as humidity and carbon dioxide concentration. Otherwise, this would not be possible.

[0021] A series of temperature monitors 24, carbon dioxide monitors 26 and relative humidity monitors 28 are provided for the interior atmosphere within each of the production areas 4 and immature crop development areas 6 in question (FIGURE 3). As well, in the shell covering each of the areas 4 and 6 are embedded temperature sensors 30. Carbon dioxide delivery systems 32 and nutrient delivery systems 34 (FIGURE 1), the systems delivering respectively carbon dioxide and nutrient solution from sources preferably located in central control area 8 are provided for each of the production areas 4 and immature crop development areas 6, although these are illustrated as being in separate areas 6 in FIGURE 1 merely for ease of illustration. Microprocessor 10, electronically connected to monitors 24, 26, 28 and 30, controls the delivery of carbon dioxide from a source 36 and nutrient from reservoir tanks 38 in central control area 8 to areas 4 and 6.

[0022] The temperature and relative humidity within each of the production areas 4 and immature crop development areas 6 is controlled by a sophisticated and sometimes interrelated series of systems. First of all, for temperature control, each of the shells over production areas 4 and immature crop development areas 6 is provided with an external spray system 40 (FIGURE 2) consisting of a series of pipes 42 supplying water which may be, for example from a source (not shown) in central control area 8 or from ponds 16, and feeding the water through these pipes to spray nozzles 44 (FIGURE 2) to spray a thin film of water over the exterior surface of shell 12 to cool it as required. To achieve this end the water is first sprayed from nozzles 44 through the air and onto the exterior of shell 12 in a dispersed pattern as illustrated. This spraying through the air provides for evaporative cooling of the water, thereby supplying additional cooling potential to shell 12. Sensors 30 in shell 12 are electronically connected to microprocessor 10 and, either on a timed sequence or as the temperature of the shell builds up to a certain range, it activates solenoid valves (not shown) to cause water to be sprayed through nozzles 44 over exterior surface of the shell to cool it. The shape of shells 12 over production areas 4 and immature crop development areas 6 is such that this water film will run down the exterior surface of the shells. Nozzles 44 are preferably directed to provide an even spray over most of the exterior surface of shell 12 over production areas 4 and 6, as required. Water so sprayed over shells 12 may be collected, for example, in the external ponds 16 forming the reflective surface, or by any other appropriate retrieval means.

[0023] Internally, temperature control is achieved through internal mist generation system 48 (FIGURE 3) which comprises water supply pipes 50 feeding fog nozzles 52, which nozzles produce, as required, a fine mist or cloud in the atmosphere in the space over plants 54. This internal mist generation system is activated by temperature monitors 24 electronically connected to microprocessor 10, which microprocessor activates the internal mist generation system when the temperature within the immature crop development or production area exceeds a predetermined level or on a timed sequence. The production of the mist or cloud causes cooling in two ways. Firstly, it impedes the passage of rays of sunlight to the plants, thereby cooling by shading. Secondly, as the mist or cloud evaporates under the heated conditions within the shell, the evaporation draws heat from the environment in the space in the shell. The evaporated water vapour condenses on the cooler shell surface (cooled if necessary by external vapour system 40), passing the heat of condensation into the shell fabric. The shell fabric is of a heat conductive material and heat is thereby passed from the internal to the external side of the shell and out of the internal environment of production area 4 or immature crop development area 6.

[0024] Water vapour thus condensing on the interior surface of shell 12 (which may include water vapour from transpiration of the plants 54) travels down the sides of the shell and is collected by means of collection skirts 56 passing into slots 57 in collection pipes 58 (FIGURE 5), collection pipes 58 returning this condensed water to a central location where it may be used as required, preferably being mixed with nutrient in tanks 38 (FIGURE 1). This system thus acts as a large scale water distillation system, the water received by the plants in solution with the nutrient having been purified by means of this distillation process.

[0025] As well, as one can imagine, one of the problems of adapting a greenhouse structure in which the internal environment is sealed against external environmental air conditions, when applied to large scale production from crops within the greenhouse, is the build up of water vapour in the air. This build up results from transpiration from the plants. If it is permitted to continue unchecked, the relative humidity in the greenhouse structure will build up to the point that transpiration of the plants is significantly impeded. As plants require transpiration for example to cool their leaves and to draw nutrient solution through the plant system, the growth of the plant is thus adversely affected. While the structure could be opened to the outside environment to permit the humidity which has become built up within the structure to escape, this may create unwanted temperature differentials within the greenhouse structure and be quite impractical, for example in winter conditions. It will be readily understood, therefore, that the condensation of water vapour on the interior surface of shell 12 and the removal of that condensed water by means of collection skirts 56 and collection pipes 58 helps to control the humidity conditions within the greenhouse structure so that proper transpiration of the plants is continuously permitted without requiring the greenhouse structure to be opened up to the outside environment.

[0026] The cooling of the areas 4 and 6 is most important because of the tremendous heat build up which occurs in such areas during solar radiation of structure 2 particularly during summer, spring and fall months. During winter or cool external conditions however, where heating is required, that heating is provided by appropriate furnaces 60 (FIGURE 3). These may be gas, oil or electric preferably. Again, in order to minimize obstructions to light passing to plants 54, these furnaces are positioned in basement channel 62 below the floor of base 14 (FIGURE 3).

[0027] Humidity conditions within each of the areas 4 and 6 may also be controlled by microprocessor 10 as required, as dictated by relative humidity sensors 28, by passing water through supply pipes 50 and passing it into the atmosphere as a cloud or mist through fog nozzles 52. Alternatively separate sets of supply pipes or valves may be used for controlling relative humidity.

[0028] It will be understood that nutrient delivered through nutrient delivery system 34 is passed to trays 55 in which sit the roots of plants to be grown (in production areas 4) or inert blocks of seeds or seedlings (immature crop development areas 6). As is conventional in the art, excess nutrient not required by the plants, seeds or seedlings is collected and returned to nutrient tank 34 where its concentration is monitored and adjusted. Thus it is preferred to slope base 14, particularly in each production area 4 downwardly from the centre towards the sides and from the outer ends to the inner ends to facilitate collection of excess nutrient and water from these areas.

[0029] Because of the computerized control of the various aspects of the internal environment in production areas 4 and immature crop development areas 6, nutrient concentrations, carbon dioxide concentrations, relative humidity and temperature may be adjusted to suit the particular type of plant being grown or the stage of growth of that plant. Microprocessor 10 may be appropriately programmed to modify these environmental conditions for the plants over the life of the plants, to ensure optimum plant growth. As well, it is preferred to provide an appropriate alarm signal so that when such environmental conditions exceed a desired range for proper plant growth, the alarm will sound and, if required, a manual override and manual adjustment of such conditions may take place.

[0030] It is preferred that any outside air required for operation of the structure in accordance with the present invention be appropriately purified prior to its introduction into the environment within production areas 4 or immature crop development areas 6. As well, further purification of water used inside the structure, such as ultraviolet radiation and chlorination, may be effected.

[0031] In experiments conducted growing tomatoes and cucumbers in accordance with the present invention, in Calgary, Alberta, Canada, significantly improved results including continuous production, higher densities and faster growth during winter months over traditional greenhouse technology have been achieved. Indeed, before the present invention, mass production of such vegetables during winter months at such a latitude had been unknown.

[0032] Compared with conventional greenhouse systems, the controlled environment system according to the present invention permits a production line (e.g. Alpha production units) which will produce for a peak production period. As this period phases out, a neighbouring production line (Beta production unit, enters its peak production period. The Alpha line is then removed and replaced with a young Alpha production line which will come into peak production as Beta production line phases out. This rotation allows for continuous peak production 365 days a year. Conventional systems, while sometimes having two production lines, do not allow for continuous production from the lines, a gap in production occurring between the termination of production of one line and the commencement of production of the other. As well, the production cycle is not for the peak period but rather for a much longer cycle. Production over the year is not 365 days a year. Several months are non-productive periods, particularly during winter months.

[0033] In addition, for example with cucumbers, applicant's system permits higher density production. Cucumbers for example may be grown in a 1.75 square foot (0.16 m²) spacing whereas, with conventional greenhouse nutrient feed systems, that spacing is 6 square feet (0.56 m²) at the latitude in question.
As for faster growth, over a period of January to May, cucumber plants grown in accordance with applicant's invention have produced 50 cucumbers per plant (at much higher densities than conventional nutrient feed systems). Conventional nutrient feed systems at this latitude have produced 25 cucumbers per plant over this period of time. Prior to mid-february, cucumber crops according to conventional nutrient feed technology do not produce and, by mid-February, such systems start to produce at a rate of about 5 to 8 cucumbers per plant per month.


Claims

1. A controlled environment structure within which to grow horticultural plants comprising a base (14), a translucent impermeable shell (12) mounted and supported on said base to sealingly enclose a predetermined space within which horticultural plants are to be grown against external environmental conditions, temperature monitor (24) and temperature control means (60, 40) for the space, relative humidity monitor (28) and humidity control means for the space, carbon dioxide monitor (26) and carbon dioxide control means for the space, control means (10) electronically associated with the temperature monitor and control means, humidity monitor and carbon dioxide monitor and control means and programmed to provide optimum temperature, humidity and carbon dioxide conditions for the plants being cultivated in the space, the temperature control means comprising (i) heater means and (ii) cooling means including means for generating a mist cloud (44) for evaporation within said shell and subsequent condensing on an internal surface of said shell to cool the structure, characterised in that said shell (12) is a heat-conductive stressed fabric shell, in that said control means (10) is a microprocessor control means, in that said cooling means further comprises spray means (44) for controlled spraying of a film of water through the air onto the external surface of said shell to provide for condensation of water on said internal surface of said shell, and in that the structure comprises means (56, 67, 58) for collecting and recycling condensates from said internal surface of said shell.
 
2. A structure as claimed in claim 1, characterised in that the base (14) is sloped downwardly from the centre towards the sides and from the outer ends to the inner ends to facilitate collection of condensed water.
 
3. A structure as claimed in claim 1, characterised by the base (14) being sloped downwardly from the centre towards the sides and from the outer ends to the inner ends to facilitate collection of excess nutrient and water.
 
4. A structure as claimed in claim 1, characterised by plant root nutrient monitor means and plant root nutrient control means for plants grown within the space, the microprocessor control means also electronically associated with the plant root nutrient monitor and control means and programmed to provide optimum nutrient concentrations conditions for nutrient solution being fed to the roots of the plants being cultivated in the space.
 
5. A structure according to any one of claims 1 to 4, characterised in that the fabric is technically woven polyvinyl chloride coated polyester scrim with about a 95% translucency.
 
6. A structure as claimed in any one of claims 1 to 5, characterised by means to recycle the condensed water from the collector means to one of either the mist generation means or the plant root nutrient and water control means.
 
7. A structure as claimed in any one of claims 1 to 6, characterised in that the shell is elongated and has convex sides extending upwardly to a central peak along its elongated direction, the spray means being mounted to spray water in a film over the external surface and down both sides of the shell.
 
8. A structure as claimed in claim 6, characterised in that the shell is elongated and has convex sides extending upwardly to a central peak along its elongated direction, the spray means being mounted to spray water in a film over the external surface and down both sides of the shell.
 
9. A structure as claimed in any one of claims 1 to 6, characterised in that the humidity control means comprises mist generation means positioned within the space.
 
10. A structure as claimed in claim 9, characterised in that the water vaporisation means for the humidity control means and for the cooling means are one and the same.
 
11. A structure as claimed in claim 4, characterised in that the nutrient control means (34) comprises a nutrient solution mixing tank, a nutrient source activated by the microprocessor control means to feed nutrient into the tank, and nutrient supply means to feed nutrient solution from the tank to the roots of the plants being cultivated.
 
12. A structure as claimed in claim 6, characterised in that the nutrient control means comprises a nutrient solution mixing tank, a nutrient source activated by the microprocessor control means to feed nutrient into the tank, and nutrient supply means to feed nutrient solution from the tank to the roots of the plants being cultivated, and wherein the water from the collector means is passed to the tank.
 
13. A structure as claimed in claim 1, characterised in that the carbon dioxide control means comprises a carbon dioxide source (36) activated by the microprocessor control means to feed required amounts of carbon dioxide to the space.
 
14. A structure as claimed in any one of claims 1 to 13, characterised further by purification means for the air supplied to the space.
 
15. A structure as claimed in claim 4, further characterised by alarm means to signal when temperature, humidity, plant root nutrient concentration, or carbon dioxide conditions in the space go beyond a predetermined range and cannot be returned by the respective corresponding control means.
 
16. A structure as claimed in claim 4, characterised in that the shell has convex sides extending upwardly to a peak and wherein reflector means (16) are provided outside of the shell to reflect solar radiation into the space.
 
17. A structure as claimed in any one of claims 1 to 15, characterised in that reflector means (16) are provided adjacent the shell to enhance solar radiation entering the shell by reflection.
 
18. A structure as claimed in claim 1, characterised in that a series of said temperature monitors are provided within said space, a series of said carbon dioxide monitors are provided within said space, a series of relative humidity monitors are provided within said space, a plurality of temperature sensors are provided within the structure of said shell, said mist generation means being arranged in said space to generate a mist therein, a carbon dioxide delivery system is provided for supplying carbon dioxide to said area, and a nutrient delivery system is provided for supplying nutrient solution to said area, said microprocessor being electronically connected to said monitors, said sensors, said mist generation means and each said delivery system to control the delivery of carbon dioxide from said carbon dioxide delivery means to said area and to control the delivery of nutrient solution from said nutrient delivery means to said area in dependence upon the temperature, relative humidity and carbon dioxide content of the atmosphere in said area.
 
19. A structure as claimed in any one of claims 1 to 18, characterised by means for recycling the collected water to said mist generation system.
 
20. A structure as claimed in any one of claims 1 to 19, characterised in that said shell includes a plurality of rib members (15) resting on said base and light translucent fabric tensioned between said rib members.
 
21. A structure as claimed in claim 19, characterised by at least one temperature sensor in said shell for sensing the temperature of said shell, said cooling means being responsive to said sensor sensing a predetermined temperature to cool said shell.
 
22. A method of plant husbandry which comprises growing plants in a space within a translucent shell mounted on a base, the environment within the space being sealed against external environmental air conditions, controlling the temperature, humidity and carbon dioxide conditions within the space to ensure that optimum conditions for plant growth are maintained, controlling the plant root nutrient and water conditions by control means electronically associated with monitor and control devices for the temperature, humidity and carbon dioxide, for optimum plant growth, and generating a mist cloud of vapour within the space for temperature and humidity control, characterised in that said shell is a stressed fabric shell, in that said control means is a microprocessor control means and by spraying a film of water through the air onto the external surface of said shell to cool said shell and collecting and recycling the condensate from the internal surface of said shell.
 


Revendications

1. Structure à environnement contrôlé pour horticulture, comprenant une base (14), une enveloppe imperméable translucide (12) montée et supportée sur la base afin qu'elle enferme de manière étanche un espace prédéterminé dans lequel les plantes peuvent être cultivées en étant protégées des conditions de l'environnement externe, dans un processus horticole, un dispositif (24) de contrôle de température et un dispositif (60, 40) de réglage de température dans cet espace, un dispositif de contrôle (28) d'humidité relative et de réglage d'humidité dans cet espace, un dispositif (26) de contrôle d'anhydride carbonique et de réglage d'anhydride carbonique dans cet espace, un dispositif (10) de commande associé électroniquement aux dispositifs de contrôle et de réglage de température, au dispositif de contrôle d'humidité et aux dispositifs de contrôle et de réglage d'anhydride carbonique et programmé afin qu'il donne des conditions optimales de température, d'humidité et d'anhydride carbonique pour les plantes cultivées dans cet espace, le dispositif de réglage de température comprenant (i) un dispositif de chauffage, et (ii) un dispositif de refroidissement comprenant un dispositif générateur d'un nuage de brouillard (44) destiné à s'évaporer dans l'enveloppe puis à se condenser sur une surface interne de l'enveloppe afin que la structure soit refroidie, caractérisée en ce que l'enveloppe (12) est une enveloppe d'étoffe tendue conductrice de la chaleur, le dispositif de commande (10) est un dispositif de commande à microprocesseur, le dispositif de refroidissement comporte en outre un dispositif de pulvérisation (44) destiné à pulvériser de manière réglée un film d'eau dans l'air sur la surface externe de l'enveloppe afin qu'il assure la condensation de l'eau sur la surface interne de l'enveloppe, et la structure comporte un dispositif (56, 67, 58) destiné à collecter et recycler les condensats provenant de la surface interne de l'enveloppe.
 
2. Structure selon la revendication 1, caractérisée en ce que la base (14) est inclinée vers le bas du centre vers les côtés et des extrémités externes vers les extrémités internes afin que la collecte de l'eau condensée soit facilitée.
 
3. Structure selon la revendication 1, caractérisée en ce que la base (14) est inclinée vers le bas, du centre vers les côtés et des extrémités externes vers les extrémités internes, afin que la collecte de l'excès de matières nutritives et d'eau soit facilitée.
 
4. Structure selon la revendication 1, caractérisée par un dispositif de contrôle des matières nutritives des racines des plantes et un dispositif de réglage des matières nutritives des racines des plantes cultivées dans ledit espace, le dispositif de commande à microprocesseur étant aussi associé électroniquement aux dispositifs de contrôle et de réglage des matières nutritives des racines des plantes et étant programmé afin qu'il donne des conditions optimales de concentration des matières nutritives dans la solution de matières nutritives transmise aux racines des plantes cultivées dans cet espace.
 
5. Structure selon l'une quelconque des revendications 1 à 4, caractérisée en ce que l'étoffe est un voile tissé techniquement de polyester revêtu de chlorure de polyvinyle ayant une transmission de lumière d'environ 95 %.
 
6. Structure selon l'une quelconque des revendications 1 à 5, caractérisée par un dispositif destiné à recycler l'eau condensée provenant du dispositif collecteur vers le dispositif générateur de brouillard ou le dispositif de réglage d'eau et de matières nutritives des racines des plantes.
 
7. Structure selon l'une quelconque des revendications 1 à 6, caractérisée en ce que l'enveloppe est allongée et a des côtés convexes remontant vers un sommet central dans la direction allongée, le dispositif de pulvérisation étant monté afin qu'il pulvérise de l'eau sous forme d'un film sur la surface externe et le long des deux faces de l'enveloppe.
 
8. Structure selon la revendication 6, caractérisée en ce que l'enveloppe est allongée et a des côtés convexes remontant vers un sommet central dans la direction allongée, le dispositif de pulvérisation étant monté afin qu'il pulvérise l'eau sous forme d'un film sur la surface externe et le long des deux côtés de l'enveloppe.
 
9. Structure selon l'une quelconque des revendications 1 à 6, caractérisée en ce que le dispositif de réglage d'humidité comprend un dispositif générateur de brouillard placé dans ledit espace.
 
10. Structure selon la revendication 9, caractérisée en ce que le dispositif de vaporisation d'eau destiné au dispositif de réglage d'humidité et au dispositif de refroidissement sont formés par un seul dispositif.
 
11. Structure selon la revendication 4, caractérisée en ce que le dispositif (34) de réglage des matières nutritives comprend un réservoir de mélange de solution de matières nutritives, une source de matières nutritives activée par le dispositif de réglage à microprocesseur pour transmettre les matières nutritives dans le réservoir, et un dispositif d'alimentation en matières nutritives destiné à transmettre la solution de matières nutritives du réservoir vers les racines des plantes cultivées.
 
12. Structure selon la revendication 6, caractérisée en ce que le dispositif de réglage des matières nutritives comprend un réservoir de mélange de la solution de matières nutritives, une source de matières nutritives activée par le dispositif de commande à microprocesseur afin qu'elle transmette des matières nutritives au réservoir, et un dispositif d'alimentation en matières nutritives destiné à transmettre la solution de matières nutritives du réservoir aux racines des plantes cultivées, et dans lequel l'eau provenant du dispositif collecteur est transmise au réservoir.
 
13. Structure selon la revendication 1, caractérisée en ce que le dispositif de réglage d'anhydride carbonique comprend une source (36) d'anhydride carbonique activée par le dispositif de commande à microprocesseur et destinée à transmettre les quantités nécessaires d'anhydride carbonique audit espace.
 
14. Structure selon l'une quelconque des revendications 1 à 13, caractérisée en outre par un dispositif de purification de l'air transmis audit espace.
 
15. Structure selon la revendication 4, caractérisée en outre par un dispositif d'alarme destiné à signaler si les conditions de température, d'humidité, de concentration des matières nutritives des racines des plantes ou d'anhydride carbonique dans ledit espace dépassent une plage prédéterminée et ne peuvent pas être ramenées par le dispositif respectif correspondant de réglage.
 
16. Structure selon la revendication 4, caractérisée en ce que l'enveloppe a des côtés convexes remontant vers un sommet, et dans lequel un dispositif réflecteur (16) est placé à l'extérieur de l'enveloppe afin qu'il réfléchisse le rayonnement solaire vers ledit espace.
 
17. Structure selon l'une quelconque des revendications 1 à 15, caractérisée en ce que le dispositif réflecteur (16) est placé près de l'enveloppe afin que le renvoi du rayonnement solaire entrant dans l'enveloppe par réflexion soit facilité.
 
18. Structure selon la revendication 1, caractérisée en ce qu'une série de dispositifs de contrôle de la température est disposée dans ledit espace, une série de dispositifs de contrôle d'anhydride carbonique est disposée dans ledit espace, une série de dispositifs de contrôle d'humidité relative est disposée dans ledit espace, plusieurs capteurs de température sont placés dans la structure de l'enveloppe, le dispositif générateur de brouillard étant placé dans ledit espace afin qu'il crée un brouillard à l'intérieur, un circuit de distribution d'anhydride carbonique est destiné à transmettre de l'anhydride carbonique dans ledit espace, et un circuit de distribution de matières nutritives est destiné à transmettre une solution nutritive à ladite zone, le microprocesseur étant connecté électroniquement aux dispositifs de contrôle, aux capteurs, au dispositif générateur de brouillard et à chaque circuit de distribution afin que la distribution d'anhydride carbonique provenant du dispositif de distribution d'anhydride carbonique vers la zone soit réglée et afin que la distribution de la solution nutritive provenant du dispositif de distribution de solution nutritive vers la zone soit réglée en fonction de la température, de l'humidité relative et de la teneur en anhydride carbonique de l'atmosphère de ladite zone.
 
19. Structure selon l'une quelconque des revendications 1 à 18, caractérisée par une dispositif de recyclage de l'eau collectée vers le circuit de création de brouillard.
 
20. Structure selon l'une quelconque des revendications 1 à 19, caractérisée en ce que l'enveloppe comprend plusieurs armatures (15) en appui sur la base et une étoffe translucide tendue entre les armatures.
 
21. Structure selon la revendication 19, caractérisée par au moins un capteur de température placé dans l'enveloppe et destiné à détecter la température de l'enveloppe, le dispositif de refroidissement étant commandé lorsque le capteur détecte une température prédéterminée de manière qu'il refroidisse l'enveloppe.
 
22. Procédé agronomique, comprenant la croissance de plantes dans un espace délimité dans une enveloppe translucide montée sur une base, l'environnement dans ledit espace étant séparé de manière étanche des conditions d'environnement externe, le réglage des conditions de température, d'humidité et d'anhydride carbonique à l'intérieur dudit espace afin que des conditions optimales pour la croissance des plantes soient maintenues, le réglage des conditions de l'eau et des matières nutritives des racines des plantes à l'aide d'un dispositif de commande associé électroniquement aux dispositifs de contrôle et de réglage de la température, de l'humidité et de l'anhydride carbonique afin que la croissance des plantes soit optimale, et la création d'un nuage de brouillard de vapeur dans ledit espace afin que la température et l'humidité soient réglées, caractérisé en ce que l'enveloppe est une enveloppe d'étoffe tendue, en ce que le dispositif de commande est un dispositif de commande à microprocesseur, et par la pulvérisation d'un film d'eau dans l'air sur la surface externe de l'enveloppe afin que l'enveloppe soit refroidie, et la collecte et le recyclage du condensat de la surface interne de l'enveloppe.
 


Ansprüche

1. Anordnung kontrollierter Umgebung zur Aufzucht von Gärtnereipflanzen umfassend eine Basis (14), eine lichtdurchlässige, dichte Ummantelung (12), die an der Basis angebracht und von ihr gehalten wird, um einen vorbestimmten Raum dicht einzuschließen, in dem Gärtnereipflanzen unabhängig von den äußeren Umgebungsbedingungen aufgezogen werden sollen, eine Temperatur-Überwachungseinrichtung (24) und Temperatur-Steuermittel (60, 40) für den Raum, eine Überwachungseinrichtung (28)für die relative Feuchtigkeit und Feuchtigkeit-Steuermittel für den Raum, eine Kohlendioxid-Überwachungseinrichtung (26) und Kohlendioxid-Steuermittel für den Raum, ein Steuermittel (10), das der Temperatur-Überwachungseinrichtung und den Temperatur-Steuermitteln, der Feuchtigkeit-Überwachungseinrichtung sowie der Kohlendioxid-Überwachungseinrichtung und den Kohlendioxid-Steuermitteln elektronisch zugeordnet und programmiert ist, um optimale Temperatur, Feuchtigkeit und Kohlendioxid-Bedingungen für die in dem Raum angebauten Pflanzen bereitzustellen, wobei die Temperatur-Steuermittel umfassen (i) eine Heizvorrichtung und (ii) eine Kühlvorrichtung einschließlich Mitteln zur Erzeugung einer Dunstwolke (44) zur Verdunstung innerhalb der Ummantelung und nachfolgendem Kondensieren an einer inneren Oberfläche der Ummantelung, um die Anordnung zu kühlen, dadurch gekennzeichnet, daß die Ummantelung (12) eine wärmeleitende gespannte Gewebeummantelung ist, daß das Steuermittel (10) ein Mikroprozessor-Steuermittel ist, daß die Kühlvorrichtung ferner Sprühmittel (44) zum kontrollierten Sprühen eines Wasserfilms durch die Luft auf die äußere Oberfläche der Ummantelung umfaßt, um die Kondensierung von Wasser auf der inneren Oberfläche der Ummantelung zu ermöglichen, und daß die Anordnung Mittel (56, 57, 58) zum Sammeln und Rückführen von Kondensat von der inneren Oberfläche der Ummantelung umfaßt.
 
2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Basis (14) vom Zentrum zu den Seiten und von den äußeren Enden zu den inneren Enden schräg nach unten geneigt ist, um das Sammeln von Kondenswasser zu erleichtern.
 
3. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Basis (14) vom Zentrum zu den Seiten und von den äußeren Enden zu den inneren Enden schräg nach unten geneigt ist, um das Sammeln von überschüssigem Nährstoff und Wasser zu erleichtern.
 
4. Anordnung nach Anspruch 1, gekennzeichnet durch Pflanzenwurzelnährstoff-Überwachungsmittel und Pflanzenwurzelnährstoff-Steuermittel für in dem Raum wachsende Pflanzen, wobei das Mikroprozessor-Steuermittel ebenfalls den Pflanzenwurzelnährstoff-Überwachungsmitteln und -Steuermitteln elektronisch zugeordnet und programmiert ist, um optimale Nährstoffkonzentrationsbedingungen der Nährstofflösung bereitzustellen, die den Wurzeln der in dem Raum angebauten Pflanzen zugeführt wird.
 
5. Anordnung nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, daß das Gewebe ein maschinengewebter, mit Polyvenylchlorid beschichteter Polyestermull mit etwa 95% Lichtdurchlässigkeit ist.
 
6. Anordnung nach einem der Ansprüche 1 bis 5, gekennzeichnet durch Mittel, um das Kondenswasser von den Sammelmitteln entweder zu den Dunsterzeugungsmitteln oder zu den Pflanzenwurzelnährstoff- und Wasser-Steuermitteln zurückzuführen.
 
7. Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Ummantelung länglich ist und konvexe Seiten aufweist, die sich nach oben zu einer zentralen Spitze entlang ihrer Längsrichtung hin erstrecken, die Sprühmittel angebracht sind, um Wasser in einem Film über die äußere Oberfläche und auf beide Seiten der Ummantelung hinab zu sprühen.
 
8. Anordnung nach Anspruch 6, dadurch gekennzeichnet, daß die Ummantelung länglich ist und konvexe Seiten aufweist, die sich nach oben zu einer zentralen Spitze entlang ihrer Längsrichtung hin erstrecken, die Sprühmittel angebracht sind, um Wasser in einem Film über die äußere Oberfläche und auf beiden Seiten der Ummantelung hinab zu sprühen.
 
9. Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Feuchtigkeits-Steuermittel Dunsterzeugungsmittel umfaßt, die in dem Raum positioniert sind.
 
10. Anordnung nach Anspruch 9, dadurch gekennzeichnet, daß die Wasserverdampfungsmittel für das Feuchtigkeits-Steuermittel und für die Kühlvorrichtung ein und dieselben sind.
 
11. Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß das Nährstoff-Steuermittel (34) einen Nährstofflösungs-Mischtank, eine von dem Mikroprozessor-Steuermittel betätigte Nährstoffquelle zum Zuführen von Nährstoff in den Tank und Nährstoff-Zufuhrmittel umfaßt, um den Wurzeln der angebauten Pflanzen Nährstofflösung aus dem Tank zuzuführen.
 
12. Anordnung nach Anspruch 6, dadurch gekennzeichnet, daß das Nährstoff-Steuermittel einen Nährstofflösungs-Mischtank, eine von dem Mikroprozessor-Steuermittel betätigte Nährstoffquelle zum Zuführen von Nährstoff in den Tank und Nährstoff-Zufuhrmittel umfaßt, um den Wurzeln der angebauten Pflanzen Nährstofflösung aus dem Tank zuzuführen, und bei der das Wasser von den Sammelmitteln in den Tank geleitet wird.
 
13. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß das Kohldioxid-Steuermittel eine vom Mikroprozessor-Steuermittel betätigte Kohlendioxidquelle (36) umfaßt, um dem Raum erforderliche Mengen an Kohlendioxid zuzuführen.
 
14. Anordnung nach einem der Ansprüche 1 bis 13, weiter gekennzeichnet durch Reinigungseinrichtungen für die dem Raum gelieferte Luft.
 
15. Anordnung nach Anspruch 4, weiter gekennzeichnet durch Alarmmittel, um zu signalisieren, wenn Temperatur, Feuchtigkeit, Pflanzenwurzelnährstoffkonzentration oder Kohlendioxid-Bedingungen im Raum über einen vorbestimmten Bereich hinausgehen und von den jeweils entsprechenden Steuermitteln nicht zuückgeführt werden können.
 
16. Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß die Ummantelung konvexe Seiten ausweist, die sich nach oben zu einer Spitze erstrecken, und bei der Reflektormittel (16) außerhalb der Ummantelung vorgesehen sind, um Sonnenstrahlung in den Raum zu reflektieren.
 
17. Anordnung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß Reflektormittel (16) der Ummantelung benachbart vorgesehen sind, um die durch Reflexion in die Ummantelung eintretende Sonnenstrahlung zu vergrößern.
 
18. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß eine Reihe von Temperaturüberwachungmitteln innerhalb des Raumes vorgesehen sind, eine Reihe von Kohlendioxid-Überwachungsmitteln innerhalb des Raumes vorgesehen sind, eine Reihe von Überwachungsmitteln für relative Feuchtigkeit innerhalb des Raumes vorgesehen sind, eine Mehrzahl von Temperatursensoren innerhalb der Anordnung der Ummantelung vorgesehen sind, die Dunsterzeugungsmittel im Raum angeordnet sind, um darin einen Dunst zu erzeugen, ein Kohlendioxid-Zufuhrsystem vorgesehen ist, um dem Bereich Kohlendioxid zuzuführen, und ein Nährstoff-Zufuhrsystem vorgesehen ist, um dem Bereich Nährstofflösung zuzuführen, wobei der Mikroprozessor mit den Überwachungsmittel, den Sensoren, den Dunsterzeugungsmitteln und jedem der Zufuhrsysteme elektronisch verbunden ist, um die Zufuhr von Kohlendioxid aus dem Kohlendioxid-Zufuhrmittel in den Bereich und die Zufuhr von Nährstofflösung aus den Nährstoff-Zufuhrmitteln in den Bereich in Abhängigkeit von der Temperatur, relativen Feuchtigkeit und Kohlendioxidgehalt der Atmosphäre in dem Bereich zu steuern.
 
19. Anordnung nach einem der Ansprüche 1 bis 18, gekennzeichnet durch Mittel zur Rückführung des gesammelten Wassers zum Dunsterzeugungssystem.
 
20. Anordnung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Ummantelung eine Mehrzahl von auf der Basis ruhenden Rippenelementen (15) und lichtdurchlässiges Gewebe umfaßt, das zwischen den Rippenelementen gespannt wird.
 
21. Anordnung nach Anspruch 19, gekennzeichnet durch wenigstens einen Temperatursensor in der Ummantelung zum Erfassen der Temperatur der Ummantelung, wobei die Kühleinrichtungen, auf den Sensor ansprechen, wenn dieser eine vorbestimmte Temperatur erfaßt, um die Ummantelung zu kühlen.
 
22. Verfahren zum Pflanzenanbau, umfassend Aufziehen von Pflanzen in einem Raum innerhalb einer lichtdurchlässigen, auf einer Basis angebrachten Ummantelung, wobei die Umgebung innerhalb des Raums dicht gegen äußere Umgebungsluftbedingungen abgedichtet ist, Steuern der Temperatur, Feuchtigkeit und Kohlendioxidbedingungen innerhalb des Raums, um sicherzustellen, daß optimale Bedingungen für Pflanzenwachstum beibehalten werden, Steuern der Pflanzenwurzelnährstoff- und Wasser-Bedingungen durch Steuermittel, die Überwachungs- und Steuergeräten für die Temperatur, Feuchtigkeit und Kohlendioxid elektronisch zugeordnet sind, zum optimalen Pflanzenwachstum, und Erzeugen einer Dunstwolke innerhalb des Raums zur Temperatur- und Feuchtigkeitssteuerung, dadurch gekennzeichnet, daß die Ummantelung eine gespannte Gewebeummantelung ist, daß das Steuermittel ein Mikroprozessor-Steuermittel ist und durch Sprühen eines Wasserfilms durch die Luft auf die äußere Oberfläche der Ummantelung, um die Ummantelung zu kühlen, und Sammeln und Rückführen des Kondensats von der inneren Oberfläche der Ummantelung.
 




Drawing