(19)
(11)EP 0 490 553 A2

(12)EUROPEAN PATENT APPLICATION

(43)Date of publication:
17.06.1992 Bulletin 1992/25

(21)Application number: 91311197.7

(22)Date of filing:  02.12.1991
(51)International Patent Classification (IPC)5H03K 19/086
(84)Designated Contracting States:
DE FR GB

(30)Priority: 11.12.1990 US 625515

(71)Applicant: AT&T Corp.
New York, NY 10013-2412 (US)

(72)Inventor:
  • Fernandez, Francisco Javier
    Reading, Pennsylvania 19612 (US)

(74)Representative: Buckley, Christopher Simon Thirsk et al
AT&T (UK) LTD., AT&T Intellectual Property Division, 5 Mornington Road
Woodford Green, Essex IG8 0TU
Woodford Green, Essex IG8 0TU (GB)


(56)References cited: : 
  
      


    (54)High-speed emitter-coupled logic buffer


    (57) An emitter-coupled logic (ECL) buffer circuit (25) using two differential pairs of transistors (26,27;34,35) to limit the output voltage of the buffer to ECL signal levels. A first differential pair of transistors (26,27) couples the current from a first current source (28) to load resistors (29,30) in the buffer, thereby establishing the output voltage for the logical "low" output. The second differential pair (34,35) couples the current from a second current source (36), having a current less than the current from the first current source, to the load resistors to establish the output voltage for the logical "high" output.




    Description

    Background of the Invention


    Field of the Invention



    [0001] This invention relates to logic gate circuitry in general and, more particularly, to emitter-coupled logic output buffer circuitry.

    Description of the Prior Art



    [0002] Most integrated circuit packages have limitations on the amount of power a chip (or chips) within the package may dissipate. Exceeding that limitation will cause thermal runaway in the chip, potentially resulting in the catastrophic failure thereof. However, it is generally desirable to place as many gates as possible in each package for increased functionality of the system or subsystem the package is placed in.

    [0003] In large scale digital integrated circuits having thousands, or even tens of thousands, of logic gates, the power dissipated by each gate is reduced as much as practically possible so as not to exceed the maximum power rating of the package. However, it is recognized that not all the gates drive the same loads; some gates drive other gates on the same chip while others need to drive off-chip gates or terminated low-impedance transmission lines and buses. Hence, it typically the case that while the gates are optimized for minimum power dissipation at a predetermined speed, buffers are provided where a gate needs to drive other gates that are off chip. These buffers are of much higher power than the gates having them but there are relatively few buffers on each chip. This is illustrated by a simplified diagram shown in FIG. 1. Here a first chip 2 in a system 1 communicates via a bus 3 (typically terminated with 50 Ω terminations) to a receiver 4 on a second chip 5. Driving the bus 3 on chip 2 is a buffer 6 which is driven by gate circuitry 7. There may also be other chips 2, 5 on the same bus 3. Similarly, chip 2 may have other buffers 6 driving other buses 3. Because bus 3 may load (usually capacitively) the output of the buffer 6 more than the loading of the buffer 6 on the output of the gate 7, the power handling capacity of buffer 6 will be greater than the power handing capacity of gate 7. The increase in power handling capacity is usually achieved at the expense of higher power dissipation by the buffer 6.

    [0004] Since a buffer typically does not perform a "logical" function, such as an AND or OR function, the propagation delay of a buffer is an overhead which slows down the overall speed of the logic on the chip. Therefore, it would be desirable to have a buffer circuit which has a small propagation delay without dissipating a lot of power. Alternatively viewed, the bandwidth of the buffer must be wide enough to accommodate the desired speed of the system 1. As such, the design of a buffer is a compromise between speed, output voltage variations with temperature, and power dissipation. The component values of such a design cannot be easily adjusted to optimize the buffer's performance in any or all of these factors.

    Summary of the Invention



    [0005] It is therefore one aspect of this invention to provide a relatively low power ECL buffer design which provides high speed and predictable logic output voltages over a relatively wide predetermined temperature range.

    [0006] These and other aspects of the invention may be obtained generally with a conventional ECL buffer having: an input; a first differential pair of transistors, with a tail, first and second inputs coupling to the input of the buffer, and first and second outputs corresponding to the first and second inputs; a first current source coupled to the tail of the first differential pair of transistors; and, first and second loads coupled between a power supply rail and corresponding first and second outputs of the first differential pair of transistors. The conventional ECL buffer is improved by adding a second current source and a current steering means, responsive to the buffer input, for selectively coupling the second current source to either the first or second load. The current from the second current source is less than the current from the first current source. Preferably, the ECL buffer is disposed in an integrated circuit.

    Brief Description of the Drawing



    [0007] The foregoing features of this invention, as well as the invention itself, may be more fully understood from the following detailed description of the drawings, in which:

    FIG. 1 is a simplified diagram of a digital system illustrating a buffer driving a bus;

    FIG. 2 is a simplified schematic diagram of an ECL buffer according to one aspect of the invention;

    FIG. 3 is a simplified schematic diagram of exemplary current sources used in FIG. 2.


    Detailed Description



    [0008] Referring to FIG. 2, an exemplary ECL buffer 25, according to one aspect of the invention, is shown and is preferably disposed in an integrated circuit The ECL buffer 25 has a first differential pair of transistors 26, 27, the common emitters, or tail, coupling to a first current source 28. The bases of transistors 26, 27 couple to the input IN+, IN- of the buffer 25. Two load resistors 29, 30, preferably having substantially equal resistances, couple to the collectors of transistors 26, 27 and to a first power supply rail, here ground. In addition, transistors 31, 32, configured as emitter followers, couple the voltages on the collectors of transistors 26, 27 to the outputs OUT+, OUT- of the buffer 25. A current steering means (second differential pair of transistors 34, 35) and a second current source 36 is added. This allows, for example, the ECL logical "low" output voltage to be determined substantially by the current I₁ supplied by current source 28 whilethe ECL logical "high" output voltage may be substantially determined by the current I₂ supplied by current source 36 (I₂ < I₁). Transistors 34, 35 are cross-coupled to transistors 26, 27 so that for each logical state of the inputs IN+, IN-, current sources 28, 36 are coupled to corresponding load resistors 29, 30. It is preferable that transistors 26, 27 and 34, 35 be scaled to maximize the switching speed thereof.

    [0009] The ECL logical "high" output voltage, VOH, and the ECL logical "low" output voltage, VOL, appearing on either of the outputs OUT+, OUT- may be determined as follows:



       wherein R is the resistance of the load resistors 29, 30, and

    and

    are the base-emitter voltages of transistors 31, 32 when providing a logical "high" output voltage or a logical "low" output voltage, respectively.

    [0010] It is noted that while the buffer 25 is shown as a fully differential circuit, the buffer 25 may also be adapted to respond to single-ended inputs. For example, the input IN- may be coupled to a fixed voltage source having a voltage between a logical "high" voltage and a logical "low" voltage. This "slices" the input signal coupled to the IN+ input to determine if a logical "high" or "low" is applied.

    [0011] An exemplary method of generating the currents I₁ and I₂ is shown in FIG. 3. Two transistors 40, 41 are connected as shown with resistors 42, 43 disposed in series with the emitters of each transistor 40, 41. The resistors 42, 43 are coupled to a second power supply rail, VEE, which is typically held 5.2 volts below ground in ECL logic systems. A fixed, substantially temperature independent, voltage source 44 biases transistors 40, 41 on. The voltage source 44 is preferably derived from a bandgap reference which may be in common with many such buffers 25 (FIG. 2) disposed in a chip. If the resistance values of resistors 42, 43 are approximately the same, the current 12 will be less than the current I₁. Further, changes in the currents I₁, I₂ will change with temperature and compensate for variations in the emitter-base voltages of transistors 31, 32 (FIG. 2) with temperature, thereby holding the output voltages on OUT+, OUT- (FIG. 2) substantially constant with temperature.

    EXAMPLE



    [0012] The following component values were used to model the buffer 25 (FIG. 2), and the current sources 28, 36 (FIG. 3). The resulting buffer is capable of over 1 gigabit operation with ECL compatible output logic levels over an ambient temperature range of 0° - 70° C.
    VEE
    -5.2 Volts
    I₁
    20 mA
    I₂
    5 mA
    resistor 29,30
    50 Ω
    transistors 26,27
    1.5 x 120 µm
    transistors 31,32
    1.5 x 120 µm
    transistors 34,35
    1.5 x 20 µm
    transistor 40
    1.5 x 60 µm
    transistor 41
    1.5 x 15 µm
    resistors 42,43
    50 Ω
    voltage source 44
    1.7 Volts



    Claims

    1. An ECL buffer (25), disposed in an integrated circuit, having:
       an input (IN+, IN-);
       a first differential pair of transistors (26,27), with a tail, first and second inputs coupling to the input of the buffer, and first and second outputs corresponding to the first and second inputs;
       a first current source (28) coupled to the tail of the first differential pair of transistors; and,
       first and second loads (29,30) coupled between a power supply rail and corresponding first and second outputs of the first differential pair of transistors;
       CHARATERIZED BY:
       a second current source (36); and,
       a current steering means (34,35), responsive to the buffer input, for selectively coupling the second current source to either the first or second load;
       wherein the current from the second current source is less than the current from the first current source.
     
    2. The ECL buffer as recited in claim 1, wherein the current steering means is characterized by:
       a second differential pair transistors (34,35), with a tail coupled to the second current source, first and second inputs, and first and second outputs corresponding to the first and second inputs; and,
       wherein the transistors in the first and second differential pairs are cross-coupled together.
     
    3. The ECL buffer as recited in claim 2, wherein the cross-coupling of the transistors in the first and second differential pairs is further characterized by: the first and second inputs of the second differential pair of transistors couple correspondingly to the first and second inputs of the first differential pair of transistors, and the first and second outputs of the second differential pair of transistors couple correspondingly to the second and first outputs of the first differential pair of transistors.
     
    4. The ECL buffer as recited in claim 3, wherein the second differential pair transistors are scaled to maximize the switching speed thereof.
     
    5. The ECL buffer as recited in claim 4, wherein the transistors are bipolar transistor.
     
    6. The ECL buffer as recited in claim 5, further characterized by:
       a first emitter follower (31 ), having an output and coupled to the first output of the first differential pair, and,
       a second emitter follower (32), having an output and coupled to the second output of the first differential pair;
       wherein the outputs of the first and second emitter followers form the output of the buffer; and,
       wherein the current from the first current source substantially determines a first output logic level and the current from the second current source substantially determines a second output logic level at the output of the buffer.
     




    Drawing