(19)
(11)EP 1 629 140 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.05.2020 Bulletin 2020/20

(21)Application number: 04735017.8

(22)Date of filing:  27.05.2004
(51)Int. Cl.: 
C25B 11/04  (2006.01)
B01J 21/18  (2006.01)
B01J 23/89  (2006.01)
C25B 1/26  (2006.01)
B01J 27/045  (2006.01)
(86)International application number:
PCT/EP2004/005761
(87)International publication number:
WO 2004/106591 (09.12.2004 Gazette  2004/50)

(54)

Method for producing a gas diffusion electrode

Verfahren zur Herstellung einer Gasdiffusionselektrode

Procédé de fabrication d'une électrode à diffusion gazeuse


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

(30)Priority: 27.05.2003 US 473543 P

(43)Date of publication of application:
01.03.2006 Bulletin 2006/09

(60)Divisional application:
11160589.5 / 2357267

(73)Proprietor: Industrie De Nora S.p.A.
20134 Milano (IT)

(72)Inventors:
  • GULLA, Andrea, F.
    Malden, MA 02148 (US)
  • ALLEN, Robert, J.
    South Harwich, MA 02661 (US)
  • DE CASTRO, Emory, S.
    Nahant, MA 01908-1028 (US)

(74)Representative: Reitstötter Kinzebach 
Patentanwälte Sternwartstrasse 4
81679 München
81679 München (DE)


(56)References cited: : 
GB-A- 1 415 684
US-A- 6 149 799
US-A- 6 149 782
US-B1- 6 402 930
  
  • REEVE R W: "Methanol tolerant oxygen reduction catalysts based on transition metal sulfides" JOURNAL OF THE ELECTROCHEMICAL SOCIETY, ELECTROCHEMICAL SOCIETY. MANCHESTER, NEW HAMPSHIRE, US, vol. 145, no. 10, 1998, pages 3463-3471, XP002150152 ISSN: 0013-4651
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND OF THE INVENTION



[0001] The electrolysis of aqueous HCI solutions is a well known method for the recovery of high-value chlorine gas. Aqueous hydrochloric acid is an abundant chemical by-product, especially in chemical plants making use of chlorine as a reactant: in this case, the chlorine evolved in the anodic compartment of the electrolyser can be recycled as a feedstock to the chemical plant. Electrolysis becomes extremely attractive when the standard hydrogen-evolving cathode is replaced by an oxygen-consuming gas diffusion electrode due to the associated decrease in energy consumption. The ability of the gas diffusion electrode to operate successfully in this context is crucially dependent on the nature and performance of the catalyst, and also on the structure of the gas diffusion electrode.

[0002] Platinum is generally acknowledged as the most effective catalyst for the electroreduction of oxygen in a wide range of conditions; the activation of gas diffusion electrodes with platinum-based catalysts is well known in the art, and finds widespread application in fuel cells and electrolysers of many kinds. However, the case of aqueous HCI electrolysis poses some serious drawbacks to the use of platinum as cathodic catalyst, as it is inevitable for the gas diffusion cathode to come at least partially in contact with the liquid electrolyte, which contains chloride ion and dissolved chlorine. First of all, platinum is susceptible to chloride ion poisoning which negatively affects its activity toward oxygen reduction; a second source of poisoning is constituted by contaminant species, especially organic species, which are in most of the cases dissolved in the byproduct hydrochloric acid undergoing electrolysis. Even more importantly, the combined complexing action of hydrochloric acid and dissolved chlorine gas changes the platinum metal into a soluble salt which is dissolved away, making this material inappropriate for use in gas diffusion electrodes. Furthermore, extremely careful precautions have to be taken during the periodical shut-downs of the electrolysers, otherwise the sudden shift in the cathodic potential, combined with the highly aggressive chemical environment, causes the dissolution of a significant amount of catalyst, and the partial deactivation of the remaining portion. While tailored procedures for planned shut-downs of the electrolysers can be set up for additional costs, little or nothing can be done in the case of a sudden, uncontrolled shut-down due to unpredictable causes like power shortages in the electric network.

[0003] These problems have been partially mitigated with the disclosure of some rhodium based catalysts, which have proven to be less active than platinum toward the oxygen reduction reaction, but less affected by the chloride ions present in the system, thus giving more than acceptable results in terms of operating voltage upon incorporation in gas diffusion electrodes. In particular, the rhodium metal/rhodium oxide catalyst disclosed in US Patent 5,958,197 proved also quite resistant to the hydrochloric environment in the presence of dissolved chlorine and oxygen, although it requires cumbersome activation procedures to fully develop its corrosion resistant form.

[0004] US Patent 6,149,782 disclosed an even more resistant catalyst based on rhodium sulphide, which doesn't require any activation step and which shows the additional advantage of being insensitive to organic contaminants in the acid feedstock.

[0005] Although these catalysts show very good performances both in terms of activity and of chemical resistance in the harsh environment associated with aqueous hydrochloric acid depolarised electrolysis, their price and availability is a big issue in terms of effective commercial exploitation. As it is well known to the experts in the field, rhodium is by now the most expensive of noble metals, its price exceeding even the one of osmium and being one order of magnitude, for instance, that of ruthenium and iridium; although depolarised aqueous hydrochloric acid electrolysis is a technology with a high market demand, the price of the state of the art catalysts is therefore too high to allow commercialisation to be successful.

[0006] Among the noble metals of reasonable price that could be useful for oxygen reduction in acidic media, ruthenium would be apparently an obvious choice, its activity being comparable to the one of rhodium and its price being, on average, about twenty times lower. RuO2 prepared by aqueous precipitation from RuCl3 is a well-known catalyst; unfortunately, its chemical stability (prior to a thermal stabilisation) in chlorine-saturated hydrochloric media is poor and the catalyst is dissolved away in a relatively short time. Other sulphides seem to follow the same fate unless the material is thermally stabilised. At this day, rhodium sulphide prepared via aqueous precipitation offers a good alternative (see US Patent 6,149,782). Ruthenium sulphide obtained in a likewise manner proved to be hardly stable in a chlorine-saturated hydrochloric environment. The only similar catalyst for oxygen reduction and disclosed in the prior art, the Chevrel phase type catalyst, namely MoxRuyS/C, is also unstable to elevated temperature and acid concentration (see J. Chem. Soc, Faraday Trans., 1996, 92, 4311).

OBJECTS OF THE INVENTION



[0007] It is an object of the present invention to provide a method for producing a gas diffusion electrode incorporating a catalyst for oxygen reduction for use in depolarised hydrochloric acid electrolysis cells.

[0008] The present invention provides a method for producing a gas diffusion electrode incorporating a catalyst for oxygen reduction chemically stable in a hydrochloric environment.

[0009] These and other objects and advantages of the invention will become obvious from the following detailed description.

DESCRIPTION OF THE INVENTION



[0010] The catalyst used in the method of the invention consists of a chemically stable form of supported ruthenium sulphide; since the catalyst directed to the use in gas diffusion cathodes for depolarised hydrochloric acid electrolysis, in the following description by "chemically stable form" it is intended a form chemically stable in a hydrochloric acid environment also in the presence of dissolved chlorine and optionally of dissolved oxygen.

[0011] The method for producing a gas diffusion electrode of the invention comprises a conductive web, preferably a carbon cloth, coated with a chemically stable form of supported ruthenium sulphide catalyst optionally mixed with a hydrophobic binder. Under one aspect, The method for producing the catalyst used in the invention comprises subjecting a conductive support consisting of carbon having a surface area exceeding 120g/m2, to incipient wetness impregnation with a precursor of ruthenium and optionally of another transition metal, drying the impregnated support and treating the resulting product under an atmosphere comprising hydrogen sulphide.

[0012] Under another aspect, the method for producing the catalyst used in the invention comprises subjecting a precipitated ruthenium oxide compound, carbon having a surface area exceeding 120g/m2, supporting RuO2, to a sulphidation reaction in an atmosphere comprising hydrogen sulphide.

[0013] The method for producing the gas diffusion electrode of the invention comprises coating an electrically conducting web with the catalyst of the invention optionally mixed to a hydrophobic binder, and sintering the coated web.

[0014] The catalyst used in the invention is a binary compound of general formula RuxSy. In a more preferred embodiment, the catalyst used in the invention is a ternary compound of general formula RuxMyS, wherein M is a generic transition metal. In another preferred embodiment, the catalyst used in the invention is a mixed sulphide of ruthenium and more than one other generic transition metal. In a still more preferred embodiment, the catalyst used in the invention is a ternary sulphide of ruthenium and another transition metal selected between cobalt, nickel, rhenium, chromium, molybdenum and iridium. Although the ruthenium sulphide catalysts previously known in the art, traditionally obtained via wet chemistry from aqueous solutions of ruthenium precursors with hydrogen sulphide, or from organic solutions of ruthenium precursors with elementary sulphur, show poor performances in terms of chemical stability in hydrochloric acid containing dissolved chlorine, the inventors have surprisingly found that ruthenium sulphide catalysts obtained via gas-solid reactions are stable in the same environment while retaining a satisfactory electrocatalytic activity. Incorporation of the catalyst into gas diffusion electrode structures is facilitated by supporting the catalyst on a carbon black having a surface area exceeding 120 m2/g.

[0015] In one preferred embodiment, the catalyst used in the invention is a chemically stable form of a ruthenium and cobalt sulphide of general formula RuxCoyS, wherein the Ru:Co atomic ratio is preferably comprised between 1:5 and 5:1, more preferably about 3:1, for instance comprised between 2.8:1 and 3.2:1.

[0016] The ruthenium sulphide catalysts of the prior art are obtained according to a procedure which is very similar to the one used for the preparation of rhodium sulphide as disclosed in US Patent 6,149,782, that is by sparging hydrogen sulphide in an aqueous solution of a ruthenium precursor, usually a chloride, optionally in the presence of a conductive inert support. The precipitate is then normally dried and thermally treated. Ruthenium catalysts obtained in this manner are however scarcely stable in a hydrochloric environment, especially if dissolved chlorine is present. The ruthenium sulphide catalysts used in the invention are conversely obtained by a gas-solid reaction: a conductive inert support, carbon having a surface area exceeding 120g/m2, is not dispersed in an aqueous solution of the precursor but rather subjected to incipient wetness impregnation with the same. For this purpose, it is useful that the precursor solution contain 2-propanol, or an equivalent, preferably water-miscible, volatile solvent. The precursor solution may be sprayed on the powdery support, or the solution may be slowly added to the support until it can be absorbed. When the incipient wetness impregnation of the support is completed, the resulting impregnated support must be carefully dried, preferably under vacuum at a temperature exceeding 90 °C. This operation usually requires a few hours; the resulting dried product is finally subjected to the sulphidation reaction under an atmosphere comprising hydrogen sulphide, preferably in a flow reactor.

[0017] In another preferred embodiment, the starting material for obtaining the catalyst of the invention is a precipitated ruthenium oxide, a carbon having a surface area exceeding 120g/m2, supporting precipitated ruthenium dioxide known in the art. This supported ruthenium oxide is subjected to a gas-solid sulphidation reaction under an atmosphere comprising hydrogen sulphide, preferably in a flow reactor, as in the previous case.

[0018] In both cases, hydrogen sulphide is preferably diluted with nitrogen or with another inert carrier; nitrogen/hydrogen sulphide mixtures having a molar ratio comprised between 0.5 and 4 are preferably used.

[0019] The method for producing a gas diffusion electrode of the invention is obtained by coating a conductive web, for instance a carbon cloth, with a paste including the catalyst of the invention optionally mixed with a first polymeric binder, for instance a hydrophobic binder. As the binder, perfluorinated binders such as PTFE are preferably used, but also partially fluorinated or non fluorinated binders can be used. The catalyst/binder mixture can be applied on the conductive web directly, to obtain a so called "flow-through" gas diffusion electrode; in another embodiment, the conductive web can be previously coated on one or both sides with a mixture of a conductive filler (e.g. carbon black) and of a second binder. The first and the second binder may in some cases be the same material. Once coated with the catalyst/binder mixture, the gas diffusion electrode is normally dried prior to its use; it is sintered prior to its use. Nevertheless, the inventors have surprisingly found that, when incorporating the catalyst in a gas diffusion electrode structure, the sintering step may be omitted. Although the catalyst is very stable when it is not sintered, sintering is carried out to improve the long term stability of the overall gas diffusion electrode structure. In this case, a first heating ramp, from ambient temperature to about 100-120°C, is carried out under a reducing atmosphere (for instance a hydrogen atmosphere), while the final thermal treatment, which normally reaches temperatures of 300-350°C, is effected under argon or other inert gas.

[0020] In the following examples, there are described several preferred embodiments to illustrate the invention. However, it is to be understood that the invention is not intended to be limited to the specific embodiments.

EXAMPLE 1



[0021] 10 g of Vulcan XC-72 carbon black powder from Cabot Corp./USA, having a surface area of about 230 m2/g, was subjected to incipient wetness impregnation with a 2-propanol solution of RuCl3.3H2O (37.8% Ru) and Co(NO3)-6H2O (20.2% Co) precursor salts; an atomic ratio of 3:1 (Ru:Co) was used. The solution was slowly added to the carbon black powder as long as the poured liquid could be completely adsorbed. The solvent was evaporated in a vacuum oven at 110°C and dried overnight. The resulting product was later sulphided in a flow reactor for a one hour period at 400°C under a 2:1 N2 and H2S atmosphere. The same atmosphere was maintained also while cooling down the sample after completion of the gas-solid reaction. A carbon black supported RuxCoyS catalyst was obtained, as confirmed by XRD data.

EXAMPLE 2



[0022] The same procedure of example 1 was repeated on 10 g of Vulcan XC-72 powder, the only difference being that the precursor salt solution only contained RuCl3.3H2O in 2-propanol, with no cobalt precursor added. As a result, a carbon black supported RuxSy catalyst was obtained, as confirmed by XRD data.

EXAMPLE 3



[0023] RuO2/C prepared by precipitation from RuCl3 solution with acid carbonate at pH 5 in the presence of carbon, or by an oxidation reaction involving Ru sulphite acid (H3Ru(SO2)2OH) and hydrogen peroxide (H2O2), also in the presence of carbon, is a catalyst known in the art. In the present case, this type of catalyst was converted into a stable form of ruthenium sulphide according to the invention by means of a gas-solid reaction. 20 g of Vulcan XC-72 carbon black powder were dispersed in an aqueous solution, to which 20 g of RuCl3.1.5H2O were added. The ruthenium oxide intermediate was precipitated by a slow addition of a NaHCO3 solution with a concentration of 6.7% by weight. The resulting product was dried and subsequently sulphided in a flow reactor for a two hour period at 400°C under a 2:1 N2 and H2S atmosphere. The same atmosphere was maintained also while cooling down the sample after completion of the gas-solid reaction. A carbon black supported RuxSy catalyst was obtained, as confirmed by XRD data.

COUNTEREXAMPLE 1



[0024] Gaseous H S was sparged in an aqueous solution of RuCl3.3H2O containing finely dispersed Vulcan XC-72 carbon black powder. The resulting precipitate was calcined at 650°C for two hours under argon atmosphere. As a result, a carbon black supported RuxSy catalyst was obtained, as confirmed by XRD data.

EXAMPLE 4



[0025] The catalysts of Examples 1 ,2 and 3 and of Counterexample 1 were subjected to an accelerated stability test in the same chemical environment of hydrochloric acid electrolysis, but in much more severe temperature conditions. A sample of each catalyst was immersed in 100 ml of anolyte liquor from a laboratory HCI electrolysis cell, consisting of an aqueous HCI solution with dissolved chlorine, initially at room temperature. The vessels containing the liquor dispersed catalyst samples were then heated and held at boiling temperature (about 103°C) for 20 minutes. After completing the test, the liquor in the vessels containing the catalysts of examples 1, 2 and 3 was still colourless, while the liquor containing the catalyst of counterexample 1 had turned brown. A subsequent analysis on the three solutions showed only small traces of ruthenium in the case of vessels containing catalysts from examples 1, 2 and 3, while in the case of counterexample 1, analysis showed that an extensive ruthenium leach out occurred.

EXAMPLE 5



[0026] The catalysts of examples 1 and 2 were mixed to a PTFE dispersion and incorporated into conventional flow-through gas diffusion electrode structures on carbon cloth. After applying the PTFE/catalyst paste to the cloth and drying the same, each of the two electrodes was cut into four pieces, three of which were subjected to different sintering procedures. The following samples were thus obtained:

Samples 1a and 1b: RuxCoyS and RuxSy respectively, sintered in H2 up to 110°C, holding temperature for 30 minutes, then switching to Ar and ramping up to 335°C, holding temperature for 15 minutes.

Samples 2a and 2b: RuxCoyS and RuxSy respectively, sintered in Ar up to 335°C and holding temperature for 15 minutes.

Samples 3a and 3b: RuxCoyS and RuxSy respectively, sintered in air up to 335°C and holding temperature for 15 minutes.

Samples 4a and 4b: non sintered RuxCoyS and RuxSy respectively.



[0027] All of the eight samples were coated with 0.5 to 0.8 mg/cm2 of perfluorocarbon ionomeric solution, as customary in the art of depolarised hydrochloric acid electrolysis. The eight ionomer-coated samples were subjected to the same stability test in for 20 minutes HCl electrolysis cell anolyte liquor, while bubbling oxygen in the boiling electrolyte, and the following colours were displayed by the corresponding solutions:

Sample 1a: very pale yellow

Sample 1b: colourless

Sample 2a: dark yellow

Sample 2b: light orange

Sample 3a: bright orange

Sample 3b: dark orange/brown

Sample 4a: colourless

Sample 4b: colourless



[0028] These qualitative data were later found matching those obtained through the determination of ruthenium via XRF analysis on the different solutions. The electrodes sintered in hydrogen followed by argon were by far more stable compared to the other sintering procedures, with air-sintering giving the worst results. What is nevertheless surprising is that non sintered electrodes proved at least as stable as those sintered in hydrogen; the stability data for non sintered electrodes matched those of the raw catalyst prior to incorporation in a gas diffusion electrode structure.

EXAMPLE 6



[0029] Electrodes equivalent to samples 1a, 1b, 2a, 3a and 4a were prepared in 50 cm2 size and compared to a standard RhSx electrode for hydrochloric acid electrolysis, according to the teaching of US Patent 6,149,782 (Sample 0). Such electrodes were tested as oxygen-consuming cathodes in a 50 cm2 active area laboratory cell against a standard anode, making use of a by-product aqueous hydrochloric acid solution from an isocyanate plant. The overall cell voltage was recorded at two different current densities, namely 3 and 6 kA m2, and the corresponding values are reported in Table 1.
TABLE 1
Sample IDvoltage at 3 kA/m2voltage at 6 kA/m2
0 1.10 1.41
1a 1.16 1.41
1b 1.16 1.44
2a 1.22 1.56
3a 1.16 1.50
4 1.17 1.49


[0030] All of the tested electrode samples showed an acceptable catalytic activity, resulting in a modest or negligible voltage increase with respect to the state of the art rhodium sulphide electrode (sample 0).

[0031] In the description and claims of the present application, the word "comprise" and its variation such as "comprising" and "comprises" are not intended to exclude the presence of other elements or additional components.


Claims

1. A method for producing a gas diffusion electrode, said method comprising the steps of
coating a conductive web on at least one side thereof with a catalyst for oxygen reduction comprising a ruthenium sulphide chemically stable in a hydrochloric environment in the presence of dissolved chlorine, said catalyst being obtained by
treating a conductive support consisting of carbon having a surface area exceeding 120 g/m2 either by subjecting the conductive support to incipient wetness impregnation with a solution containing at least one precursor of ruthenium or by precipitating a ruthenium oxide on the conductive support dispersed in an aqueous solution,
drying the treated support; and
treating the resulting product under an atmosphere of hydrogen sulphide, and
subjecting the coated conductive web to a final sintering step comprising heating under a hydrogen atmosphere from room temperature up to an intermediate temperature comprised between 100 and 120°C, and subsequently heating under an inert atmosphere from said intermediate temperature up to a final temperature comprised between 300 and 350°C.
 
2. The method of claim 1 wherein said solution used for incipient wetness impregnation also contains a precursor of a transition metal.
 
3. The method of claim 2 wherein said transition metal is selected from the group consisting of Co, Ni, Re, Cr, Mo, Ir.
 
4. The method of claim 3 wherein said solution contains at least one of RuCl3 and Co(NO3)2.
 
5. The method of claim 4 wherein the molar ratio Ru:Co in said solution is comprised between 0.2 and 5.
 
6. The method of claim 1 wherein said solution used for incipient wetness impregnation comprises 2-propanol.
 
7. The method of claim 1 wherein said drying after incipient wetness impregnation is carried out under vacuum at a temperature above 90°C.
 
8. The method of claim 1 wherein said treatment under an atmosphere of hydrogen sulphide is carried out in a flow reactor.
 
9. The method of claim 1 wherein said treatment under an atmosphere of hydrogen sulphide is carried out at a temperature comprised between 300 and 500°C.
 
10. The method of claim 1 wherein said treatment under an atmosphere of hydrogen sulphide is protracted for a time between one and four hours.
 
11. The method of claim 1 wherein said inert carrier gas is nitrogen and the molar ratio of said nitrogen to said hydrogen sulphide is comprised between 0.5 and 4.
 
12. The method of claim 1 wherein said ruthenium oxide is RuO2 precipitated by reacting an aqueous solution containing a ruthenium compound with sodium acid carbonate, or by reacting ruthenium sulphite acid with hydrogen peroxide.
 
13. The method of claim 12 wherein said ruthenium compound is RuCl3.
 
14. The method of any of the preceding claims wherein said atmosphere of hydrogen sulphide is diluted with an inert carrier gas.
 
15. The method of any of the preceding claims wherein said inert atmosphere in said sintering step is an argon atmosphere.
 


Ansprüche

1. Verfahren zur Herstellung einer Gasdiffusionselektrode, wobei das Verfahren die Schritte umfasst:

Beschichten eines leitfähigen Netzes auf wenigstens einer von dessen Seiten mit einem Katalysator zur Sauerstoffreduktion, der ein Rutheniumsulfid umfasst, das in einer Salzsäureumgebung in Gegenwart von gelöstem Chlor stabil ist, wobei der Katalysator erhalten ist durch

Behandeln eines leitfähigen Trägers, der aus Kohlenstoff besteht und eine Oberfläche von mehr als 120 g/m2 aufweist, entweder, indem man den leitfähigen Träger mit Trockenimprägnierung (Incipient Wetness Impregnation) mit einer Lösung behandelt, die wenigstens einen Rutheniumvorläufer enthält, oder indem man ein Rutheniumoxid auf dem in einer wässrigen Lösung dispergierten leitfähigen Träger abscheidet,

Trocknen des so behandelten Trägers; und

Behandlung des resultierenden Produktes unter eine Schwefel-Wasserstoff-Atmosphäre, und

Behandeln des beschichteten leitfähigen Netzes in einem abschließenden Sinterschritt, der das Aufheizen unter einer Wasserstoff-Atmosphäre von Raumtemperatur auf eine Zwischentemperatur im Bereich von 100 bis 120°C und ein abschließendes Aufheizen unter einer inerten Atmosphäre von dieser Zwischentemperatur auf eine Endtemperatur im Bereich von 300 bis 350°C umfasst.


 
2. Verfahren gemäß Anspruch 1, wobei die für die Trockenimprägnierung verwendete Lösung außerdem einen Vorläufer eines Übergangsmetalls enthält.
 
3. Verfahren gemäß Anspruch 2, wobei das Übergangsmetall ausgewählt ist aus der Gruppe bestehend aus Co, Ni, Re, Cr, Mo, Ir.
 
4. Verfahren gemäß Anspruch 3, wobei die Lösung wenigstens eine der Komponenten RuCl3 und Co(NO3)2 enthält.
 
5. Verfahren gemäß Anspruch 4, wobei das Mol-Verhältnis Ru:Co in der Lösung im Bereich zwischen 0,2 und 5 liegt.
 
6. Verfahren gemäß Anspruch 1, wobei die für die Trockenimprägnierung verwendete Lösung 2-propanol umfasst.
 
7. Verfahren gemäß Anspruch 1, wobei das Trocknen nach der Trockenimprägnierung unter Vakuum bei einer Temperatur oberhalb von 90°C durchgeführt wird.
 
8. Verfahren gemäß Anspruch 1, wobei die Behandlung unter einer Schwefel-Wasserstoff-Atmosphäre in einem Durchflussreaktor durchgeführt wird.
 
9. Verfahren gemäß Anspruch 1, wobei die Behandlung unter einer Schwefel-Wasserstoff-Atmosphäre bei einer Temperatur durchgeführt wird, die zwischen 300 und 500°C liegt.
 
10. Verfahren gemäß Anspruch 1, wobei die Behandlung unter einer Schwefel-Wasserstoff-Atmosphäre auf einen Zeitraum zwischen einer Stunde und vier Stunden ausgedehnt wird.
 
11. Verfahren gemäß Anspruch 1, wobei das inerte Trägergas Stickstoff ist und das Molverhältnis von Stickstoff zu Schwefelwasserstoff im Bereich zwischen 0,5 und 4 liegt.
 
12. Verfahren gemäß Anspruch 1, wobei das Rutheniumoxid RuO2 ist, das abgeschieden wird, indem man eine wässrige Lösung, welche eine Rutheniumverbindung enthält, mit Natriumhydrogencarbonat reagieren lässt, oder indem man Rutheniumsulfitsäure mit Wasserstoffperoxid reagieren lässt.
 
13. Verfahren gemäß Anspruch 12, wobei die Rutheniumverbindung RuCl3 ist.
 
14. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Schwefel-Wasserstoff-Atmosphäre mit einem inerten Trägergas verdünnt wird.
 
15. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die inerte Atmosphäre während des Sinterschritts eine Argonatmosphäre ist.
 


Revendications

1. Procédé pour produire une électrode de diffusion de gaz, ledit procédé comprenant les étapes consistant à :
revêtir un film conducteur sur au moins un côté de celui-ci avec un catalyseur pour la réduction de l'oxygène comprenant un sulfure de ruthénium chimiquement stable dans un environnement chlorhydrique en présence de chlore dissous, ledit catalyseur étant obtenu par :

traitement d'un support conducteur constitué de carbone ayant une surface dépassant 120 g/m2 soit par soumission du support conducteur à une imprégnation d'humidité naissante avec une solution contenant au moins un précurseur de ruthénium soit par précipitation d'un oxyde de ruthénium sur le support conducteur dispersé dans une solution aqueuse,

séchage du support traité ; et

traitement du produit résultant sous une atmosphère de sulfure d'hydrogène,
et

soumettre le film conducteur revêtu à une étape de frittage finale comprenant le chauffage sous une atmosphère d'hydrogène de la température ambiante à une température intermédiaire comprise entre 100 et 120° C, puis le chauffage sous une atmosphère inerte de ladite température intermédiaire à une température finale comprise entre 300 et 350° C.


 
2. Procédé selon la revendication 1, dans lequel ladite solution utilisée pour l'imprégnation d'humidité naissante contient également un précurseur d'un métal de transition.
 
3. Procédé selon la revendication 2, dans lequel ledit métal de transition est sélectionné dans le groupe constitué par Co, Ni, Re, Cr, Mo, Ir.
 
4. Procédé selon la revendication 3, dans lequel ladite solution contient au moins l'un parmi RuCl3 et Co(NO3)2.
 
5. Procédé selon la revendication 4, dans lequel le rapport molaire Ru:Co dans ladite solution est compris entre 0,2 et 5.
 
6. Procédé selon la revendication 1, dans lequel ladite solution utilisée pour l'imprégnation d'humidité naissante comprend du 2-propanol.
 
7. Procédé selon la revendication 1, dans lequel ledit séchage après l'imprégnation d'humidité naissante est effectué sous vide à une température supérieure à 90° C.
 
8. Procédé selon la revendication 1, dans lequel ledit traitement sous une atmosphère de sulfure d'hydrogène est effectué dans un réacteur à écoulement.
 
9. Procédé selon la revendication 1, dans lequel ledit traitement sous une atmosphère de sulfure d'hydrogène est effectué à une température comprise entre 300 et 500° C.
 
10. Procédé selon la revendication 1, dans lequel ledit traitement sous une atmosphère de sulfure d'hydrogène est prolongé pendant une durée comprise entre une et quatre heures.
 
11. Procédé selon la revendication 1, dans lequel ledit gaz porteur inerte est de l'azote et le rapport molaire dudit azote audit sulfure d'hydrogène est compris entre 0,5 et 4.
 
12. Procédé selon la revendication 1, dans lequel ledit oxyde de ruthénium est du RuO2 précipité par réaction d'une solution aqueuse contenant un composé de ruthénium avec de l'hydrogénocarbonate de sodium, ou par la réaction d'hydrogénosulfite de ruthénium avec du peroxyde d'hydrogène.
 
13. Procédé selon la revendication 12, dans lequel ledit composé de ruthénium est le RuCl3.
 
14. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite atmosphère de sulfure d'hydrogène est diluée avec un gaz porteur inerte.
 
15. Procédé selon l'une quelconque des revendications précédentes, dans lequel ladite atmosphère inerte dans ladite étape de frittage est une atmosphère d'argon.
 




REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description