(19)
(11)EP 1 636 543 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 04755511.5

(22)Date of filing:  17.06.2004
(51)International Patent Classification (IPC): 
G01B 21/20(2006.01)
G01G 19/414(2006.01)
G01N 33/42(2006.01)
G01B 11/00(2006.01)
G01N 9/02(2006.01)
(86)International application number:
PCT/US2004/019386
(87)International publication number:
WO 2004/113834 (29.12.2004 Gazette  2004/53)

(54)

METHOD OF DETERMINING A DIMENSION OF A SAMPLE OF A CONSTRUCTION MATERIAL AND ASSOCIATED APPARATUS

VERFAHREN ZUR BESTIMMUNG EINER DIMENSION EINES BAUMATERIALS UND ZUGEHÖRIGES APPARAT

PROCEDE POUR DETERMINER LA DIMENSION D'UN ECHANTILLON D'UN MATERIAU DE CONSTRUCTION ET APPAREIL ASSOCIE


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

(30)Priority: 17.06.2003 US 478993 P

(43)Date of publication of application:
22.03.2006 Bulletin 2006/12

(73)Proprietor: TROXLER ELECTRONIC LABORATORIES, INC.
Research Triangle Park, NC 27709 (US)

(72)Inventors:
  • TROXLER, Robert, Ernest
    Raleigh, NC 27608 (US)
  • PRATT, James, Daniel, Jr.
    Raleigh, NC 27613 (US)
  • DUMMER, Andrew, Kirk
    Chapel Hill, NC 27517 (US)

(74)Representative: Appleyard Lees IP LLP 
15 Clare Road
Halifax HX1 2HY
Halifax HX1 2HY (GB)


(56)References cited: : 
EP-A- 0 595 438
EP-A2- 1 225 421
DE-A1- 4 208 455
US-A- 5 412 420
EP-A- 1 046 478
DE-A1- 4 135 329
GB-A- 2 218 513
US-B1- 6 434 257
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    Field of the Invention



    [0001] The present invention relates to an apparatus and method for determining at least one dimension of a sample and, more particularly, to an apparatus and method for determining at least one dimension of a sample of an uncompacted bituminous paving mixture, soil, and/or aggregate, as well as a field core, a laboratory prepared specimen of compacted bituminous paving material, and/or other construction material.

    Description of Related Art



    [0002] EP0595438A, US6434257B1, US5412420A, DE4135329A1, EP1046478A, GB2218513A, EP1225421A2 and DE4208455A1 show related art.

    [0003] The construction industry relies on materials testing for design, quality control and quality assurance of various construction projects. Material density and specific gravity are among some of the critical parameters of materials testing. The pavement construction industry, in particular, uses material density and specific gravity in the design and quality determinations of natural and manufactured paving materials.

    [0004] In the asphalt paving industry, air void contents of hot-mix asphalt laboratory prepared specimens or cored pavement specimens are used, for example, to determine the quality of the mix design, the plant-produced hot-mix, and the pavement construction. The air void content of compacted specimens is determined, in some instances, as a ratio of the actual specific gravity of the compacted specimen (bulk specific gravity) to the theoretical maximum specific gravity of the loose asphalt mixture.

    [0005] The determination of the maximum specific gravity or density of the loose asphalt mixtures may have some limitations that affect the accuracy of the air void content measurement. Furthermore, methods of determining bulk specific gravity are highly operator dependent and therefore may yield highly variable results, also affecting the air void content determination. Currently, there are three generally accepted practices or methods of determining the bulk specific gravities of compacted asphalt specimens. These methods are (1) gamma attenuation; (2) applications of Archimedes' principle; and (3) dimensional analysis.

    [0006] Gamma attenuation technology can be used to provide the bulk density of a compacted asphalt specimen by measuring its electron density as described, for example, in U.S. Patent No. 6,492,641 to Dep et al. The electron density is determined by the intensity and energy distribution of gamma radiation traversing the sample. The gamma radiation is typically emitted from low-level radiation cesium sources and detected by a sensitive sodium iodide detector. The resulting measurement of the electron density must then be normalized by the height (or thickness) of the specimen. However, while the electron density determination is generally precise and reliable, the gamma attenuation method may be limited by the ability of the operator to measure the height of the specimen with accuracy and precision.

    [0007] ASTM D3549 is a standard test method for thickness or height determination of compacted bituminous paving mixture specimens. The standard specifies that an average of four measurements, spaced apart at 90° intervals, should be used to approximate the height of the specimen. It further suggests that ends of the specimen that are not horizontal relative to the vertical axis of the cylinder shall be sawn flat and horizontal. However, there are several problems associated with this method. For example, in some cases, the operator may not ensure that the ends of the specimen are flat and horizontal, thereby introducing error into the height measurement because the end-to-end (or peak-to-peak) caliper measurements will not be reliable height measurements of the specimen. In such instances, the root-mean-square height may be a more accurate measure of the specimen height for density determinations. Another source of error in such a height measurement is that four measurements with the calipers may not provide enough data points to properly represent the true sample height, especially if the specimen is not a true right cylinder and/or if the ends thereof are irregular or sloped. Even if the operator uses extreme care and diligence in measuring the specimen height with the calipers, the calipers are not necessarily capable of properly measuring the irregular or uneven surfaces.

    [0008] One widely used method of determining the bulk specific gravity of an asphalt mix specimen is by determining the mass to volume ratio of the specimen. Mass determinations are generally highly reliable through the use of state of the art balances and scales that are readily available in the marketplace. The volume measurement, however, is typically far less reliable than the mass determination. Several different methods of volume measurement incorporate the Archimedes' principal of water displacement. Another method of obtaining a volume measurement utilizes a dimensional analysis approach with calipers or micrometers.

    [0009] The Archimedes' principal approximates the volume of a solid by determining the volume of water displaced by the solid when the solid is submerged in an adequately sized water bath. Generally, the ratio of the mass of water displaced to the specific gravity of the water is the resulting volume of the solid. However, in some instances, the determined volume may be adversely affected by water seeping into interconnected voids within the solid. In addition, the density of water is not constant and may be affected by temperature, impurities, or even an inconsistent water source. Consequently, the true volume of the solid may be an illusory quantity affecting the accuracy of the determined specific gravity and density of the solid, as well as the amount of water that is able to seep into the solid. However, another issue with the water displacement method is that submerging the sample in water is a destructive process. Though the sample may be dried after immersion, even very careful drying procedures do not typically provide repeatable specific gravity determination results for that sample in subsequent tests. The damage thus done to the specimen generally prohibits the use thereof in other material testing procedures.

    [0010] Several AASHTO or ASTM standards utilize this water displacement principal in the determination of bulk specific gravity of compacted asphalt mixtures. However, basically all of these methodologies include inherent sources of error, typically depending on the conditions under which the procedures are performed. The saturated surface dry (SSD) method (AASHTO T166 / ASTM D2726) tends to underestimate the volume of the specimen, thereby overestimating its bulk specific gravity or density. In order to overcome the limitations associated with the SSD method, techniques have been introduced that require coating the specimen with paraffin or parafilm (AASHTO T275 / ASTM D1188), or vacuum sealing the specimen inside a plastic or poly-material bag(s) (ASTM D6752) as described, for example, in U.S. Patent No. 6,321,589 to Regimand. However, these methods may overestimate the specimen volume by bridging the surface voids of the specimen, thus providing a resulting bulk specific gravity that is often lower than the true value of bulk specific gravity for that specimen. In addition, such methods may also require correction for the mass and volume of the coating or vacuum sealing bag, which may also introduce errors into the calculations.

    [0011] The dimensional analysis method for determining the bulk specific gravity of the specimen approximates the volume by physically measuring the height and diameter dimensions of the specimen with calipers or micrometers. The specific gravity determined by the dimensional analysis method, however, is typically lower than the specific gravity determined by the water displacement method since dimensional analysis using calipers or a micrometer does not consider surface voids or other irregular surface features of the specimen.

    [0012] In light of these limitations in being able to reliably determine the specimen height or other dimensions using existing technologies, there exists a need for a more reliable method for providing accurate dimensional values for a specimen. A method and/or apparatus is also needed that reduces the effect of operator judgment in determining specimen height or other dimensions so that single-laboratory and/or multi-laboratory variations do not affect the evaluations of the asphalt mix specimens. In addition, such an apparatus and/or method should be capable of nondestructively evaluating the specimen.

    BRIEF SUMMARY OF THE INVENTION



    [0013] According to the present invention there is provided a method according to claim 1 and an apparatus according to claim 15.

    [0014] The above and other needs are met by the present examples which provide an apparatus adapted to determine a volume of a construction material sample. Such an apparatus comprises at least one sample-interacting device configured to interact with the construction material sample so as to determine at least one surface characteristic thereof. A computer device is configured to be capable of receiving the at least one surface characteristic from the at least one sample- interacting device, and to manipulate the at least one surface characteristic so as to form a three-dimensional representation of the construction material sample. The computer device is further configured to determine the volume of the construction material sample from the three-dimensional representation thereof.

    [0015] Another aspect comprises an apparatus adapted to determine at least one dimension of a construction material sample having a plurality of dimensions. Such an apparatus includes a first portion of a sample holder operably engaged with at least one dimension-measuring device. A second portion of the sample holder is capable of being operably engaged with the first portion so as to allow the at least one dimension-measuring device to measure at least a first one of the dimensions of the construction material sample. The second portion is adapted to operably engage the construction material sample so as to hold the construction material sample within a coordinate system with respect to the first portion and the at least one dimension-measuring device. The second portion is further configured to be movable with the first portion and in registration with the coordinate system so as to allow the at least one dimension-measuring device to measure at least a second one of the dimensions of the construction material sample.

    [0016] Still another aspect comprises an apparatus adapted to determine at least one dimension of a construction material sample. Such an apparatus comprises at least one sample-interacting device configured to interact with the construction material sample so as to determine at least one surface characteristic thereof. A computer device is configured to be capable of receiving the at least one surface characteristic from the at least one sample-interacting device, and to manipulate the at least one surface characteristic so as to determine the at least one dimension of the construction material sample.

    [0017] Yet another aspect comprises a method of determining a volume of a construction material sample. Such a method includes determining at least one surface characteristic of a construction material with at least one sample- interacting device. Thereafter, the at least one surface characteristic is received from the at least one sample-interacting device at a computer device. The at least one surface characteristic is then manipulated with the computer device so as to form a three-dimensional representation of the construction material sample. The volume of the construction material sample is then determined, with the computer device, from the three-dimensional representation.

    [0018] Still another aspect comprises a method of determining a volume of a construction material sample. Such a method includes first combining, with a computer device, a plurality of images of the construction material sample captured by at least one sample-imaging device so as to form a three- dimensional representation of the construction material sample. The volume of the construction material sample is then determined, with a computer device, from the three-dimensional representation.

    [0019] Another aspect comprises a method of determining at least one dimension of a construction material sample. At least one surface characteristic of a construction material is determined with at least one sample- interacting device. The at least one surface characteristic is received from the at least one sample-interacting device at a computer device and manipulating the at least one surface characteristic with the computer device so as to determine, with the computer device, the at least one dimension of the construction material sample.

    [0020] Another aspect comprises a method of measuring at least one dimension of a construction material sample having a plurality of dimensions, wherein the construction material sample is operably engaged with a second portion of a sample holder. The second portion of the sample holder is operably engaged with a first portion of a sample holder such that the construction material sample is within a coordinate system with respect to the first portion of the sample holder and at least one dimension-measuring device operably engaged therewith. At least a first one of the dimensions of the construction material sample is then measured with the at least one dimension-measuring device. The second portion is then moved with the first portion and in registration with the coordinate system, before at least a second one of the dimensions of the construction material sample is measured with the at least one dimension-measuring device.

    [0021] The proposed methods and apparatuses thus eliminate the need for a destructive or otherwise sample-impairing testing method such as, for example, the Archimedes' water displacement methods. Whether an accurate height determination for the gamma ray attenuation method or an accurate volume determination for the dimensional analysis method is desired, the technology disclosed herein minimizes or eliminates the operator judgment and/or bias limitations previously discussed with respect to existing methods.

    [0022] In some instances, the test method and apparatus for determining specimen height, shape, and/or volume can be applied to other general construction and/or paving-related materials such as loose soils and aggregates, portland cement, concrete cylinders, and many other applications. The improvement in volume, shape, and/or height measurement accuracy and/or definition will, in turn, provide for more reliable density and specific gravity determinations. Thus, a subsequent effect will be improved design, quality control, and quality assurance of construction and/or paving related materials. Further benefits may include, for example, ultimately improved structures and a reduction in disputes between owner and contractor that result from the uncertainty of test results. Thus, embodiments of the present invention provide significant advantages as disclosed, described, and further detailed herein.

    BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)



    [0023] Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:

    FIGS. 1A and 1B are schematics of an apparatus for determining at least one surface characteristic of a construction material sample, implementing a single sample-interacting device, according to one embodiment of the present invention;

    FIG. 2A is a schematic of an apparatus for determining at least one surface characteristic of a construction material sample, implementing a plurality of sample-interacting devices, according to one embodiment of the present invention;

    FIG. 2B is a schematic of a plurality of surface characteristics, in the form of images of the construction material sample, determined by the plurality of sample-interacting devices shown in FIG. 2A, and a three-dimensional representation of the construction material sample formed by combining the images, from which a volume of the construction material sample can be obtained, according to one embodiment of the present invention;

    FIGS. 3A and 3B are schematics of an apparatus for determining at least one dimension of a construction material sample, implementing a dimension-measuring device, according to one embodiment of the present invention; and

    FIG. 4 is a schematic of an alternate sample holder for an apparatus for determining at least one dimension of a construction material sample, according to one embodiment of the present invention.


    DETAILED DESCRIPTION OF THE INVENTION



    [0024] The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, this invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.

    [0025] FIGS. 1A and 1B illustrate an apparatus adapted to determine at least one surface characteristic of a construction and/or paving-related material sample according to one embodiment of the present invention, the apparatus being indicated generally by the numeral 100. The apparatus 100 includes at least one sample-interacting device 200 and a sample holder 300 configured to be capable of supporting a sample 400 of a paving-related material or other construction material. Note that the term "paving-related material" as used herein refers to, for example, uncompacted bituminous paving mixtures, loose soils and aggregates, as well as field cores and laboratory prepared specimens of compacted bituminous paving material, while the term "construction material" as used herein is more general and includes, for example, paving-related materials, portland cement, concrete cylinders, and the like.

    [0026] The sample-interacting device 200 may use, for example, a point source, a line source, or a wave source to provide, for instance, light, sound, ultrasound, radiation, physical contact, and/or other medium for allowing at least one surface characteristic of the sample 400 to be determined. One skilled in the art will appreciate that such a device 200 may be appropriately configured to use the light, sound, ultrasound, radiation (including, for example, microwave radiation or infrared radiation), physical contact and/or other medium to perform, for example, a measurement of at least one surface characteristic, such as a dimension, of the sample 400 using, for instance, a reflectance methodology, a transmission methodology, a duration methodology, a contact methodology, or any other suitable methodology, wherein the device 200 may include, for example, at least one corresponding and appropriate emitter/detector pair, or appropriate sensors, for measuring the at least one surface characteristic. For instance, the device 200 may be configured to use structured light, laser range finders, or x-rays for non-contact-type measurements; linear variable differential transformers (LVDT) or other physical mechanisms for contact-type measurements; or any other suitable measuring technology. For example, an optical methodology or a photographic methodology such as, for instance, stereo-vision techniques, may be used for performing 3D profiling. Various imaging devices such as scanners or cameras may also be suitable in this regard where the appropriate determination of a surface characteristic(s), such as a dimension, may be accomplished by associated software or image processing procedure executed on a computer device 600 associated with the sample-interacting device(s) 200. In some instances, the device 200 may comprise, for example, a three-dimensional profiler device such as that made by, for instance, Shape Grabber, Inc. of Ottawa, Ontario, Canada or National Optics Institute of Sainte-Foy, Quebec, Canada. However, one skilled in the art will appreciate that many other sample-interacting devices may be implemented within the scope of the present invention as disclosed herein and defined by the appended claims.

    [0027] A sample holder 300 is configured to hold the sample 400 with respect to the sample-interacting device 200 so as to allow the sample-interacting device 200 to determine the appropriate surface characteristic(s) of the sample 400. Such a surface characteristic may include, for example, a dimension, a texture, a roughness, or other identifiable surface aspect of the sample 400, including identification and/or quantification of voids, irregularities, or other features of the sample surface. According to claims 1 and 15, surface voids, texture, and roughness characteristics are included. In certain situations, the sample-interacting device 200 may be configured such that the necessary or desired surface characteristic(s) of the sample 400 can be determined with the sample 400 held in one position by the sample holder 300. However, in instances, where the sample 400 has a complex three-dimensional configuration, an appropriate determination or measurement may not be possible with the sample 400 in a single position with respect to the sample-interacting device 200. Accordingly, in instances where a second determination or measurement is necessary or desirable to produce an accurate representation of, for example, the dimensional measurement(s) of the sample 400, the sample 400 may be moved from a first position to a second position with respect to the sample holder 300 for the second measurement.

    [0028] However, significant inaccuracies may be introduced if the sample 400 is moved since a common reference point with respect to the sample 400 by which the two measurements must be coordinated may be lacking. Further, in other instances, the sample 400 may be irregularly shaped or, in the case of aggregates, soils, sands, or the like, configured such that it may be inconvenient or otherwise not practically possible to hold the sample 400 with respect to the sample-interacting device 200, or move the sample 400 to another position, to allow the appropriate dimension(s) of the sample 400 to be measured.

    [0029] Accordingly, one advantageous aspect of the present invention in this regard is the implementation of a computer analysis device 600 capable of executing a software package for analyzing the surface characteristic(s) of the sample 400 determined by the at least one sample-interacting device 200 in order to extract desired information, while overcoming some of the inaccuracies encountered in obtaining a three-dimensional representation of a sample. For example, engineering/modeling/reverse engineering software such as, for instance, ProEngineer, Matlab, Geomagic Studio, or other appropriate package being executed by the computer device 600, can be configured to receive the at least one surface characteristic determined by the sample-interacting device 200. For instance, the sample-interacting device 200 using a point source of light may be configured to detect the behavior of the light interacting with the sample 400, wherein the detected light may be indicative of coordinates or distances of each of the measured points on the sample 400 with respect to the sample-interacting device 200. Accordingly, an increased number of measurements of the sample 400 with such a point source, and the proximity of subsequent measurements to previous measurements may directly affect the resolution of the representation of the sample 400 obtained from that process. That is, a dense "point cloud" may provide a significantly higher resolution of the surface characteristic(s) of the sample 400 as compared to very few point measurements distributed across the surface of the sample 400. However, the resolution necessary to obtain appropriate and valid results of the at least one surface characteristic of the sample 400 is not limited hereby in any manner and one skilled in art will appreciate that such resolution is a matter of choice associated with the desired result to be achieved.

    [0030] FIGS. 1A and 1B further illustrate the sample 400 being moved with respect to the sample-interacting device 200 about a vertical axis defined by the sample holder 300, wherein such movement may be accomplished manually (by the operator physically rotating the sample 400 on the sample holder 300) or in an automated manner such as by a motorized or mechanized system associated with and for rotating the sample holder 300 so as to rotate the sample 400. In other instances, the sample 400 may be stationary and the sample-interacting device 200 moved around the sample 400. In still other instances, as shown in FIG. 2A, a plurality of sample-interacting devices 200 may be implemented such that moving either the sample 400 or sample-interacting device(s) 200 may not be necessary in order to determine or capture the desired surface characteristic(s) of the sample 400. One skilled in the art will also appreciate that, in some non-claimed instances, a sample holder 300 may not be a positive aspect of the apparatus 100. That is, in non-claimed instances, the sample 400 may be, for example, supported by at least one sample-interacting device 200, whereby the at least one sample-interacting device 200 is configured to determine the desired surface characteristic(s) of the sample 400 while providing support therefor. In other non-claimed instances, the sample-interacting device(s) 200 may be configured to act upon a sample 400 in situ and, as such, does not require a sample holder 300 for supporting the sample 400. More particularly, for example, ASTM E 965 is a standard for determining the surface texture of a roadway and involves spreading a calibrated sand on the roadway and then spreading that sand out across the roadway until a dispersed condition is met. The diameter of the sand patch is then measured, whereby the area of the sand patch and the known density of the calibrated sand may be used to determine the surface roughness of the roadway. According to embodiments of the present invention may be used to determine surface roughness by implementing a sample-interacting device 200 configured to be moved relative to the roadway so as to interact with the sample 400 in situ, thereby obviating the need for a sample holder 300 per se. the surface characteristic(s) determined by the sample-interacting device 200 would then be transferred to the computer device 600 to determine the nature of the surface characteristic(s) and thus at least one dimension of the sample 400 (in this instance, the distance between the sample-interacting device 200 and the sample 400 can be indicative of the texture of the surface of the sample 400 and thus an average separation distance can be determined, wherein the average separation distance may be related to, for example, the thickness of the roadway in that area).

    [0031] In an alternate embodiment of the present invention, as shown in FIGS. 3A and 3B, the sample holder 300 may be configured with a first portion 320 and a second portion 340, wherein the first and second portions 320, 340 are configured to cooperate to hold the sample 400 such that appropriate dimension or other measurement(s) can be determined by a dimension-measuring device (as one form of a sample-interacting device 200). That is, in one embodiment, the first portion 320 may be disposed at a selected position with respect to the sample-interacting device 200. The second portion 340 may then be affixed to the sample 400 before the second portion 340 is interfaced with the first portion 320 in an appropriate manner. For example, the first portion 320 may define a keyway (not shown) configured to receive a key (not shown) protruding from the second portion 340 such that, when interfaced, the first and second portions 320, 340 will hold the sample 400 in a known position with respect to the sample-interacting device 200. In any instance, the first and second portions 320, 340 are configured so as to define a coordinate system with respect to the sample-interacting device 200. That is, when the second portion 340 is interfaced with the first portion 320, the sample 400 is located within a coordinate system recognized by the sample-interacting device 200. In other instances, the first and second portions 320,340 may be used by an appropriate software analysis package being executed by a computer device 600, as previously described, to define a coordinate system for analyzing the sample 400.

    [0032] In one example, if the sample 400 comprises a generally cylindrical compacted field core, the second portion 340 of the sample holder 300 may be configured as a ring wrapping about the circumference of the sample 400. Accordingly, the first portion 320 of the sample holder 300 may be configured to receive the second portion 340 such that the axis of the sample 400 is generally horizontal. In such a configuration, the second portion 340 may be rotated with respect to the first portion 320 between measurements by the sample-interacting device 200 such that the sample 400 is caused to rotate about its axis. In other instances, for example, where the sample 400 comprises an aggregate, the sample holder 300 may be configured as, for instance, one or more screens 380 for supporting the aggregate (for example, two opposing screens 380 having the aggregate retained therebetween) with respect to the sample-interacting device 200 so as to allow the appropriate dimensions or other surface characteristics of the components of the aggregate to be measured as shown, for example, in FIG. 4. As such, one skilled in the art will appreciate that embodiments of the present invention may be useful to determine the dimensions or other surface characteristics of many different configurations of samples 400 and thus may be used for such purposes as, for example, determining the volume of a cylindrical compacted field core, modeling the roughness or texture of a surface, or gradating components of an asphalt paving mix or aggregate.

    [0033] Once a first measurement of the sample 400 in a first position is performed by the sample-interacting device 200, the sample 400 can then be moved to a second position to allow a second measurement of the sample 400 to be performed, where such measurements may be associated with, for example, a dimension of the sample 400. In such a manner, a more accurate determination of the appropriate surface characteristic(s) of the sample 400 can be made so as to enable, for example, the volume of the sample 400 to be more closely and accurately determined. Accordingly, in one embodiment as shown in FIGS. 3A and 3B, the first and second portions 320, 340 of the sample holder 300 define a vertical axis 360 and the first and second portions 320, 340 are configured so as to be able to rotate about the axis 360 between measurements by the sample-interacting device 200. FIGS. 3A and 3B further show the sample 400 rotating around the axis 360. For example, the first and second portions 320, 340 may be configured to rotate in 90 degree increments or 180 degree increments (or any suitable degree increment or even in a continuous sweep) between measurements by the sample-interacting device 200, while maintaining the sample 400 within the established coordinate system. That is, the first and second portions 320, 340 may be configured such that, for instance, a reference point is maintained on the first portion 320, the second portion 340, and/or the sample 400 as the sample 400 is rotated about the axis 360. Thus, subsequent analysis of the resulting data can use the common reference point in order to reconcile the measured surface characteristic(s) from the particular view of each measurement. Further, multiple measurements of the sample 400 from multiple views will also provide redundant data useful for verifying accuracy of the determined surface characteristic(s) of the sample 400, thereby providing another significant advantage of embodiments of the present invention. In some instances, the sample-interacting device(s) 200 may be used to perform repeated measurements of the sample 400 such that an average of those measurements is used in subsequent analyses of the data. The use of such averages may, in some instances, provide a more accurate representation of the surface characteristic of the sample 400 as compared to a single measurement.

    [0034] In light of the relationship of the sample-interacting device 200 to the sample 400, as shown in FIGS. 3A, 3B, and 4, other embodiments of the present invention may be configured such that the first and second portions 320, 340 hold the sample 400 stationary, while the sample-interacting device 200 is configured to move about the sample 400 so as to perform the appropriate measurements. In still other instances, both the sample-interacting device 200 and the sample holder 300 may be movable with respect to each other, or mirrors may be used to enable the sample-interacting device 200 to interact with the sample 400. Further, other embodiments of the present invention may have the sample holder 300 configured such that the second portion 340 is movable with respect to the first portion 320 where, for example, the first portion 320 may be stationarily disposed with respect to the sample-interacting device 200. For a sample holder 300 configured in such a manner, the second portion 340 holding the sample 400 may be movable in many different manners with respect to the first portion 320, as will be appreciated by one skilled in the art. In any instance, such embodiments of the apparatus 100 are configured such that the sample 400 is maintained in registration with the coordinate system through any movement of the sample-interacting device 200 and/or the first and/or second portions 320, 340 of the sample holder 300.

    [0035] In any case, multiple views and/or measurements or other determinations of the surface characteristic(s) of the sample 400 may result in a plurality of representations of the sample 400 from different perspectives, wherein the views and/or measurements must then be combined in order to provide coherent and useful results. Where the sample 400 and/or the sample-interacting device 200 must be moved, or multiple perspectives of the sample 400 are obtained, in order to provide three-dimensional surface characteristics of the sample 400, the software executed by the computer device 600, in cooperation with the sample-interacting device 200, may be configured to determine a coordinate system or other frame of reference for the various measurements or determinations of the surface characteristic(s) of the sample 400 performed by the sample-interacting device 200. For example, the frame of reference may be designated, for example, at least partially according to the sample holder 300 or according to a surface aspect or feature of the sample 400, such as a void or other irregularity. In other instances, the frame of reference may be artificial, such as a mark or other removable (or inconsequential) surface feature added to the sample 400 prior to exposure to the sample-interacting device 200. As such, once a sufficient number of source-associated measurements have been executed, the various perspectives 650 of the sample 400 obtained by the sample-interacting device(s) 200, as shown in FIG. 2B (where FIG. 2B illustrates the plurality of perspectives of the sample 400 captured by the corresponding plurality of sample-interacting devices 200 shown in FIG. 2A), can be combined or "stitched together" according to the coordinate system or other frame of reference into a single three-dimensional representation or model 700 of the sample 400.

    [0036] One skilled in the art will thus appreciate that the apparatus 100 may be configured in many different manners in addition to that described herein. For example, the apparatus 100 may include multiple sample-interacting or dimension-measuring devices 200, each disposed so provide different perspectives of the sample 400, or the one or more sample-interacting devices 200 may each include multiple sources and/or detectors. In addition, various other mechanisms, such as mirrors, could be implemented to facilitate the determination of the desired surface characteristic(s) of the sample 400. Thus, the embodiments disclosed herein are provided for example only and are not intended to be limiting, restrictive, or inclusive with respect to the range of contemplated configurations of the present invention.

    [0037] According to the present invention, the apparatus 100 is configured such that the computer device 600 is capable of determining the volume of the sample 400. One value often associated with the determination of the volume of the sample 400 is the density thereof. As previously described, the general procedures heretofore implemented by recognized standards in the construction industry are often, for instance, cumbersome, inaccurate, or destructive to the sample 400. As such, the present invention includes a mass-determining device 500 operably engaged with the sample holder 300 such that, as the volume of the sample 400 is being determined by the sample-interacting device 200, the mass of the sample 400 can also be determined concurrently. The density of the sample 400 can thereby be expeditiously determined with minimal handling of the sample 400.

    [0038] Such a mass-determining device 500 may comprise, for example, a load cell or other suitable device as will be appreciated by one skilled in the art. In still other instances, it may also be advantageous for the determination of the volume and/or the density of the sample 400 by the apparatus 100 to be at least partially automated so as to reduce the subjectivity of handling by an operator. Accordingly, in such instances, the apparatus 100 includes a computer device 600 operably engaged with the sample-interacting device 200, the mass-determining device 500, and/or the sample holder 300. Such a computer device 600 may be configured to, for instance, verify that the sample 400 is properly placed with respect to the sample holder 300 and/or the sample-interacting device 200, coordinate the movement of the sample 400 with the measurements performed by the sample-interacting device 200, determine the mass of the sample 400 from the mass-determining device 500, and compute the density of the sample 400 all in one automated procedure. The computer device 600 may also be configured to perform other procedures on the collected sample data that may be of further interest. For example, the computer device 600 may be configured to compute the volume of the sample 400 from a complex integration of a three-dimensional surface image of the sample 400. According to the invention, the actual volume of the sample 400 is determined by determining the effect of measured surface voids, texture, and roughness characteristics. The computer device 600 may also vary in complexity depending on the computational requirements of the apparatus 100. For example, an image-intensive apparatus 100 using a plurality of sample-interacting devices 200 may require a significant capacity and an image-capable computer device 600, while a less complex dimension-determining may require less computational capacity and, in light of such requirements, an appropriate computer device 600 is provided. Thus, one skilled in the art will appreciate that embodiments of the apparatus 100 may be used for many other forms of sample analysis in addition to those discussed herein.

    [0039] Many modifications and other embodiments of the invention set forth herein will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. For example, one skilled in the art will appreciate that the apparatus and method as disclosed and described herein, in addition to providing an alternative to the density determination methodology outlined in the applicable density standards, may also be implemented within the methodology of other higher-level standards that call, for instance, for the determination of sample density using those density standards, or for the determination of sample dimensions such as, for example, a histogram of aggregate sizes. For example, several AASHTO/ASTM standards are directed to aggregate gradation and may specify the determination of an aggregate size histogram, wherein the apparatus and method as disclosed and described herein may be implemented to make that determination. Such standards include, for instance:
    AASHTO T 27
    Sieve Analysis of Fine and Coarse Aggregates
    AASHTO T 30
    Mechanical Analysis of Extracted Aggregate
    AASHTO MP 2
    Standard Specification for SUPERPA VE Volumetric Mix Design
    AASHTO T 312
    Method for Preparing and Determining the Density or HMA Specimens by Means of the SHRP Gyratory Compactor
    ASTM C 136
    Sieve Analysis of Fine and Coarse Aggregates
    ASTM D 5444
    Test Method for Mechanical Size Analysis of Extracted Aggregate
    ASTM D 3398
    Test Method for Index of Aggregate Particle Shape and Texture
    ASTM D 2940
    Specification for Graded Aggregate Material For Bases or Subbases for Highways or Airports
    ASTM D 448
    Classification for Sizes of Aggregate for Road and Bridge Construction
    ASTM D 1139
    Standard Specification for Aggregate for Single and Multiple Bituminous Surface Treatments


    [0040] Note that such a list is merely exemplary of some standards for aggregates in which aggregate gradation may be specified, and is not intended to be limiting, restrictive, or inclusive with respect to such higher-level standards which may specify a dimension, volume, density, and/or other sample property determination that may be accomplished using the apparatus and method as disclosed and described herein. Accordingly, additional embodiments of the present invention may be directed to such higher level methods implementing the apparatus and method as disclosed herein. Further, according to claims 1 and 15, the present invention is used to determine the texture of a sample. Some examples of ASTM standards requiring an examination of the sample texture, wherein the apparatus and method as disclosed and described herein may also be implemented to make that determination, include:
    ASTM E 965
    Standard Test Method for Measuring Pavement Macro Texture Depth Using a Volumetric Technique
    ASTM E 1274
    Standard Test Method for Measuring Pavement Roughness Using a Profilograph
    ASTM E 2157
    Standard Test Method for Measuring Pavement Macro Texture Properties Using the Circular Track Method


    [0041] Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.


    Claims

    1. A method of analysing a construction material sample (400), the method comprising:

    using a sample holder (300) supporting a construction material sample with respect to at least one sample-interacting device (200);

    determining a first at least one surface characteristic of said construction material sample with the at least one sample-interacting device;

    receiving the at least one surface characteristic from the at least one sample-interacting device at a computer device (600), wherein the at least one surface characteristic comprises a plurality of surface dimensions;

    manipulating the at least one surface characteristic with the computer device by configuring the computer device to cooperate with the at least one sample-interacting device so as to determine a coordinate system;

    using at least one of the sample holder and the sample-interacting device to move the construction material sample relative to the sample-interacting device;

    subsequent to the measurement of the construction material sample, determining a second at least one surface characteristic of said construction material with the at least one sample-interacting device;

    receiving the at least one surface characteristic from the at least one sample-interacting device at a computer device;

    using the computer device such that information extracted from the first and second at least one surface characteristic is capable of being combined so as to form a three-dimensional representation of the construction material sample within the coordinate system;

    determining, with the computer device, a volume of the construction material sample from the three-dimensional representation of the construction material sample within the coordinate system;

    determining, with a mass-determining device (500), a mass of the construction material sample, the mass-determining device being operably engaged with the computer device;

    determining, with the computer device, a density of the construction material sample from the mass and volume thereof;

    wherein the density of the construction material sample is determined based on the volume including the effects of measured surface voids, texture, and roughness characteristics of the construction material from the plurality of surface dimensions determined by the at least one sample-interacting device.


     
    2. The method according to claim 1 wherein determining at least one surface characteristic further comprises determining the at least one surface characteristic, at least partially relative to the sample holder (300) configured to receive the construction material sample (400), with at least one sample-interacting device (200).
     
    3. The method according to claim 2 further comprising moving one of the sample holder(300) and the at least one sample-interacting device (200) with respect to the other so as to move the construction material sample between the first and second position.
     
    4. The method according to claim 1 wherein determining at least one surface characteristic of the construction material sample (400) further comprises determining at least one surface characteristic of the construction material sample with at least one sample-interacting device (200) using at least one of a point source, a line source, and a wave source.
     
    5. The method according to claim 1 wherein determining at least one surface characteristic of the construction material sample (400) further comprises determining at least one surface characteristic of the construction material sample with at least one sample-interacting device (200) using at least one of sound, ultrasound, light, physical contact, radiation, and infrared radiation.
     
    6. The method according to claim 1 wherein determining at least one surface characteristic of the construction material sample (400) further comprises determining at least one surface characteristic of the construction material sample with at least one sample-interacting device (200) comprising at least one of a three-dimensional surface profiler device and a sample-imaging device.
     
    7. The method according to claim 1 wherein determining at least one surface characteristic of the construction material sample (400) further comprises determining at least one image of the construction material sample with at least one sample-imaging device.
     
    8. The method according to claim 1, further comprising determining, with the computer device, an average surface dimension from the plurality of surface dimensions determined by the at least one sample-interacting device.
     
    9. A method according to claim 1 wherein determining at least one surface characteristic of the construction material sample (400) further comprises determining at least one surface characteristic of the construction material sample by contacting the at least one sample-interacting device (200) with the construction material sample.
     
    10. A method according to claim 1 wherein determining at least one surface characteristic of the construction material sample (400) further comprises determining at least one surface characteristic of the construction material sample without contacting the at least one sample-interacting device (200) with the construction material sample.
     
    11. A method according to claim 1 wherein determining at least one surface characteristic of the construction material sample (400) further comprises determining, with the sample-interacting device (200), at least one surface characteristic of the construction material sample including any of a surface void, a surface irregularity, a surface dimension, a surface coordinate, and a surface feature.
     
    12. A method according to claim 1 further comprising determining, with the computer device (600), at least one of a texture and a roughness of the construction material sample (400) from the at least one surface characteristic determined by at least one sample-interacting device (200).
     
    13. The method according to claim 2 wherein the sample holder (300) further comprises a first portion (320) operably engaged with the at least one sample-interacting device (200) and a second portion (340) capable of being operably engaged with the first portion and adapted to operably engage the construction material sample (400) so as to hold the construction material sample within the coordinate system with respect to the first portion and the at least one sample-interacting device.
     
    14. The method of claim 1, said method comprising:

    combining, with the computer device (600), a plurality of images of the construction material sample (400) captured by at least one sample-imaging device (200) with respect to the coordinate system such that information extracted from the images is capable of being combined so as to form a three-dimensional representation of the construction material sample.


     
    15. A sample analysis apparatus (100), comprising:

    a sample holder (300) configured to receive a construction material sample (400) selected from the group consisting of an uncompacted bituminous paving mixture, a soil, an aggregate, a compacted bituminous paving material, a field core, a laboratory-prepared specimen of compacted bituminous paving material, Portland cement, and a concrete cylinder;

    a sample-interacting device (200), operably engaged with the sample holder configured to interact with the at least one surface of the construction material sample so as to perform a surface profile analysis of the at least one surface;

    a mass-determining device (500) operably engaged with the sample holder and capable of determining a mass of the construction material sample;

    and

    a computer device (600) configured to form a three-dimensional representation of the construction material sample within a coordinate system from the surface profile analysis of the at least one surface and further configured to:

    determine a volume of the construction material sample from the three-dimensional representation within the coordinate system;

    and

    determine a density of the construction material sample from the mass and volume thereof, wherein the surface profile analysis is configured to determine a surface dimension of the construction material sample and the computer device is further configured to determine from the surface dimension the volume including the effects of measured surface voids, texture, and roughness characteristics of the construction material.


     
    16. The apparatus according to claim 15, comprising the mass-determining device operably engaged with the sample holder and capable of determining a mass of the construction material sample.
     
    17. The apparatus (100) according to claim 15 wherein the computer device (600) is operably engaged with the mass-determining device (500) and is further configured to be capable of determining a density of the construction material sample (400) from the mass and the volume thereof.
     
    18. The apparatus (100) according to claim 15, wherein the at least one sample-interacting device (200) is configured to perform the surface profile analysis of the construction material sample (400) using at least one of a point source, a line source, and a wave source.
     
    19. The apparatus (100) according to claim 15, wherein the at least one sample-interacting device (200) is configured to perform the surface profile analysis of the construction material sample (400) using at least one of sound, ultrasound, light, physical contact, radiation, and infrared radiation.
     
    20. The apparatus (100) according to claim 15, wherein one of the sample (400) and the at least one sample-interacting device (200) is configured to be movable with respect to the other.
     
    21. The apparatus (100) according to claim 15, wherein the at least one sample-interacting device (200) further comprises at least one of a surface profiler device and a sample-imaging device.
     
    22. The apparatus (100) according to claim 15, wherein the at least one sample-interacting device (200) is further configured to contact the construction material sample (400) to perform the surface profile analysis thereof.
     
    23. The apparatus (100) according to claim 15, wherein at least one sample-interacting device (200) is configured to non-contactingly interact with the construction material sample (400) to perform the surface profile analysis thereof.
     
    24. The apparatus (100) according to claim 15, wherein the surface profile analysis is configured to determine any of a surface void, a surface irregularity, a surface dimension, a surface coordinate, and a surface feature of the construction material sample (400).
     
    25. The apparatus (100) according to claim 15, wherein the computer device (600) is further configured to be capable of determining at least one of a texture and a roughness of the construction material sample (400) from the surface profile analysis performed by at least one sample-interacting device (200).
     
    26. The apparatus (100) according to claim 15, wherein the sample holder (300) further comprises:
    a first portion (320) operably engaged with the at least one sample-interacting device (200); and a second portion (340) capable of being operably engaged with the first portion so as to allow the at least one sample-interacting device to perform the surface profile analysis of a first portion of the construction material sample (400), the second portion being adapted to operably engage the construction material sample so as to hold the construction material sample within a coordinate system with respect to the first portion and the at least one sample-interacting device, the second portion being further configured to be movable with respect to the first portion and in registration with the coordinate system so as to allow the at least one sample-interacting device to perform the surface profile analysis of a second portion of the construction material sample.
     


    Ansprüche

    1. Verfahren zum Analysieren einer Baumaterialprobe (400), wobei das Verfahren Folgendes umfasst:

    Verwenden eines Probenhalters (300), der eine Baumaterialprobe mit Bezug auf mindestens ein mit der Probe zusammenwirkendes Gerät (200) trägt;

    Bestimmen von mindestens einer ersten Oberflächeneigenschaft der Baumaterialprobe mit dem mindestens einen mit der Probe zusammenwirkenden Gerät;

    Empfangen der mindestens einen Oberflächeneigenschaft von dem mindestens einen mit der Probe zusammenwirkenden Gerät an einem Computergerät (600), wobei die mindestens eine Oberflächeneigenschaft eine Vielzahl von Oberflächenabmessungen umfasst;

    Bearbeiten der mindestens einen Oberflächeneigenschaft mit dem Computergerät durch Konfigurieren des Computergeräts derart, dass es mit dem mindestens einen mit der Probe zusammenwirkenden Gerät zusammenarbeitet, um ein Koordinatensystem zu bestimmen;

    Verwenden des Probenhalters und/oder des mit der Probe zusammenwirkenden Geräts zum Bewegen der Baumaterialprobe relativ zum mit der Probe zusammenwirkenden Gerät;

    nach der Messung der Baumaterialprobe Bestimmen von mindestens einer zweiten Oberflächeneigenschaft des Baumaterials mit dem mindestens einen mit der Probe zusammenwirkenden Gerät;

    Empfangen der mindestens einen Oberflächeneigenschaft von dem mindestens einen mit der Probe zusammenwirkenden Gerät an einem Computergerät;

    Verwenden des Computergeräts derart, dass aus der mindestens einer ersten und der mindestens einer zweiten Oberflächeneigenschaft extrahierte Informationen so kombiniert werden können, dass eine dreidimensionale Darstellung der Baumaterialprobe innerhalb des Koordinatensystems gebildet wird;

    Bestimmen eines Volumens der Baumaterialprobe mit dem Computergerät aus der dreidimensionalen Darstellung der Baumaterialprobe innerhalb des Koordinatensystems;

    Bestimmen einer Masse der Baumaterialprobe mit einem Massebestimmungsgerät (500), wobei das Massebestimmungsgerät betriebsfähig mit dem Computergerät verbunden ist;

    Bestimmen einer Dichte der Baumaterialprobe mit dem Computergerät aus ihrer Masse und ihrem Volumen;

    wobei die Dichte der Baumaterialprobe basierend auf dem Volumen, das die Wirkungen gemessener Oberflächenporen, einer gemessenen Struktur und gemessener Rauheitseigenschaften des Baumaterials enthält, aus der Vielzahl von Oberflächenabmessungen, die durch das mindestens eine mit der Probe zusammenwirkende Gerät bestimmt werden, bestimmt wird.


     
    2. Verfahren nach Anspruch 1, wobei das Bestimmen mindestens einer Oberflächeneigenschaft ferner Bestimmen der mindestens einen Oberflächeneigenschaft, mindestens teilweise relativ zum Probenhalter (300), der für das Aufnehmen der Baumaterialprobe (400) ausgelegt ist, mit mindestens einem mit der Probe zusammenwirkenden Gerät (200) umfasst.
     
    3. Verfahren nach Anspruch 2, das ferner Bewegen des Probenhalters (300) mit Bezug auf das mindestens eine mit der Probe zusammenwirkende Gerät (200) oder Bewegen des mindestens einen mit der Probe zusammenwirkenden Geräts mit Bezug auf den Probenhalter umfasst, um die Baumaterialprobe zwischen der ersten und der zweiten Position zu bewegen.
     
    4. Verfahren nach Anspruch 1, wobei das Bestimmen mindestens einer Oberflächeneigenschaft der Baumaterialprobe (400) ferner Bestimmen mindestens einer Oberflächeneigenschaft der Baumaterialprobe mit mindestens einem mit der Probe zusammenwirkenden Gerät (200) durch eine Punktquelle und/oder eine Linienquelle und/oder eine Wellenquelle umfasst.
     
    5. Verfahren nach Anspruch 1, wobei das Bestimmen mindestens einer Oberflächeneigenschaft der Baumaterialprobe (400) ferner Bestimmen mindestens einer Oberflächeneigenschaft der Baumaterialprobe mit mindestens einem mit der Probe zusammenwirkenden Gerät (200) durch Schall und/oder Ultraschall und/oder Licht und/oder einen physischen Kontakt und/oder Strahlung und/oder Infrarotstrahlung umfasst.
     
    6. Verfahren nach Anspruch 1, wobei das Bestimmen mindestens einer Oberflächeneigenschaft der Baumaterialprobe (400) ferner Bestimmen mindestens einer Oberflächeneigenschaft der Baumaterialprobe mit mindestens einem mit der Probe zusammenwirkenden Gerät (200) umfasst, das ein Gerät zum Messen dreidimensionaler Oberflächenprofile und/oder ein Probenabbildungsgerät umfasst.
     
    7. Verfahren nach Anspruch 1, wobei das Bestimmen mindestens einer Oberflächeneigenschaft der Baumaterialprobe (400) ferner Bestimmen mindestens eines Bilds der Baumaterialprobe mit mindestens einem Probenabbildungsgerät umfasst.
     
    8. Verfahren nach Anspruch 1, das ferner Bestimmen einer durchschnittlichen Oberflächenabmessung aus der Vielzahl von Oberflächenabmessungen, die durch das mindestens eine mit der Probe zusammenwirkende Gerät bestimmt werden, mit dem Computergerät umfasst.
     
    9. Verfahren nach Anspruch 1, wobei das Bestimmen mindestens einer Oberflächeneigenschaft der Baumaterialprobe (400) ferner Bestimmen mindestens einer Oberflächeneigenschaft der Baumaterialprobe durch Kontaktieren des mindestens einen mit der Probe zusammenwirkenden Geräts (200) mit der Baumaterialprobe umfasst.
     
    10. Verfahren nach Anspruch 1, wobei das Bestimmen mindestens einer Oberflächeneigenschaft der Baumaterialprobe (400) ferner Bestimmen mindestens einer Oberflächeneigenschaft der Baumaterialprobe ohne Kontaktieren des mindestens einen mit der Probe zusammenwirkenden Geräts (200) mit der Baumaterialprobe umfasst.
     
    11. Verfahren nach Anspruch 1, wobei das Bestimmen mindestens einer Oberflächeneigenschaft der Baumaterialprobe (400) ferner Bestimmen mindestens einer Oberflächeneigenschaft der Baumaterialprobe, die eine Oberflächenpore, eine Oberflächenunregelmäßigkeit, eine Oberflächenabmessung, eine Oberflächenkoordinate und ein Oberflächenmerkmal enthält, mit dem mit der Probe zusammenwirkenden Gerät (200) umfasst.
     
    12. Verfahren nach Anspruch 1, das ferner Bestimmen einer Struktur und/oder einer Rauheit der Baumaterialprobe (400) mit dem Computergerät (600) aus der mindestens einen Oberflächeneigenschaft, die durch mindestens ein mit der Probe zusammenwirkendes Gerät (200) bestimmt wird, umfasst.
     
    13. Verfahren nach Anspruch 2, wobei der Probenhalter (300) ferner einen ersten Abschnitt (320), der betriebsfähig mit dem mindestens einen mit der Probe zusammenwirkenden Gerät (200) verbunden ist, und einen zweiten Abschnitt (340), der betriebsfähig mit dem ersten Abschnitt verbunden sein kann und angepasst ist, um betriebsfähig mit der Baumaterialprobe (400) verbunden zu sein, um die Baumaterialprobe innerhalb des Koordinatensystems mit Bezug auf den ersten Abschnitt und das mindestens eine mit der Probe zusammenwirkende Gerät zu halten, umfasst.
     
    14. Verfahren nach Anspruch 1, wobei das Verfahren Folgendes umfasst:
    Kombinieren einer Vielzahl von Bildern der Baumaterialprobe (400), die durch mindestens ein Probenabbildungsgerät (200) erfasst werden, mit dem Computergerät (600) mit Bezug auf das Koordinatensystem, sodass aus den Bildern extrahierte Informationen derart kombiniert werden können, dass eine dreidimensionale Darstellung der Baumaterialprobe gebildet wird.
     
    15. Probenanalysevorrichtung (100), die Folgendes umfasst:

    einen Probenhalter (300), der für das Aufnehmen einer Baumaterialprobe (400) ausgelegt ist, die aus der aus einem unverfestigten, bituminösen Pflastermischgut, einem Boden, einem Zuschlag, einem verfestigten, bituminösen Pflastermaterial, einer vor Ort entnommenen Bodenprobe, einem im Labor hergestellten Probestück von verfestigtem, bituminösem Pflastermaterial, Portlandzement und einem Betonzylinder bestehenden Gruppe ausgewählt wird;

    ein mit der Probe zusammenwirkendes Gerät (200), das betriebsfähig mit dem Probenhalter verbunden und für ein Zusammenwirken mit der mindestens einen Oberfläche der Baumaterialprobe ausgelegt ist, um eine Oberflächenprofilanalyse der mindestens einen Oberfläche durchzuführen;

    ein Massebestimmungsgerät (500), das betriebsfähig mit dem Probenhalter verbunden und zum Bestimmen einer Masse der Baumaterialprobe fähig ist; und

    ein Computergerät (600), das zum Bilden einer dreidimensionalen Darstellung der Baumaterialprobe innerhalb eines Koordinatensystems aus der Oberflächenprofilanalyse der mindestens einen Oberfläche ausgelegt und ferner zu Folgendem ausgelegt ist:

    Bestimmen eines Volumens der Baumaterialprobe aus der dreidimensionalen Darstellung innerhalb des Koordinatensystems; und

    Bestimmen einer Dichte der Baumaterialprobe aus ihrer Masse und ihrem Volumen, wobei die Oberflächenprofilanalyse zum Bestimmen einer Oberflächenabmessung der Baumaterialprobe ausgelegt ist und das Computergerät ferner zum Bestimmen des Volumens, das die Wirkungen gemessener Oberflächenporen, einer gemessenen Struktur und gemessener Rauheitseigenschaften des Baumaterials enthält, aus der Oberflächenabmessung ausgelegt ist.


     
    16. Vorrichtung nach Anspruch 15, die das Massebestimmungsgerät, das betriebsfähig mit dem Probenhalter verbunden und zum Bestimmen einer Masse der Baumaterialprobe fähig ist, umfasst.
     
    17. Vorrichtung (100) nach Anspruch 15, wobei das Computergerät (600) betriebsfähig mit dem Massebestimmungsgerät (500) verbunden und ferner derart ausgelegt ist, dass es zum Bestimmen einer Dichte der Baumaterialprobe (400) aus ihrer Masse und ihrem Volumen fähig ist.
     
    18. Vorrichtung (100) nach Anspruch 15, wobei das mindestens eine mit der Probe zusammenwirkende Gerät (200) zum Durchführen der Oberflächenprofilanalyse der Baumaterialprobe (400) durch eine Punktquelle und/oder eine Linienquelle und/oder eine Wellenquelle ausgelegt ist.
     
    19. Vorrichtung (100) nach Anspruch 15, wobei das mindestens eine mit der Probe zusammenwirkende Gerät (200) zum Durchführen der Oberflächenprofilanalyse der Baumaterialprobe (400) durch Schall und/oder Ultraschall und/oder Licht und/oder einen physischen Kontakt und/oder Strahlung und/oder Infrarotstrahlung ausgelegt ist.
     
    20. Vorrichtung (100) nach Anspruch 15, wobei die Probe (400) und das mindestens eine mit der Probe zusammenwirkende Gerät (200) derart ausgelegt sind, dass sie mit Bezug aufeinander bewegbar sind.
     
    21. Vorrichtung (100) nach Anspruch 15, wobei das mindestens eine mit der Probe zusammenwirkende Gerät (200) ferner ein Oberflächenprofilmessgerät und/oder ein Probenabbildungsgerät umfasst.
     
    22. Vorrichtung (100) nach Anspruch 15, wobei das mindestens eine mit der Probe zusammenwirkende Gerät (200) ferner zum Kontaktieren der Baumaterialprobe (400), um an ihr die Oberflächenprofilanalyse durchzuführen, ausgelegt ist.
     
    23. Vorrichtung (100) nach Anspruch 15, wobei mindestens ein mit der Probe zusammenwirkendes Gerät (200) für ein Zusammenwirken mit der Baumaterialprobe (400) ohne Kontaktieren, um an ihr die Oberflächenprofilanalyse durchzuführen, ausgelegt ist.
     
    24. Vorrichtung (100) nach Anspruch 15, wobei die Oberflächenprofilanalyse zum Bestimmen einer Oberflächenpore, einer Oberflächenunregelmäßigkeit, einer Oberflächenabmessung, einer Oberflächenkoordinate und eines Oberflächenmerkmals der Baumaterialprobe (400) ausgelegt ist.
     
    25. Vorrichtung (100) nach Anspruch 15, wobei das Computergerät (600) ferner derart ausgelegt ist, dass es zum Bestimmen einer Struktur und/oder einer Rauheit der Baumaterialprobe (400) aus der Oberflächenprofilanalyse, die durch mindestens ein mit der Probe zusammenwirkendes Gerät (200) durchgeführt wird, fähig ist.
     
    26. Vorrichtung (100) nach Anspruch 15, wobei der Probenhalter (300) ferner Folgendes umfasst:
    einen ersten Abschnitt (320), der betriebsfähig mit dem mindestens einen mit der Probe zusammenwirkenden Gerät (200) verbunden ist; und einen zweiten Abschnitt (340), der betriebsfähig mit dem ersten Abschnitt verbunden sein kann, um zu ermöglichen, dass das mindestens eine mit der Probe zusammenwirkende Gerät die Oberflächenprofilanalyse eines ersten Abschnitts der Baumaterialprobe (400) durchführt, wobei der zweite Abschnitt angepasst ist, um betriebsfähig mit der Baumaterialprobe verbunden zu sein, um die Baumaterialprobe innerhalb eines Koordinatensystems mit Bezug auf den ersten Abschnitt und das mindestens eine mit der Probe zusammenwirkende Gerät zu halten, wobei der zweite Abschnitt ferner derart ausgelegt ist, dass er mit Bezug auf den ersten Abschnitt und unter Ausrichtung am Koordinatensystem bewegbar ist, um zu ermöglichen, dass das mindestens eine mit der Probe zusammenwirkende Gerät die Oberflächenprofilanalyse eines zweiten Abschnitts der Baumaterialprobe durchführt.
     


    Revendications

    1. Procédé d'analyse d'un échantillon de matériau de construction (400), le procédé comprenant :

    l'utilisation d'un porte-échantillon (300) supportant un échantillon de matériau de construction par rapport à au moins un dispositif d'interaction avec l'échantillon (200) ;

    la détermination d'au moins une première caractéristique de surface dudit échantillon de matériau de construction avec l'au moins un dispositif d'interaction avec l'échantillon ;

    la réception de l'au moins une caractéristique de surface depuis l'au moins un dispositif d'interaction avec l'échantillon au niveau d'un dispositif informatique (600), l'au moins une caractéristique de surface comprenant une pluralité de dimensions de surface ;

    la manipulation de l'au moins une caractéristique de surface avec le dispositif informatique par configuration du dispositif informatique pour qu'il coopère avec l'au moins un dispositif d'interaction avec l'échantillon de manière à déterminer un système de coordonnées ;

    l'utilisation du porte-échantillon et/ou du dispositif d'interaction avec l'échantillon pour déplacer l'échantillon de matériau de construction par rapport au dispositif d'interaction avec l'échantillon ;

    après la mesure de l'échantillon de matériau de construction, la détermination d'au moins une deuxième caractéristique de surface dudit matériau de construction avec l'au moins un dispositif d'interaction avec l'échantillon ;

    la réception de l'au moins une caractéristique de surface depuis l'au moins un dispositif d'interaction avec l'échantillon au niveau d'un dispositif informatique ;

    l'utilisation du dispositif informatique de telle sorte que des informations extraites de l'au moins une première et l'au moins une deuxième caractéristique de surface puissent être combinées de manière à former une représentation tridimensionnelle de l'échantillon de matériau de construction à l'intérieur du système de coordonnées ;

    la détermination, avec le dispositif informatique, d'un volume de l'échantillon de matériau de construction à partir de la représentation tridimensionnelle de l'échantillon de matériau de construction à l'intérieur du système de coordonnées ;

    la détermination, avec un dispositif de détermination de masse (500), d'une masse de l'échantillon de matériau de construction, le dispositif de détermination de masse étant fonctionnellement couplé au dispositif informatique ;

    la détermination, avec le dispositif informatique, d'une masse volumique de l'échantillon de matériau de construction à partir de la masse et du volume de celui-ci ;

    dans lequel la masse volumique de l'échantillon de matériau de construction est déterminée sur la base du volume incluant les effets de caractéristiques de vides, texture et rugosité de surface mesurées du matériau de construction à partir de la pluralité de dimensions de surface déterminées par l'au moins un dispositif d'interaction avec l'échantillon.


     
    2. Procédé selon la revendication 1 dans lequel la détermination d'au moins une caractéristique de surface comprend en outre la détermination de l'au moins une caractéristique de surface au moins partiellement par rapport au porte-échantillon (300) configuré pour recevoir l'échantillon de matériau de construction (400), avec au moins un dispositif d'interaction avec l'échantillon (200).
     
    3. Procédé selon la revendication 2 comprenant en outre le déplacement d'un élément parmi le porte-échantillon (300) et l'au moins un dispositif d'interaction avec l'échantillon (200) par rapport à l'autre de manière à déplacer l'échantillon de matériau de construction entre la première et la deuxième position.
     
    4. Procédé selon la revendication 1 dans lequel la détermination d'au moins une caractéristique de surface de l'échantillon de matériau de construction (400) comprend en outre la détermination d'au moins une caractéristique de surface de l'échantillon de matériau de construction avec au moins un dispositif d'interaction avec l'échantillon (200) au moyen d'au moins un élément parmi une source ponctuelle, une source linéaire, et une source d'ondes.
     
    5. Procédé selon la revendication 1 dans lequel la détermination d'au moins une caractéristique de surface de l'échantillon de matériau de construction (400) comprend en outre la détermination d'au moins une caractéristique de surface de l'échantillon de matériau de construction avec au moins un dispositif d'interaction avec l'échantillon (200) au moyen d'au moins un élément parmi un son, un ultrason, une lumière, un contact physique, un rayonnement, et un rayonnement infrarouge.
     
    6. Procédé selon la revendication 1 dans lequel la détermination d'au moins une caractéristique de surface de l'échantillon de matériau de construction (400) comprend en outre la détermination d'au moins une caractéristique de surface de l'échantillon de matériau de construction avec au moins un dispositif d'interaction avec l'échantillon (200) comprenant un dispositif de profilage de surface tridimensionnelle et/ou un dispositif d'imagerie d'échantillons.
     
    7. Procédé selon la revendication 1 dans lequel la détermination d'au moins une caractéristique de surface de l'échantillon de matériau de construction (400) comprend en outre la détermination d'au moins une image de l'échantillon de matériau de construction avec au moins un dispositif d'imagerie d'échantillons.
     
    8. Procédé selon la revendication 1, comprenant en outre la détermination, avec le dispositif informatique, d'une dimension de surface moyenne à partir de la pluralité de dimensions de surface déterminées par l'au moins un dispositif d'interaction avec l'échantillon.
     
    9. Procédé selon la revendication 1 dans lequel la détermination d'au moins une caractéristique de surface de l'échantillon de matériau de construction (400) comprend en outre la détermination d'au moins une caractéristique de surface de l'échantillon de matériau de construction par mise en contact de l'au moins un dispositif d'interaction avec l'échantillon (200) avec l'échantillon de matériau de construction.
     
    10. Procédé selon la revendication 1 dans lequel la détermination d'au moins une caractéristique de surface de l'échantillon de matériau de construction (400) comprend en outre la détermination d'au moins une caractéristique de surface de l'échantillon de matériau de construction sans mise en contact de l'au moins un dispositif d'interaction avec l'échantillon (200) avec l'échantillon de matériau de construction.
     
    11. Procédé selon la revendication 1 dans lequel la détermination d'au moins une caractéristique de surface de l'échantillon de matériau de construction (400) comprend en outre la détermination, avec le dispositif d'interaction avec l'échantillon (200), d'au moins une caractéristique de surface de l'échantillon de matériau de construction incluant n'importe quel élément parmi un vide de surface, une irrégularité de surface, une dimension de surface, une coordonnée de surface, et une caractéristique de surface.
     
    12. Procédé selon la revendication 1 comprenant en outre la détermination, avec le dispositif informatique (600), d'une texture et/ou d'une rugosité de l'échantillon de matériau de construction (400) à partir de l'au moins une caractéristique de surface déterminée par au moins un dispositif d'interaction avec l'échantillon (200).
     
    13. Procédé selon la revendication 2 dans lequel le porte-échantillon (300) comprend en outre une première partie (320) fonctionnellement couplée à l'au moins un dispositif d'interaction avec l'échantillon (200) et une deuxième partie (340) pouvant être fonctionnellement couplée à la première partie et adaptée pour coupler fonctionnellement l'échantillon de matériau de construction (400) de manière à maintenir l'échantillon de matériau de construction à l'intérieur du système de coordonnées par rapport à la première partie et l'au moins un dispositif d'interaction avec l'échantillon.
     
    14. Procédé de la revendication 1, ledit procédé comprenant :

    la combinaison, avec le dispositif informatique (600), d'une pluralité d'images de l'échantillon de matériau de construction (400) capturées par au moins un dispositif d'imagerie d'échantillons (200) par rapport au système de coordonnées de telle sorte que des informations extraites des images puissent être combinées de manière à former une représentation tridimensionnelle de l'échantillon de matériau de construction.


     
    15. Appareil d'analyse d'échantillons (100), comprenant :

    un porte-échantillon (300) configuré pour recevoir un échantillon de matériau de construction (400) choisi dans le groupe constitué par un mélange de pavage bitumineux non compacté, un sol, un agrégat, un matériau de pavage bitumineux compacté, une carotte de terrain, une éprouvette préparée en laboratoire de matériau de pavage bitumineux compacté, du ciment de Portland, et un cylindre de béton ;

    un dispositif d'interaction avec l'échantillon (200), fonctionnellement couplé au porte-échantillon, configuré pour interagir avec l'au moins une surface de l'échantillon de matériau de construction de manière à effectuer une analyse de profil de surface de l'au moins une surface ;

    un dispositif de détermination de masse (500) fonctionnellement couplé au porte-échantillon et pouvant déterminer une masse de l'échantillon de matériau de construction ;
    et

    un dispositif informatique (600) configuré pour former une représentation tridimensionnelle de l'échantillon de matériau de construction à l'intérieur d'un système de coordonnées à partir de l'analyse de profil de surface de l'au moins une surface, et également configuré pour :

    déterminer un volume de l'échantillon de matériau de construction à partir de la représentation tridimensionnelle à l'intérieur du système de coordonnées ;
    et

    déterminer une masse volumique de l'échantillon de matériau de construction à partir de la masse et du volume de celui-ci, l'analyse de profil de surface étant configurée pour déterminer une dimension de surface de l'échantillon de matériau de construction et le dispositif informatique étant également configuré pour déterminer, à partir de la dimension de surface, le volume incluant les effets de caractéristiques de vides, texture et rugosité de surface mesurées du matériau de construction.


     
    16. Appareil selon la revendication 15, comprenant le dispositif de détermination de masse fonctionnellement couplé au porte-échantillon et pouvant déterminer une masse de l'échantillon de matériau de construction.
     
    17. Appareil (100) selon la revendication 15 dans lequel le dispositif informatique (600) est fonctionnellement couplé au dispositif de détermination de masse (500) et est également configuré pour pouvoir déterminer une masse volumique de l'échantillon de matériau de construction (400) à partir de la masse et du volume de celui-ci.
     
    18. Appareil (100) selon la revendication 15, dans lequel l'au moins un dispositif d'interaction avec l'échantillon (200) est configuré pour effectuer l'analyse de profil de surface de l'échantillon de matériau de construction (400) en utilisant au moins un élément parmi une source ponctuelle, une source linéaire, et une source d'ondes.
     
    19. Appareil (100) selon la revendication 15, dans lequel l'au moins un dispositif d'interaction avec l'échantillon (200) est configuré pour effectuer l'analyse de profil de surface de l'échantillon de matériau de construction (400) en utilisant au moins un élément parmi un son, un ultrason, une lumière, un contact physique, un rayonnement, et un rayonnement infrarouge.
     
    20. Appareil (100) selon la revendication 15, dans lequel un élément parmi l'échantillon (400) et l'au moins un dispositif d'interaction avec l'échantillon (200) est configuré pour être mobile par rapport à l'autre.
     
    21. Appareil (100) selon la revendication 15, dans lequel l'au moins un dispositif d'interaction avec l'échantillon (200) comprend en outre un dispositif de profilage de surface et/ou un dispositif d'imagerie d'échantillons.
     
    22. Appareil (100) selon la revendication 15, dans lequel l'au moins un dispositif d'interaction avec l'échantillon (200) est également configuré pour entrer en contact avec l'échantillon de matériau de construction (400) pour effectuer l'analyse de profil de surface de celui-ci.
     
    23. Appareil (100) selon la revendication 15, dans lequel au moins un dispositif d'interaction avec l'échantillon (200) est configuré pour interagir sans contact avec l'échantillon de matériau de construction (400) pour effectuer l'analyse de profil de surface de celui-ci.
     
    24. Appareil (100) selon la revendication 15, dans lequel l'analyse de profil de surface est configurée pour déterminer n'importe quel élément parmi un vide de surface, une irrégularité de surface, une dimension de surface, une coordonnée de surface, et une caractéristique de surface de l'échantillon de matériau de construction (400).
     
    25. Appareil (100) selon la revendication 15, dans lequel le dispositif informatique (600) est également configuré pour pouvoir déterminer une texture et/ou une rugosité de l'échantillon de matériau de construction (400) à partir de l'analyse de profil de surface effectuée par au moins un dispositif d'interaction avec l'échantillon (200).
     
    26. Appareil (100) selon la revendication 15, dans lequel le porte-échantillon (300) comprend en outre :
    une première partie (320) fonctionnellement couplée à l'au moins un dispositif d'interaction avec l'échantillon (200) ; et une deuxième partie (340) pouvant être fonctionnellement couplée à la première partie de manière à permettre à l'au moins un dispositif d'interaction avec l'échantillon d'effectuer l'analyse de profil de surface d'une première partie de l'échantillon de matériau de construction (400), la deuxième partie étant adaptée pour coupler fonctionnellement l'échantillon de matériau de construction de manière à maintenir l'échantillon de matériau de construction à l'intérieur d'un système de coordonnées par rapport à la première partie et l'au moins un dispositif d'interaction avec l'échantillon, la deuxième partie étant également configurée pour être mobile par rapport à la première partie et en référence au système de coordonnées de manière à permettre à l'au moins un dispositif d'interaction avec l'échantillon d'effectuer l'analyse de profil de surface d'une deuxième partie de l'échantillon de matériau de construction.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description