(19)
(11)EP 1 648 536 B2

(12)NEW EUROPEAN PATENT SPECIFICATION
After opposition procedure

(45)Date of publication and mention of the opposition decision:
20.12.2017 Bulletin 2017/51

(45)Mention of the grant of the patent:
18.05.2011 Bulletin 2011/20

(21)Application number: 04738120.7

(22)Date of filing:  02.08.2004
(51)International Patent Classification (IPC): 
A61M 1/28(2006.01)
F04B 43/12(2006.01)
(86)International application number:
PCT/CH2004/000480
(87)International publication number:
WO 2005/009511 (03.02.2005 Gazette  2005/05)

(54)

A SYSTEM FOR PERFORMING PERITONEAL DIALYSIS

SYSTEM ZUR DURCHFÜHRUNG VON PERITONEALDIALYSE

SYSTEME DE CONDUITE DE DIALYSE PERITONEALE


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

(30)Priority: 31.07.2003 WO PCT/CH03/00527
26.01.2004 WO PCT/CH2004/000040

(43)Date of publication of application:
26.04.2006 Bulletin 2006/17

(73)Proprietor: DEBIOTECH S.A.
1004 Lausanne (CH)

(72)Inventors:
  • NEFTEL, Frédéric
    CH-1005 Lausanne (CH)
  • JUNOD, Florent
    74140 Veigy- Foncenesc (FR)
  • VECTEN, Didier, c/o DEBIOTECH SA
    CH-1004 Lausanne (CH)

(74)Representative: Grosfillier, Philippe 
ANDRE ROLAND SA Chemin des Charmettes 9 P.O. Box 5107
1002 Lausanne
1002 Lausanne (CH)


(56)References cited: : 
EP-A- 1 195 171
EP-A1- 1 121 948
WO-A1-00/30701
WO-A1-99/06082
DE-A- 19 856 744
DE-A1- 10 053 441
JP-A- H09 108 340
US-A- 5 078 362
US-A- 5 478 211
EP-A1- 0 956 876
EP-B1- 1 277 485
WO-A1-01/19430
DE-A- 19 814 695
DE-A1- 4 421 126
DE-C- 10 124 951
US- - 4 980 054
US-A- 5 437 629
US-A- 6 074 359
  
  • computer-translation of D14
  


Description

Field of the invention



[0001] The present invention relates to systems for performing peritoneal dialysis on a patient and more precisely to such systems which include a liquid distribution system forming a distinct element.

State of the art



[0002] Peritoneal dialysis systems or pumping systems suitable for peritoneal dialysis are described in the following patent documents : EP 0 790 841 B1, EP 0 695 397 B1. EP 0 852 953 B1, EP 0 694 125 B1, EP 0 686 237 B1, EP 0 471 000 B1, EP 0 332 690 B1, EP 0 262 182 B1, EP 0 259 464 B1 and EP 1 195 171 A2.

Summary of the invention



[0003] An objective of the present invention is to provide an improved peritoneal dialysis system and in particular an improved liquid distribution system.

[0004] This objective and many others are achieved with the system as defined in the independent claims.

[0005] Preferred embodiments of the invention are defined in the dependent claims. Several advantages result from the invention, in particular :
  • simpler, and therefore more efficient, liquid distribution system which may include only two distinct cavities,
  • possibility to use a peristaltic pump, in particular a rotatable peristaltic pump,
  • possibility to use an unidirectional pump which results in a higher precision and a longer life time,
  • possibility to fix the liquid distribution system and the pump together, alternatively with vibration attenuating means,
  • possibility to use a flexible membrane which covers the chambers and which include valve elements,
  • the membrane may be molded,
  • part of a pressure sensor can be incorporated in the membrane.


[0006] Those and other advantages will be better understood in the detailed description of the invention exemplified here below, together with the following figures.

Short description of the figures



[0007] 

Figure 1 shows in a schematic way the principle of the invention

Figure 1A shows the "fill" phase

Figure 1B shows the "drain" phase

Figure 2 illustrates an embodiment of a liquid distribution system not claimed

Figure 3 illustrates a second embodiment (disposable cartridge) including a warmer chamber

Figure 4 shows the embodiment of figure 3 in a transparent view

Figure 5 shows the back side of the embodiment of figure 3 (disposable cartridge)

Figure 6 illustrates the disposable cartridge of figure 3 with the complete tuning set

Figure 7 shows an embodiment with the rotative parts (rollers) integrated on the cycler

Figure 8 shows the embodiment of figure 7 without the rollers

Figure 9 the disposable cartridge in two parts allowing to absorb pump vibrations

Figure 10 shows a cycler without the cartridge insertion slot

Figure 11 illustrates a disposable cartridge opened showing the peritoneal pump

Figure 12 is an upper view of an elastic molded membrane

Figure 13 is a bottom view of the membrane of figure 12

Figure 14 shows a membrane clipping system

Figure 15 shows the cycler of figure 10 in an open state

Figure 16 shows a cartridge loader

Figure 17 shows the cycler of figure 10, the insertion slot opened with the cartridge

Figure 18 shows the cycler of figure 10, the insertion slot closed with the cartridge

Figure 19 shows a front view of a valve

Figure 20 shows a front view of a pressure sensor

Figure 21 shows a pump race

Figure 22 shows a valve actuator and a membrane clipping system Figure 23 shows a warmer

Figure 24 shows a warmer casing

Figure 25 is a table showing drain profiles

Figure 26 shows another embodiment of the invention

Figure 27 shows another embodiment of the invention

Figure 28 shows a molded frame in an upper view

Figure 29 shows the molded frame of figure 28 in a bottom view

Figure 30 shows the molded frame of figure 28 fixed to a liquid distribution system

Figure 31 shows the system of figure 30 in a cross section

Figure 32 shows a flow preventing system

Figure 33 shows an exploded upper view of another embodiment of the invention

Figure 34 shows the embodiment of figure 33 in a bottom view

Figure 35 shows the embodiment of figures 33 and 34 in an assembled view

Figure 36 shows a cross section of the embodiment of figure 35

Figure 37 shows an enlarged view of a part of the embodiment of figure 33.


Numerical references used in the drawings



[0008] 
1.
Pump
2.
Liquid distribution system (cartridge)
3.
Supply means (bag)
4.
Patient
5.
Patient line
6.
Drain collector
7.
First hub chamber
8.
Second hub chamber
9.
Liquid supply port with valve
10.
Patient port with valve
11.
Drain port with valve
12.
Roller separator
13.
Membrane
14.
Membrane frame
15.
Pressure sensor cavity (patient)
16.
Patient port with valve (warmer chamber)
17.
Warmer chamber
18.
Patient port with valve (first hub chamber)
19.
Warmer port
20.
Roller element
21.
Pump race
22.
Roller
23.
Tube connector for warming enter line
24.
Liquid supply line
25.
Drain line
26.
Pump inlet
27.
Pump outlet
28.
Warmer pouch
29.
Warmer enter line
30.
Warmer exit line
31.
Membrane pressure sensor area
32.
Retaining element for pressure sensor
33.
Clip cavity
34.
Actuator
35.
Clip plunger
36.
Pressure sensor cavity (first hub chamber)
37.
Pump flexible tube
38.
Warmer port with valve
39.
Membrane actuator clip
40.
Membrane pressure volute
41.
Cartridge loader
42.
Pump motor + coder
43.
Air sensor
44.
Pressure sensor
45.
Pump casing
46.
Cartridge loader shaft
47.
Cartridge loader frame
48.
Cartridge loader linear cam
49.
Cartridge loader motor
50.
Cartridge insertion slot
51.
Cycler
52.
Cartridge motor shaft
53.
Tube connector for supply line
54.
Tube connector for drain line
55.
Tube connector for warmer exit line
56.
Pump enter line
57.
Pump exit line
58.
Sensor pressure housing
59.
Sealing flange
60.
Clamping member
61.
Shaft retaining member
62.
Shaft
63.
Retaining lip
64.
Clamping slot
65.
Opening
66.
Releasing slot
67.
Rigid plate
68.
Pin
69.
Membrane holes
70.
Rigid plate holes
71.
Cavity
72.
Groove
73.
Flange

Detailed description of the invention



[0009] The principle of the peritoneal dialysis system according to the invention is shown in a schematic way in figure 1. It includes a pump 1, a liquid distribution system 2 (also named cartridge) comprising a first hub chamber 7 and a second hub chamber 8. The first chamber 7 includes a pump inlet 26 connected to the pump 1 via a pump enter line 56, a liquid supply port 9 with valve connected to supply means, e.g. to bags 3, via a liquid supply line 24 and a patient port 10 with valve connected to a patient 4 via a patient line 5. The second chamber 8 includes a pump outlet 27 connected to the pump 1 via a pump exit line 57, a drain port 11 with valve connected to a drain collector 6 via a drain line 25 and a patient port 18 with valve connected to a patient 4 via a patient line 5.

[0010] Figure 1A shows the "fill" phase where liquid is supplied to the patient 4 from and through the following elements : Bag 3 - Liquid supply line 24 - (open) liquid supply port 9 - First chamber 7 - Pump inlet 26 - Pump enter line 56 - Pump 1 - Pump exit line 57 - Pump outlet 27 - Second chamber 8 - (open) Patient port 18 - Patient line 5 - Patient 4.

[0011] Figure 1B shows the "drain" phase where liquid is drained from and through the following elements : Patient 4 - Patient line 5 - (open) Patient port 10 - First chamber 7 - Pump inlet 26 - Pump enter line 56 - Pump 1 - Pump exit line 57 - Pump outlet 27 - Second chamber 8 - (open) Drain port 11 - Drain line 25 - Drain collector 6.

[0012] The embodiment illustrated on figure 2 shows an assembly constituted by a pumping element 1 and a cartridge 2. Both elements are fixed together but may be separated. Figure 21 shows a better view of the fixation between both elements. Preferably, the pumping element 1 is fixed to the cartridge 2 by vibration attenuation means in order to minimize the vibration on cartridge 2 when the pump is operating.

[0013] The upper face of the cartridge contains a first hub chamber 7, a second distinct hub chamber 8 and a cavity 15 which forms part of a pressure sensor. The first chamber hub chamber 7 has three liquid supply ports 9, one patient port 10, one pump inlet 26 and a cavity 36 which forms part of a pressure sensor. The second hub chamber 8 has a patient port 18, a drain port 11 and a pump outlet 27.
The pumping element 1 comprises a pump casing 45 which contains three rollers 22 maintained around the pump casing center by a roller separator 12. The space between the roller-roller separator element and the pump casing defines a pump race 21 in which a flexible tube 37 is placed. The flexible tube being connected with the pump enter 56 and exit 57 lines. The rollers 22 may be motor driven by a shaft 52 (not shown on figure 2) in such a way as to progressively compress the flexible tube 37 resulting thereby in a peristaltic movement along the flexible tube 37.
During the "fill" phase, liquid is supplied via one tube connector 53 and liquid supply port 9 to the first hub chamber 7. It then enters the pump 1 through the pump inlet 26, moves along the flexible tube 37, enters the second hub chamber 8 through the pump outlet 27 and goes to the patient 4 via patient port 18 and patient line 5.
During the "drain" phase, liquid leaves the patient 4, enters the first hub chamber 7 via patient port 10. It then enters the pump 1, moves along the flexible tube 37, enters the second hub chamber 8 and goes to the drain collector 6 via drain port 11, drain tube connector 54 and drain line 25.

[0014] It should be noted at this stage that each bag 3 may contain a specific liquid.

[0015] The cartridge 2 of figure 3 is identical to the cartridge of figure 2 with the exception of an additional cavity, namely a warmer chamber 17, which includes a warmer port 19 and a patient port 16. The warmer port 19 is connected to a warmer 28 (not shown on figure 3) via a warmer tube connector 55 and a warmer exit line 30. The patient port 16 is connected to the patient line 5. The second hub chamber 8 contains a warmer port 38 connected to a warmer 28 (not shown on figure 3) via a warmer tube connector 23 and a warmer enter line 29.

[0016] During the "fill" phase, liquid is supplied via one tube connector 53 and liquid supply port 9 to the first hub chamber 7. It then enters the pump 1, moves along the flexible tube 37, enters the second hub chamber 8, moves into the warmer 28 via warmer port 38, enters the warmer chamber 17 via warmer port 19 through the tube connector 55 and goes to the patient 4 via patient port 16 and patient line 5.

[0017] As it can be seen on the embodiments of figures 2 and 3, the pump 1 is unidirectional, i.e. whatever the pumping phase is, liquid in the flexible tube 37 always moves in the same direction. This feature provides several advantages. In particular a higher precision in the liquid exchange due to the same flow speed for both the fill and drain phases and a longer life time.
It is known that peristaltic pumps are usually accurate within +/- 5%. As such, peristaltic pumps cannot be used for peritoneal dialysis since the volume which is filled within the patient cavity requires to be drained in the same amount within +/-2%, otherwise the peritoneal cavity could be overfilled (e.g. for 12 liters exchanged over the therapy, a 3% difference represents 360ml which is as much as 18% of the 2 liters contained in the peritoneal cavity for each cycle) and/or the ultra-filtration could be altered. In order to improve on the accuracy of the exchanged volume without requiring the construction of highly accurate pumps which would warranty a +/-2% accuracy, the invention provides a method whereby the conventional pump is used in a unidirectional way which insures the same accuracy for both the fill and the drain phase (usually within +/-2%) and therefore an appropriate balance of fluid. The volume filled with such a pump may be inaccurate within +/-5%, but since the same cassette with the same flow speed characteristics (namely the same flow direction) is used, the balance can be insured within +/-2% as required for the therapy. If the cassette would be used in both directions, the difference in flow speed would be within +/-5% due to the non parallel behavior of peristaltic pumps, in particular over time.

[0018] It should be noted that with the present invention, the precision in the liquid exchange is maintained even if the pump flow rate changes after a certain time due to aging of the tubing since the fill and drain are operated within a time window which is small in comparison to the time in which the flow speed is altered by aging (e.g. a flow alteration of the pump of approximately 1% per 20 liters of fluid pumped, with exchanged volumes of approximately 2 liters per cycle). In addition, the use of the cassette in one direction enables a better control over the aging of the tubing and, therefore, a better prediction of the impact on the pumping accuracy.

[0019] Figure 4 is a transparent view of the cartridge which better shows how the different elements are connected. A cartridge bottom view is shown on figure 5. The tubing system in the lower face and the cavities of the upper face are all made within one single part, e.g. an injected part of plastic material.

[0020] Figure 6 shows an assembly including the cartridge 2 of figure 3 fixed to a pumping element 1, a patient line 5, supply bags 3, a warmer enter line 29, a warmer outer line 30 and a warmer pouch 28 which is essentially made of a fluid circuit within a plastic bag (e.g. PVC) to be put into contact with a warming plate.

[0021] Figure 7 shows a cartridge identical to the one of figure 3 where the rollers are part of the cycler rather than of the cartridge. In this embodiment, the pumping element 1 which only contains the tube and tubing race and the cartridge 2 are forming a single element.
The rollers, which are part of the cycler and therefore re-usable rather than disposable with the cardridge, have a conical shape so as to allow the rollers to be self inserted in the pump race. In this configuration the cartridge is more simple to manufacture and contains less parts. No other insertion mechanism is required, since the tube is automatically compressed on the race while the rollers are penetrating into the cartridge. As a separate matter, the use of conical rollers 22 results in a more constant speed of the liquid along the flexible tube 37.

[0022] Figure 8 shows the assembly of figure 7 without the rollers 22 and the roller element.

[0023] Of course, other roller shapes may be used, e.g. spherical or cylindrical.

[0024] The embodiment of figure 9 only differs from the one of figure 8 in that the pump casing 45 is made out of two parts with an interface between the pumping element 1 and the cartridge 2. This configuration offers an improved assembly process of the pump and the possibility to add means to limit the propagation of the vibrations from the pump 1 to the cartridge 2.

[0025] Figure 10 shows a cycler 51 without cartridge 2 and pumping element 1. It contains a driving zone which includes a motor shaft 52 for the rollers 22 and several actuators 34. The cycler 51 also includes an air sensor 43 situated close to the patient line 5 when the cartridge 2 is inserted. The air sensor may be made of a piezo emitter and a piezo receiver.

[0026] Figure 11 represents the embodiment of figure 2 with a flexible membrane 13 covering the hub chambers 7,8 and the pressure sensor cavity 15.
The upper face of the membrane 13 (see figure 12) contains several valve elements having a cylindrical cavity 39 and a pressure sensor area 31 with a ply 40 around its periphery. The valve elements 39 are designed to tightly close the ports when the membrane 13 moves downwardly.
On its bottom face (see figure 13) the membrane 13 contains a semi-circular flange 32 around the pressure sensor area and annular liquid tight joints.
In addition the cartridge 2 includes liquid tight joints arranged in such a manner that they allow a liquid tight connection between the cartridge 2 and the membrane 13.
Advantageously the membrane is molded. Preferably the membrane 13 is made of silicone.
The membrane 13 is press-fitted to the cartridge 2 along its periphery with a membrane frame 14 (see figure 14).

[0027] Figure 15 shows the cycler of figure 10 in an open state which includes a pump motor and a coder 42. The rectangle 41 represents the cartridge loader.
Figure 16 shows a cartridge loader comprising cartridge loader shafts 46, a cartridge loader frame 47, a cartridge loader linear cam 48 and a cartridge loader motor 49. On this figure, the two displacement parts 48' and 48" represent two different positions of the loader in an open and closed position only for explanation reasons.
The cartridge loading mechanism allows a tight connection between the membrane and the valves and the cartridge. In order to insure proper positioning of the cartridge onto the valve actuators, as well as pressure sensor and air sensor onto the right place, the cartridge is maintained into the loading mechanism which progressively moves the cartridge in an axis which is perpendicular to its surface. By the same movement, the axis or the rollers can be inserted in the right position to ensure proper functioning of the pump. The same movement can also insure appropriate pressure on the surfaces which requires to be maintained together, such as for tightness control on the membrane and/or tubing of the pump.

[0028] Figure 17 shows the cycler 51 of figure 10 containing a cartridge 2. The cycler 51 has an insertion slot 50 in an open position.
Figure 18 shows the same cycler 51 but with an insertion slot in a closed position.

[0029] Figure 19 represents an actuator 34 with its plunger 35 clipped in its corresponding valve element 39 of the membrane. The actuator 34 may be a magnet or an electromagnetic element. The plunger 35 and the valve element 39 are designed to move together when the actuator is activated.
Figure 22a and 22b shows the plunger 35 and the valve element 39 in a separate position (fig. 22a) before insertion and in an activated position (fig. 22b) after insertion. One embodiment of the invention is to insure a proper insertion of the actuator head into the membrane clipping part by having the length of the part of the actuator head to be inserted into the clip of the membrane to be longer than the possible displacement of the actuator head, so as to ensure that the actuator head is always properly inserted into the clip of the membrane. As such, in the worst case where the actuator head would be fully retracted within the actuator during the clipping translation into the membrane, the actuators head would pass the clipping equilibrium position before the end of the translation, so that the remaining translation will ensure clipping of the actuator head into the membrane.

[0030] The front view of figure 20 illustrates a pressure sensor 44 which may be used with the independent pressure sensor cavity 15 of the cartridge 2 or with the pressure sensor cavity 36 of the first hub chamber 7. The ply 40 makes the pressure sensor less sensitive to the elasticity of the membrane 13 in the sensor pressure area. In addition, the shape of the cavity 15 shall be made such that air can be eliminated easily when fluid is passing into the cavity (e.g. by having a round shaped bottom of the cavity within the direction of the flow).

[0031] In the embodiments discussed previously, each port has a dedicated valve. This is not the case for the pump inlet and the pump outlet which are always kept open.

[0032] The invention encompasses several other features not necessarily illustrated on the figures. For instance, the cycler or the cartridge-pumping element assembly may contain a window for detecting correct positioning of the flexible tube of the pump as shown in figure 21 (circle).

[0033] When the system functions, the pressure is preferably always maintained positive with respect to the drain. This is a safety measure which avoids said contaminated liquid to potentially infect the patient.

[0034] Advantageously the liquid pressure entering and exiting the cartridge is sensed and, if necessary, the pump flow rate is corrected in accordance with the pressure difference. This pressure difference is better calculated at the initial priming phase of the system, where the pressure is directly related to the positioning of the liquid bags 3 and the patient position relative to the cycler.

[0035] Alternatively or in addition, the pump flow rate may be regulated according to a predetermined deterioration of the tubing which is known from the characteristics of the tubing.

[0036] The drain phase may be limited as to its duration in function of the drain speed, the drain speed having to be reduced when the patient peritoneal cavity pressure decreases, typically between 30 ml/min and 120 ml/min instead of a nominal 200 ml/min speed. This feature is particularly interesting because the dialysis efficiency is directly related to the time the liquid stays in the peritoneal cavity and the duration required to fully drain the peritoneal cavity may limit this time without a significant impact with regard to the peritoneal fluid characteristics. As such, one method of the invention would be to determine at which speed it is not worth continuing draining the patient entirely and rather fill the patient with fresh fluid, taking into consideration the remaining fluid volume in the peritoneal cavity which has not been expelled and expected ultra-filtration additional volume to avoid overfill. The cycles will therefore be all different, based on reaching a pre-determined drainage speed or a pre-determined decrease profile of the drainage speed, so that the efficient time of dialysis will be increased. An example of drainage speed on a patient is given in the figure 25, where, for each column which is divided in three parts, the upper part corresponding to a limit of drainage speed at which it is, for example, not worth continuing the drainage even if the next fill volume will not be a full fill. In comparison to actual method where a tidal at (e.g. 80%) is preset, the method under the invention is adapting each drainage to the actual drainage speed, trying to empty as much as possible without compromising on the efficacy of the peritoneal dialysis. Of course some limits can be set, where a minimum of drainage volume has to be reached before such a limitation takes place for each cycle.

[0037] Another method under the present invention consists to fill always as much volume, within certain limits to be set for the patient, until a certain pressure in the peritoneal cavity is reached. As such, the peritoneal dialysis can be improved since the efficiency is related to the amount of fluid filled at every cycle. According to such method, the pump shall fill the patient until a certain pressure is reached (e.g. 10cm water) and stop only once such pressure is reached or a certain maximum volume is reached. Accordingly, it is important to measure continuously the pressure during the dwell time to make sure that no over pressure is reached, such as due to the ultra-filtration. One possibility is also to always fill up to such a limited pressure and/or volume and drain at a certain interval thereafter a certain volume to compensate for expected ultra-filtration. Another possibility is to increase the ultra-filtration during the last cycle, by using e.g. low sodium concentrated solution.

[0038] Figure 26 illustrates another embodiment which uses peristaltic finger elements working on a hemispheric channel in the hard plastic part. The channel and the liquid distribution system are covered by a single membrane. A peristaltic pumping effect is obtained by pressing down these fingers in a sequence. This performs a digital type peristaltic pump with a high accuracy, which remains in particular independent of inlet and outlet pressure changes. Preferably the fingers are moved in a progressive way to simulate a peristaltic movement. Those fingers can be operated either individually, e.g. by electric means, or by a mechanical cam which simulates the peristaltic movement and which is rotating along the fluid channel (e.g. a rotating disk with a variable thickness which displays a wave on its surface in contact with the finger elements). Alternatively, those fingers can be clipped onto the membrane and be operated individually in the same mariner as the valves are, or by a rotating disk cam. In such last embodiment, the advantage is that the position of the membrane is perfectly known in both push and pull direction, to ensure that the peristaltic pumping is not depending on the pressure.

[0039] The embodiment of figure 27 only differs from the embodiment of figure 26 in that the membrane includes cavities to receive and guide the finger elements (e.g. by clipping means).

[0040] Preferably the membrane is biocompatible, allows a simple sealing to the liquid distribution system e.g. by welding, sticking, gluing, laser or heat melting. In addition the membrane should be made in a material avoiding the release of particles due to mechanical stress or self migration due to the material itself (e.g. Kraton™, Santoprene™, Biopure™, Pebax™ or Polyurethane). Finally the membrane must be soft and elastic in order to properly perform valve and / or pump functionalities.
It is also possible to use multi-layer material with in inner layer (on the fluid side) which is more biocompatible and with low spallation characteristics.

[0041] In one particular embodiment, the membrane is also covering the fluid pumping channel, at 45', to ensure possible operation with either conical rollers or ball rollers which are part of the cycler.

[0042] Figures 28 to 31 illustrates a molded frame which is adapted to cover in a tight manner the space between the hub chambers, each space above said hub chambers being covered by a flexible membrane, preferably made of injected silicone or elastic biocompatible material. In such embodiment, the molded frame and silicone or elastic biocompatible membrane can be obtained by over-molding techniques.

[0043] The system according to the present invention may furthermore include free flow preventing means which prevent the flow of fluid towards or from the liquid distribution system when it is released from the cycler.

[0044] This preventing means may be made of a mechanical clamp around the patient line, which is not clamping during the treatment will be closed automatically due to the movement of a loading mechanisms by releasing the cartridge, such as by clipping mechanism.
Figure 32 illustrates such a clamping mechanism which consists of a slotted clamping member 60 movably fixed to the liquid distribution system 2 via a flexible U shape member 61. Figure 32 also shows a shaft 62 which is fixed to the cycler (not shown). In the illustrated position, the liquid distribution system 2 is not fixed to the cycler. When fixation occurs, the shaft 62 is inserted through the opening 65 of the flexible U shape member 61 and retained to it by a retaining lip 63. When the liquid distribution system 2 is released from the cycler (downward movement) the bottom of the U shape member 61 is moved upwardly resulting in a movement of the clamping member 60 in the direction of the patient line 5. The patient line 5 will be kept closed as long as the shaft 62 is retained in the U shape member 61. To detach the liquid distribution system 2 completely from the cycler, the shaft 62 has to pass through a releasing slot 66.

[0045] Alternatively the patient line is closed by a special designed, so called "lip valve" which is normally closed. Due to a mechanical pin in the cycler the lip valve, as an integrated part of the membrane, will be open by simply pressed down with the pin coming from the cycler by mechanical movement.

[0046] Figures 33 to 37 show another embodiment of the invention, similar to the embodiment of figure 14a, but which differs in that the membrane 13 is not fixed by a clipping frame but by a rigid plate 67 which covers the membrane 13 over its entire surface. The rigid plate has holes 70 adapted to receive the membrane actuator clips 39 and pins 68 adapted to be fixed on the cartridge 2. The membrane is provided with holes 69 which are designed to let the pins 68 pass through.
As can be seen on figure 37, the bottom side of the membrane 13 is provided with a flange 73 which is situated around the actuator clip 39. The cartridge 2 surface just below the flange 73 is provided with a groove 72. The groove 72 is adapted to receive and hold the flange 73 sufficiently enough to maintain a fluid tight connection between the membrane 13 and the cartridge 2.
This embodiment offers several advantages, in particular an improved distribution of the forces applied to the membrane 13.

[0047] In another embodiment of the invention (not illustrated) the system comprises one or several flow sensor(s) which is/are preferably situated close to the pump inlet and/or outlet.
The flow sensor may be of any type suitable for the intended purpose. For instance, but not exclusively, it may be of the mechanical (e.g. turbine flowmeter), mass (e.g. thermal flowmeter), electronic, magnetic or US type.


Claims

1. A system for performing fluid administration on a patient comprising:

- a liquid pump (1),

- a liquid distribution system (2) connected to said pump (1) in such a way that liquid can flow from the liquid distribution system (2) to the pump (1) and vice versa,

- liquid supply means (3) for supplying liquid to a patient (4) via said liquid distribution system (2) and said pump (1),

- a patient conduit (5) adapted for connecting said liquid distribution system (2) to a patient (4),

- and a warming system (28)

characterized by the fact that said liquid distribution system (2) comprises two distinct hub chambers (7,8) which are separated by a space and a cavity (17), the first hub chamber (7) including at least one liquid supply port with dedicated valve means (9), one patient port with dedicated valve means (10) and one pump inlet (26), the second hub chamber (8) including at least, one patient port (18) with dedicated valve means and one pump outlet (27), the cavity (17) including a warmer port (19) and a patient port, the patient port (18) of the second hub chamber (8) being connected to said warmer port (19) via said warmer system (28), said system furthermore comprising control means arranged to close said patient port (10) of the first hub chamber (7) when said liquid supply port (9) is open and vice versa.
 
2. System according to claim 1 wherein said second hub chamber (8) furthermore includes at least one drain port with dedicated valve means (11), said control means being also arranged to close said patient port (18) of the second hub chamber (8) when said drain port (11) is open and vice versa.
 
3. A system according to claim 2 wherein said liquid distribution system (2) only includes two hub chambers (7,8).
 
4. A system according to claim 1 wherein said warmer system (28) is a warmer in-line.
 
5. A system according to claim 4 wherein said warmer in-line comprises a warming plate contained therein, such warming plate being covered by a warming pouch like a sock.
 
6. A system according to claim 5 wherein said warming pouch is composed of a liquid channel which forces the liquid to be maintained within such warmer for a certain duration at a given flow rate.
 
7. A system according to anyone of the previous claims wherein said first hub chamber (7) includes several liquid supply ports with respective valve means (9).
 
8. A system according to the previous claim wherein said liquid supply ports (9) are connected to respective liquid supply means having each a different kind of liquid.
 
9. A system according to anyone of the previous claims wherein said liquid pump is a peristaltic pump.
 
10. A system according to the previous claim wherein said peristaltic pump is unidirectional,
 
11. A system according to anyone of the previous claims wherein said liquid pump (1) is composed of a tubing and rolling surface on which the tubing is compressed once the cartridge is inserted into a pumping device containing rollers.
 
12. A system according to the previous claim where said rollers (22) are of a conical shape in such a way as to be self inserted in the pump race, i.e. without any other mechanism.
 
13. A system according to claim 11 where said rollers are of a spherical shape.
 
14. A system according to anyone of previous claims 1 to 10 wherein said liquid pump (1) comprises a flexible or partially flexible channel and a series of movable finger elements successively situated above said channel, each finger element being movable along a direction which is substantially perpendicular to said channel, all finger elements being adapted to induce a peristaltic movement along said channel.
 
15. A system according to the previous claim wherein each finger element comprises a convex basis adapted to conform with the channel inner surface and a shaft adapted to be linked to an actuator.
 
16. A system according to anyone of the previous claims wherein said liquid pump (1) and said liquid distribution system (2) are fixed together to form a single cartridge.
 
17. A system according to the previous claim wherein said liquid pump (1) is fixed to said liquid distribution system (2) by vibration attenuation means in order to minimize the vibration on the liquid distribution system (2) when the pump is operating.
 
18. A system according to anyone of the previous claims wherein all hub chambers, including said ports, are made within one single part.
 
19. A system according to the previous claim wherein said single part is an injected part of plastic material.
 
20. A system according to claim 1 wherein each hub chamber (7,8) is closed with an upper wall made of a flexible membrane (13), said membrane including valve elements (39) situated above each of said port or port with valve means, said valve elements (39) being designed to close said port or port when the membrane (13) moves downwardly.
 
21. A system according to claim 1 wherein each hub chamber (7,8) is closed with an upper wall made of a flexible membrane (13), said membrane including clipping means adapted to clip elements such as valve actuating or finger elements.
 
22. A system according to any one of the claims 20 to 21 wherein said membrane is molded.
 
23. A system according to the previous claim wherein said membrane is made out of any of the following materials: silicone, polyurethane.
 
24. A system according to the previous claim wherein said membrane includes liquid tight joints.
 
25. A system according to anyone of previous claims 20 to 24 wherein said membrane extends in such a way that it also covers said liquid pump (1).
 
26. A system according to claim 11, 12 or 13 wherein said liquid pump (1) comprises a flexible or partially flexible channel, said membrane covering said channel along an oblique plane, preferably at 45°, in order to allow a peristaltic movement induced by rollers or similar elements.
 
27. A system according to the previous claim comprising individual actuators or a cam (e.g. a disc with a vawe) adapt to induce a peristaltic movement.
 
28. A system according to the previous claim wherein said individual actuators are adapted to be actuated by fingers which are clipped to said membrane.
 
29. A system according to anyone of the previous claims wherein said liquid distribution system includes liquid tight joints arranged in such a manner that they allow a liquid tight connection between said liquid distribution system and a membrane situated on it.
 
30. A system according to anyone of claims 20 to 23 wherein said membrane contains protruding elements designed for a liquid tight connection between said hub chambers.
 
31. A system according to the previous claim wherein each of said valve elements comprises a cavity designed to receive and hold the plunger of an actuator, said cavity having an height which substantially corresponds to at least the valve displacement.
 
32. A system according to anyone of claims 20 to 26 and 29 to 31 wherein said membrane (13) is press-fitted along its external border to the liquid distribution system, the membrane (13) being furthermore held by a frame (14).
 
33. A system according to anyone of claims 20 to 26 and 29 to 32 wherein said membrane (13) contains a portion (15) which is forming part of a pressure sensor.
 
34. A system according to the previous claim wherein the active area of said pressure sensor is designed to be more flexible than the remaining area.
 
35. A system according to claim 33 or 34 wherein said pressure sensor has the shape of a disc of which the periphery is gripped, said disc furthermore comprising an annular ply.
 
36. A system according to anyone of claims 33 to 35 wherein said pressure sensor is situated on the patient line, independently from said hub chambers.
 
37. A system according to anyone of claims 37 to 35 furthermore comprising a second pressure sensor, said second pressure sensor being in connection with the first hub chamber.
 
38. A system according to anyone of the previous claims wherein said liquid distribution system includes an air sensor situated on the patient conduit side.
 
39. A system according to anyone of the previous claims comprising a cartridge loading mechanism which allows a tight connection between the membrane and the valves and the liquid distribution system.
 
40. A system according to anyone of the previous claims comprising flow blocking means adapted to block the flow towards or from the liquid distribution system when this latter one is released out of the system.
 
41. A system according to the previous claim wherein said blocking means is a mechanical clamp situated on the patient line.
 
42. A system according to claim 40 wherein said blocking means is a lip valve situated on the patient line, the system furthermore comprises a movable pin adapted to open said lip valve when the liquid distribution system is released out of the system.
 
43. A system according to anyone of previous claims 20 to 42 comprising a molded frame adapted to cover the space between said hub chambers, each space above said hub chambers being covered by a flexible membrane.
 
44. A system according to the previous claim wherein said molded frame is fixed to said liquid distribution system, e.g. by ultrasound, laser welding, gluing or thermal bonding.
 
45. A system according to claim 43 or 44 wherein said molded frame is at least partially made of silicon or polyurethane.
 
46. A system according to anyone of claims 43 to 45 wherein said frame, membrane and liquid distribution system are obtained by overmolding technique.
 
47. A system according to anyone of claims 20 to 46 using a double layer membrane adapted to prevents spallation or particule release into the fluid during use.
 
48. A system according to anyone of the previous claims furthermore comprising a window for detecting correct positioning of the tube.
 
49. A system according to anyone of claim 20 to 26 and 29 to 31 furthermore comprising a rigid plate (67) which covers and holds the membrane (13), said rigid plate (67) comprising holes (70) adapted to let moving elements passing through.
 
50. A system according to the previous claim wherein said rigid plate (67) includes pins (68) situated on the membrane side, said pins (68) being adapted to be fixed on the liquid distribution system (2).
 
51. A liquid distribution system (2) for a system performing fluid administration on a patient as defined in anyone of the previous claims.
 


Ansprüche

1. System zur Durchführung der Flüssigkeitsverabreichung an einem Patienten, das Folgendes umfasst:

- eine Flüssigkeitspumpe (1),

- ein Flüssigkeitsverteilungssystem (2), das so mit der Pumpe (1) verbunden ist, dass Flüssigkeit vom Flüssigkeitsverteilungssystem (2) zur Pumpe (1) und umgekehrt fließen kann,

- ein Flüssigkeitszufuhrmittel (3) zur Zufuhr von Flüssigkeit zu einem Patienten (4) über das Flüssigkeitsverteilungssystem (2) und die Pumpe (1),

- eine Patientenleitung (5) zur Verbindung des Flüssigkeitsverteilungssystems (2) mit einem Patienten (4),

- und ein Erwärmungssytem (28),

dadurch gekennzeichnet, dass das Flüssigkeitsverteilungssystem (2) zwei verschiedene Ansatzkammern (7, 8), die durch einen Zwischenraum und einen Hohlraum (17) voneinander getrennt sind, umfasst, wobei die erste Ansatzkammer (7) zumindest eine Flüssigkeitszufuhröffnung mit zugeordnetem Ventilmittel (9), eine Patientenöffnung mit zugeordnetem Ventilmittel (10) und einen Pumpeneingang (26) aufweist, wobei die zweite Ansatzkammer (8) zumindest eine Patientenöffnung (18) mit zugeordnetem Ventilmittel und einen Pumpenausgang (27) aufweist, wobei der Hohlraum (17) eine Erwärmungsöffnung (19) und eine Patientenöffnung aufweist, wobei die Patientenöffnung (18) der zweiten Ansatzkammer (8) mit der Erwärmungsöffnung (19) über das Erwärmungssystem (28) verbunden ist
wobei das System ferner ein Kontrollmittel umfasst, das so angeordnet ist, dass es die Patientenöffnung (10) der ersten Ansatzkammer (7) verschließt, wenn die Flüssigkeitszufuhrleitung (9) offen ist, und umgekehrt.
 
2. System nach Anspruch 1, worin die zweite Ansatzkammer (8) ferner zumindest eine Drainageleitung mit zugeordneten Ventilmitteln (11) umfasst, wobei das Kontrollmittel auch die Patientenöffnung (18) der zweiten Ansatzkammer (8) verschließen kann, wenn die Drainageöffnung (11) offen ist, und umgekehrt.
 
3. System nach Anspruch 2, worin das Flüssigkeitsverteilungssystem (2) nur zwei Ansatzkammern (7, 8) aufweist.
 
4. System nach Anspruch 1, worin das Erwärmungssystem (28) eine Erwärmungsinlineleitung ist.
 
5. System nach Anspruch 4, worin die Erwärmungsinlineleitung eine darin enthaltene Wärmeplatte umfasst, wobei diese Wärmeplatte von einem Wärmebeutel, wie z.B. einer Socke, abgedeckt ist.
 
6. System nach Anspruch 5, worin der Wärmebeutel aus einem Flüssigkeitskanal besteht, der die Flüssigkeit zwingt, für eine bestimmte Zeitdauer mit einer vorgegebenen Strömungsrate in diesem Wärmemittel zu bleiben.
 
7. System nach einem der vorhergehenden Ansprüche, worin die erste Ansatzkammer (7) mehrere Flüssigkeitszufuhröffnungen mit jeweiligen Ventilmitteln (9) aufweist.
 
8. System nach dem vorhergehenden Anspruch, worin die Flüssigkeitszufuhröffnungen (9) jeweils mit Flüssigkeitszufuhrmitteln, die jeweils eine andere Art von Flüssigkeit enthalten, verbunden sind.
 
9. System nach einem der vorhergehenden Ansprüche, worin die Flüssigkeitspumpe eine Peristaltikpumpe ist.
 
10. System nach dem vorhergehenden Anspruch, worin die Peristaltikpumpe unidirektional ist.
 
11. System nach einem der vorhergehenden Ansprüche, worin die Flüssigkeitspumpe (1) aus einem Schlauch und einer Rollfläche besteht, auf der der Schlauch zusammengedrückt wird, wenn die Patrone in eine Pumpenvorrichtung mit Rollen eingeführt wird.
 
12. System nach dem vorhergehenden Anspruch, worin die Rollen (22) so konisch geformt sind, dass sie von selbst in den Pumpenlaufring, d.h. ohne weiteren Mechanismus, eingeführt werden.
 
13. System nach Anspruch 11, wobei die Rollen kugelförmig sind.
 
14. System nach einem der vorhergehenden Ansprüche 1 bis 10, worin die Flüssigkeitspumpe (1) einen flexiblen oder teilweise flexiblen Kanal und eine Reihe von beweglichen Fingerelementen umfasst, die nacheinander über dem Kanal angeordnet sind, wobei jedes Fingerelement in einer Richtung bewegt werden kann, die im Wesentlichen lotrecht zum Kanal ist, wobei alle Fingerelemente eine peristaltische Bewegung entlang des Kanals auslösen können.
 
15. System nach dem vorhergehenden Anspruch, worin jedes Fingerelement einen konvexen Boden, der sich an die Innenseite des Kanals anpassen kann, und einen Schaft, der mit einem Stellelement verbunden werden kann, umfasst.
 
16. System nach einem der vorhergehenden Ansprüche, worin die Flüssigkeitspumpe (1) und das Flüssigkeitsverteilungssystem (2) zur Bildung einer einzelnen Patrone aneinander befestigt sind.
 
17. System nach dem vorhergehenden Anspruch, worin die Flüssigkeitspumpe (1) durch ein Vibrationsabschwächungsmittel an dem Flüssigkeitsverteilungssystem (2) befestigt ist, um die Vibration auf dem Flüssigkeitsverteilungssystem (2) im Betrieb der Pumpe zu minimieren.
 
18. System nach einem der vorhergehenden Ansprüche, worin alle Ansatzkammern, einschließlich Öffnungen, aus einem einzigen Stück gefertigt sind.
 
19. System nach dem vorhergehenden Anspruch, worin das einzige Stück ein Spritzgussteil aus Plastik ist.
 
20. System nach Anspruch 1, worin jede Ansatzkammer (7, 8) mit einer oberen Wand aus einer flexiblen Membran (13) verschlossen ist, wobei die Membran Ventilelemente (39) aufweist, die auf jeder der Öffnungen oder Öffnungen mit Ventilelementen sitzen, wobei die Ventilelemente (39) die Öffnung oder Öffnung verschließen können, wenn die Membran (13) sich nach unten bewegt.
 
21. System nach Anspruch 1, worin jede Ansatzkammer (7, 8) mit einer oberen Wand aus einer flexiblen Membran (13) verschlossen ist, wobei die Membran Klemmmittel zum Anklemmen der Elemente, wie z.B. Ventilbetätigungs- oder Fingerelemente, aufweist.
 
22. System nach einem der Ansprüche 20 bis 21, worin die Membran geformt ist.
 
23. System nach dem vorhergehenden Anspruch, worin die Membran aus einem der folgenden Materialien besteht: Silikon oder Polyurethan.
 
24. System nach dem vorhergehenden Anspruch, worin die Membran flüssigkeitsdichte Verbindungsstellen aufweist.
 
25. System nach einem der vorherigen Ansprüche 20 bis 24, worin die Membran sich so erstreckt, dass sie auch die Flüssigkeitspumpe (1) abdeckt.
 
26. System nach Anspruch 11, 12 oder 13, worin die Flüssigkeitspumpe (1) einen flexiblen oder teilweise flexiblen Kanal umfasst wobei die Membran den Kanal über eine schräge Ebene, vorzugsweise von 45°, abdeckt, um eine durch Rollen oder ähnliche Elemente ausgelöste peristaltische Bewegung zu gestatten.
 
27. System nach einem der vorhergehenden Ansprüche, das einzelne Stellelemente oder einen Nocken (z.B. eine Scheibe mit einer Welle) zur Auslösung einer peristaltischen Bewegung umfasst.
 
28. System nach einem der vorhergehenden Ansprüche, worin die einzelnen Stellelemente von Fingern betätigt werden können, die an der Membran festgeklemmt sind.
 
29. System nach einem der vorhergehenden Ansprüche, worin das Flüssigkeitsverteilungssystem flüssigkeitsdichte Verbindungsstellen aufweist, die so angeordnet sind, dass sie eine flüssigkeitsdichte Verbindung zwischen dem Flüssigkeitsverteilungssystem und der auf ihm sitzenden Membran gestatten.
 
30. System nach einem der Ansprüche 20 bis 23, worin die Membran vorstehende Elemente aufweist, die zur flüssigkeitsdichten Verbindung zwischen den Ansatzkammern bestimmt sind.
 
31. System nach dem vorhergehenden Anspruch, worin jedes der Ventilelemente einen Hohlraum umfasst, der zur Aufnahme und zum Halten des Kolbens eines Stellelements bestimmt ist, wobei der Hohlraum eine Höhe aufweist, die im Wesentlichen zumindest der Ventilverdrängung entspricht.
 
32. System nach einem der Ansprüche 20 bis 26 und 29 bis 31, worin die Membran (13) entlang ihres Außenrands in das Flüssigkeitsverteilungssystem eingepresst ist, wobei die Membran (13) ferner von einem Rahmen (14) gehalten wird.
 
33. System nach einem der Ansprüche 20 bis 26 und 29 bis 32, worin die Membran (13) einen Teil (15) aufweist, der Teil eines Drucksensors bildet.
 
34. System nach dem vorhergehenden Anspruch, worin der aktive Bereich des Drucksensors flexibler ist als der restliche Bereich.
 
35. System nach Anspruch 33 oder 34, worin der Drucksensor die Form einer Scheibe mit aufgenommenem Umfang aufweist, wobei die Scheibe ferner eine ringförmige Lage umfasst.
 
36. System nach einem der Ansprüche 33 bis 35, worin der Drucksensor auf der Patientenleitung unabhängig von den Ansatzkammern angeordnet ist.
 
37. System nach einem der Ansprüche 33 bis 35, das ferner einen zweiten Drucksensor umfasst, wobei der zweite Drucksensor mit der ersten Ansatzkammer verbunden ist.
 
38. System nach einem der vorhergehenden Ansprüche, worin das Flüssigkeitsverteilungssystem einen Luftsensor aufweist, der auf der Seite der Patientenleitung angeordnet ist.
 
39. System nach einem der vorhergehenden Ansprüche, das einen Patronenlademechanismus umfasst, der eine enge Verbindung zwischen der Membran und den Ventilen und dem Flüssigkeitsverteilungssystem gestattet.
 
40. System nach einem der vorhergehenden Ansprüche, das ein Strömungsblockiermittel umfasst, das die Strömung zum oder vom Flüssigkeitsverteilungssystem blockieren kann, wenn dieses aus dem System freigegeben wird.
 
41. System nach dem vorhergehenden Anspruch, worin das Blockiermittel eine auf der Patientenleitung angeordnete mechanische Klemme ist.
 
42. System nach Anspruch 40, worin das Blockiermittel ein auf der Patientenleitung angeordnetes Lippenventil ist, wobei das System ferner einen beweglichen Stift umfasst, der das Lippenventil öffnen kann, wenn das Flüssigkeitsverteilungssystem aus dem System freigegeben wird.
 
43. System nach einem der vorherigen Ansprüche 20 bis 42, das einen geformten Rahmen umfasst, der den Zwischenraum zwischen den Ansatzkammern abdecken kann, wobei jeder Zwischenraum über den Ansatzkammern von einer flexiblen Membran abgedeckt ist.
 
44. System nach dem vorhergehenden Anspruch, worin der geformte Rahmen z.B. durch Ultraschall, Laserschweißen, Kleben oder thermische Verbindung an dem Flüssigkeitsverteilungssystem befestigt ist.
 
45. System nach Anspruch 43 oder 44, worin der geformte Rahmen zumindest teilweise aus Silikon oder Polyurethan besteht.
 
46. System nach einem der Ansprüche 43 bis 45, worin der Rahmen, die Membran und das Flüssigkeitsverteilungssystem durch eine Umspritzungstechnik erhalten werden.
 
47. System nach einem der Ansprüche 20 bis 46, wobei eine doppellagige Membran verwendet wird, die Verschütten oder Freisetzung von Teilchen in die Flüssigkeit im Gebrauch verhindern kann.
 
48. System nach einem der vorhergehenden Ansprüche, das ferner ein Fenster zum Nachweis der korrekten Positionierung des Schlauchs umfasst.
 
49. System nach einem der Ansprüche 20 bis 26 und 29 bis 31, das ferner eine starre Platte (67) umfasst, die die Membran (13) abdeckt und hält, wobei die starre Platte (67) Löcher (70) umfasst, durch die bewegliche Elemente hindurch geführt werden können.
 
50. System nach dem vorhergehenden Anspruch, worin die starre Platte (67) Stifte (68) aufweist, die auf der Membranseite angeordnet sind, wobei die Stifte (68) an dem Flüssigkeitsverteilungssystem (2) befestigt werden können.
 
51. Flüssigkeitsverteilungssystem (2) für ein System zur Durchführung einer Flüssigkeitsverabreichung an einem Patienten wie in einem der vorherigen Ansprüche definiert.
 


Revendications

1. Système d'administration d'un fluide à un patient, comprenant :

- une pompe à liquides (1),

- un système de distribution de liquides (2) raccordé à ladite pompe (1) de manière à ce que le liquide puisse s'écouler du système de distribution de liquides (2) à la pompe (1) et vice versa,

- un moyen d'alimentation en liquides (3) pour l'apport de liquide à un patient (4) via ledit système de distribution de liquides (2) et ladite pompe (1),

- un tuyau patient (5) adapté pour raccorder ledit système de distribution de liquides (2) à un patient (4),

- un système de réchauffage (28),

caractérisé par le fait que ledit système de distribution de liquides (2) comprend deux chambres de raccordement distinctes (7, 8) qui sont séparées par un espace, et une cavité (17), la première chambre de raccordement (7) comprenant au moins un orifice d'alimentation en liquides à valve dédiée (9) et un orifice patient à valve dédiée (10) et une admission de pompe (26), la deuxième chambre de raccordement (8) comprenant au moins un orifice patient (18) à valve dédiée et une sortie de pompe (27), ladite cavité (17) comprenant un orifice de réchauffage (19) et un orifice patient, ledit orifice patient (18) de la deuxième chambre de raccordement (8) étant raccordé audit orifice de réchauffage (19) via ledit système de réchauffage (28), ledit système comprenant en outre un moyen de contrôle disposé pour fermer ledit orifice patient (10) de la première chambre de raccordement (7) quand ledit orifice d'alimentation en liquides (9) est ouvert et vice versa.
 
2. Système selon la revendication 1, dans lequel ladite deuxième chambre de raccordement (8) comprend en outre au moins un orifice de vidange à valve dédiée (11), ledit moyen de contrôle étant aussi disposé pour fermer ledit orifice patient (18) de la deuxième chambre de raccordement (8) quand ledit orifice de vidange (11) est ouvert et vice versa.
 
3. Système selon la revendication 2, dans lequel ledit système de distribution de liquides (2) comprend seulement deux chambres de raccordement (7, 8).
 
4. Système selon la revendication 1, dans lequel ledit système de réchauffage (28) est un dispositif de réchauffage en ligne.
 
5. Système selon la revendication 4, dans lequel ledit dispositif de réchauffage en ligne comprend une plaque chauffante contenue dedans, cette plaque chauffante étant recouverte d'un étui de réchauffage semblable à un manchon.
 
6. Système selon la revendication 5, dans lequel ledit étui de réchauffage se compose d'un canal de liquide qui force le liquide à séjourner dans ce dispositif de réchauffage pendant un certain temps à un débit donné.
 
7. Système selon l'une quelconque des revendications précédentes, dans lequel ladite première chambre de raccordement (7) comprend plusieurs orifices d'alimentation en liquides à valves respectives (9).
 
8. Système selon la revendication précédente, dans lequel lesdits orifices d'alimentation en liquides (9) sont raccordés à des moyens d'alimentation en liquides respectifs correspondant chacun à un différent type de liquide.
 
9. Système selon l'une quelconque des revendications précédentes, dans lequel ladite pompe à liquides est une pompe péristaltique.
 
10. Système selon la revendication précédente, dans lequel ladite pompe péristaltique est unidirectionnelle.
 
11. Système selon l'une quelconque des revendications précédentes, dans lequel ladite pompe à liquides (1) se compose d'une tubulure et d'une surface de roulement sur laquelle la tubulure est comprimée une fois que la cartouche est insérée dans un dispositif de pompage contenant des galets.
 
12. Système selon la revendication précédente, dans lequel lesdits galets (22) sont de forme conique de manière à s'introduire d'eux-mêmes dans le passage de pompe, c'est-à-dire sans aucun autre mécanisme.
 
13. Système selon la revendication 11, dans lequel lesdits galets sont de forme sphérique.
 
14. Système selon l'une quelconque des revendications précédentes 1 à 10, dans lequel ladite pompe à liquides (1) comprend un canal flexible ou partiellement flexible et une série d'éléments sous forme de doigts mobiles situés successivement au-dessus dudit canal, chaque élément sous forme de doigt pouvant être déplacé le long d'une direction qui est fondamentalement perpendiculaire audit canal, tous les éléments sous forme de doigts étant adaptés pour induire un mouvement péristaltique le long dudit canal.
 
15. Système selon la revendication précédente, dans lequel chaque élément sous forme de doigt comprend une base convexe adaptée pour se conformer à la surface interne du canal et un arbre adapté pour être lié à un actionneur.
 
16. Système selon l'une quelconque des revendications précédentes, dans lequel ladite pompe à liquides (1) et ledit système de distribution de liquides (2) sont fixés ensemble pour former une seule cartouche.
 
17. Système selon la revendication précédente, dans lequel ladite pompe à liquides (1) est fixée audit système de distribution de liquides (2) par un moyen d'atténuation des vibrations afin de minimiser les vibrations du système de distribution de liquides (2) quand la pompe est en marche.
 
18. Système selon l'une quelconque des revendications précédentes, dans lequel toutes les chambres de raccordement, y compris lesdits orifices, sont formées en une seule pièce.
 
19. Système selon la revendication précédente, dans lequel ladite une seule pièce est une pièce injectée en matière plastique.
 
20. Système selon la revendication 1, dans lequel chaque chambre de raccordement (7, 8) est fermée par une paroi supérieure constituée d'une membrane flexible (13), ladite membrane comprenant des éléments sous forme de valves (39) situés au-dessus de chacun dedit orifice ou orifices à valves dédiées, lesdits éléments sous forme de valves (39) étant conçus pour fermer ledit orifice ou orifice quand la membrane (13) se déplace vers le bas.
 
21. Système selon la des revendication 1, dans lequel chaque chambre de raccordement (7, 8) est fermée par une paroi supérieure constituée d'une membrane flexible (13), ladite membrane comprenant un moyen d'accrochage adapté pour accrocher des éléments tels que des éléments actionneurs de valves ou sous forme de doigts.
 
22. Système selon l'une quelconque des revendications 20 à 21, dans lequel ladite membrane est moulée.
 
23. Système selon la revendication précédente, dans lequel ladite membrane se compose de l'un quelconque des matériaux suivants : silicone, polyuréthane.
 
24. Système selon la revendication précédente, dans lequel ladite membrane comprend des joints étanches aux liquides.
 
25. Système selon l'une quelconque des revendications précédentes 20 à 24, dans lequel ladite membrane s'étend de manière à recouvrir aussi ladite pompe à liquides (1).
 
26. Système selon la revendication 11, 12 ou 13, dans lequel ladite pompe à liquides (1) comprend un canal flexible ou partiellement flexible, ladite membrane recouvrant ledit canal le long d'un plan oblique, préférablement à 45°, afin de permettre un mouvement péristaltique induit par des galets ou des éléments similaires.
 
27. Système selon la revendication précédente, comprenant des actionneurs individuels ou une came (par exemple un disque pourvu d'une ondulation) adaptés pour induire un mouvement péristaltique.
 
28. Système selon la revendication précédente, dans lequel lesdits actionneurs individuels sont adaptés pour être actionnés par des doigts qui sont accrochés à ladite membrane.
 
29. Système selon l'une quelconque des revendications précédentes, dans lequel ledit système de distribution de liquides comprend des joints étanches aux liquides disposés de manière à permettre un raccordement étanche aux liquides entre ledit système de distribution de liquides et une membrane située sur celui-ci.
 
30. Système selon l'une quelconque des revendications 20 à 23, dans lequel ladite membrane contient des éléments saillants conçus pour un raccordement étanche aux liquides entre lesdites chambres de raccordement.
 
31. Système selon l'une quelconque des revendications précédentes, dans lequel chacun desdits éléments sous forme de valves comprend une cavité conçue pour recevoir et maintenir le piston d'un actionneur, ladite cavité ayant une hauteur qui correspond fondamentalement au moins au déplacement de la valve.
 
32. Système selon l'une quelconque des revendications 20 à 26 et 29 à 31, dans lequel ladite membrane (13) est montée en force le long de sa bordure externe sur le système de distribution de liquides, la membrane (13) étant en outre maintenue par un bâti (14).
 
33. Système selon l'une quelconque des revendications 20 à 26 et 29 à 32, dans lequel ladite membrane (13) contient une portion (15) qui fait partie d'un capteur de pression.
 
34. Système selon la revendication précédente, dans lequel la zone active dudit capteur de pression est conçue pour être plus flexible que le reste de la zone.
 
35. Système selon la revendication 33 ou 34, dans lequel ledit capteur de pression présente la forme d'un disque dont la périphérie est accrochée, ledit disque comprenant en outre une couche annulaire.
 
36. Système selon l'une quelconque des revendications 33 à 35, dans lequel ledit capteur de pression est situé sur le tuyau patient, indépendamment desdites chambres de raccordement.
 
37. Système selon l'une quelconque des revendications 33 à 35, comprenant en outre un deuxième capteur de pression, ledit deuxième capteur de pression étant raccordé à la première chambre de raccordement.
 
38. Système selon l'une quelconque des revendications précédentes, dans lequel ledit système de distribution de liquides comprend un capteur d'air situé sur le côté du tuyau patient.
 
39. Système selon l'une quelconque des revendications précédentes, comprenant un mécanisme de chargement de cartouche qui permet un raccordement étanche entre la membrane et les valves et le système de distribution de liquides.
 
40. Système selon l'une quelconque des revendications précédentes, comprenant un moyen de blocage d'écoulement adapté pour bloquer l'écoulement en direction ou en provenance du système de distribution de liquides quand ce dernier est libéré et sorti du système.
 
41. Système selon la revendication précédente, dans lequel ledit moyen de blocage est une pièce de serrage mécanique située sur le tuyau patient.
 
42. Système selon la revendication 40, dans lequel ledit moyen de blocage est un clapet à lèvres situé sur le tuyau patient, le système comprenant en outre une broche mobile adaptée pour ouvrir ledit clapet à lèvres quand le système de distribution de liquides est libéré et sorti du système.
 
43. Système selon l'une quelconque des revendications précédentes 20 à 42, comprenant un bâti moulé adapté pour recouvrir l'espace entre lesdites chambres de raccordement, chaque espace au-dessus desdites chambres de raccordement étant recouvert par une membrane flexible.
 
44. Système selon la revendication précédente, dans lequel ledit bâti moulé est fixé audit système de distribution de liquides, par exemple par soudage aux ultrasons, soudage au laser, collage ou thermocollage.
 
45. Système selon la revendication 43 ou 44, dans lequel ledit bâti moulé se compose au moins en partie de silicone ou de polyuréthane.
 
46. Système selon l'une quelconque des revendications 43 à 45, dans lequel ledit bâti, ladite membrane et ledit système de distribution de liquides sont obtenus par une technique de surmoulage.
 
47. Système selon l'une quelconque des revendications 20 à 46, utilisant une membrane à double couche adaptée pour prévenir l'écaillage ou la libération de particules dans le fluide en cours d'utilisation.
 
48. Système selon l'une quelconque des revendications précédentes, comprenant en outre une fenêtre pour détecter un positionnement correct du tube.
 
49. Système selon l'une quelconque des revendications 20 à 26 et 29 à 31, comprenant en outre une plaque rigide (67) qui recouvre et maintient la membrane (13), ladite plaque rigide (67) comprenant des trous (70) adaptés pour laisser passer les éléments mobiles.
 
50. Système selon la revendication précédente, dans lequel ladite plaque rigide (67) comprend des broches (68) situées sur le côté de la membrane, lesdites broches (68) étant adaptées pour être fixées sur le système de distribution de liquides (2).
 
51. Système de distribution de liquides (2) pour un système d'administration d'un fluide à un patient selon l'une quelconque des revendications précédentes.
 




Drawing
































































































































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description