(19)
(11)EP 1 704 693 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
08.08.2018 Bulletin 2018/32

(21)Application number: 05705543.6

(22)Date of filing:  12.01.2005
(51)International Patent Classification (IPC): 
H04L 1/00(2006.01)
H04L 1/20(2006.01)
H04L 27/26(2006.01)
H04L 5/00(2006.01)
(86)International application number:
PCT/US2005/000934
(87)International publication number:
WO 2005/071912 (04.08.2005 Gazette  2005/31)

(54)

SYSTEM AND METHOD FOR SELECTING DATA RATES TO PROVIDE UNIFORM BIT LOADING OF SUBCARRIERS OF A MULTICARRIER COMMUNICATION CHANNEL

SYSTEM UND VERFAHREN ZUR AUSWAHL VON DATENRATEN ZUR BEREITSTELLUNG EINES GLEICHFÖRMIGEN BITLADENS VON SUBTRÄGERN EINES MEHRTRÄGER-KOMMUNIKATIONSKANALS

SYSTEME ET PROCEDE DE SELECTION DE VITESSES DE DONNEES VISANT A GARANTIR UN CHARGEMENT DE BITS UNIFORME DE SOUS-PORTEUSES D'UN CANAL DE COMMUNICATION MULTIPORTEUSES


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

(30)Priority: 12.01.2004 US 536071 P
30.03.2004 US 815035

(43)Date of publication of application:
27.09.2006 Bulletin 2006/39

(73)Proprietor: Intel Corporation
Santa Clara, CA 95054 (US)

(72)Inventors:
  • MALTSEV, Alexander, S.
    Nizhny Novgorod, 603163 (RU)
  • SADRI, Ali, S.
    San Diego, CA 92127 (US)
  • RUBTSOV, Alexey, E.
    Nizhny Novgorod, 603081 (RU)
  • DAVYDOV, Alexei, V.
    Nizhny Novgorod, 603132 (RU)

(74)Representative: HGF Limited 
Fountain Precinct Balm Green
Sheffield S1 2JA
Sheffield S1 2JA (GB)


(56)References cited: : 
WO-A-03/047198
  
  • BANGERTER B ET AL: "High-Throughput Wireless LAN Air Interface" INTEL TECHNOLOGY JOURNAL, US, vol. 7, no. 3, 19 August 2003 (2003-08-19), pages 47-57, XP002324611
  • SIMOENS S ET AL: "OPTIMUM PERFORMANCE OF LINK ADAPTATION IN HIPERLAN/2 NETWORKS" VTC 2001 SPRING. IEEE VTS 53RD. VEHICULAR TECHNOLOGY CONFERENCE. RHODES, GREECE, MAY 6 - 9, 2001, IEEE VEHICULAR TECHNOLGY CONFERENCE, NEW YORK, NY : IEEE, US, vol. VOL. 2 OF 4. CONF. 53, 6 May 2001 (2001-05-06), pages 1129-1133, XP001067136 ISBN: 0-7803-6728-6
  • "Supplement to IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements. Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: high-speed physical layer in" IEEE STD 802.11A-1999, 30 December 1999 (1999-12-30), pages 1-90, XP002189725
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Technical Field



[0001] Embodiments of the present invention pertain to electronic communication, and in some embodiments, to wireless networks using orthogonal frequency division multiplexed (OFDM) communication signals.

Background



[0002] Communication stations desirably adapt their communications to changing channel conditions to improve communications in a wireless network. One problem with some conventional communication stations is that a significant amount of feedback between a receiving station and a transmitting station is generally required to optimize channel throughput. This feedback consumes channel bandwidth and requires significant processing by the communication station. Thus there are general needs for communication stations and methods for adapting to channel conditions with less feedback.

[0003] "High-Throughput Wireless LAN Air Interface", Intel Technology Journal, US, vol. 7, no.3, 19 August 2003, pages 47-57 discloses a method of selecting a data rate of a multicarrier communication channel.

[0004] WO 03/047198 A2 discloses techniques to determine the rate for a data transmission in an OFDM system.

Brief Description of the Drawings



[0005] The appended claims are directed to some of the various embodiments of the present invention. However, the detailed description presents a more complete understanding of embodiments of the present invention when considered in connection with the figures, wherein like reference numbers refer to similar items throughout the figures and:

FIG. 1 is a block diagram of a communication station in accordance with some embodiments of the present invention;

FIG. 2 is a data rate table in accordance with some embodiments of the present invention; and

FIG. 3 is a flow chart of a data rate selection procedure in accordance with some embodiments of the present invention.


Detailed Description



[0006] The following description and the drawings illustrate specific embodiments of the invention sufficiently to enable those skilled in the art to practice them. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Examples merely typify possible variations. Individual components and functions are optional unless explicitly required, and the sequence of operations may vary. Portions and features of some embodiments may be included in or substituted for those of others. The scope of embodiments of the invention encompasses the foil ambit of the claims and all available equivalents of those claims. Such embodiments of the invention may be referred to, individually or collectively, herein by the term "invention" merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed.

[0007] FIG. 1 is a block diagram of a communication station in accordance with some embodiments of the present invention. Communication station 100 may be a wireless communication device and may transmit and/or receive wireless communications signals with transmitter circuitry 102 and/or receiver circuitry 104 using one or more antennas 106. In some embodiments, communication station may communicate multicarrier signals, such as orthogonal frequency division multiplexed (e.g., OFDM) communication signals, with one or more other communication stations as described in more detail below.

[0008] In some embodiments, communication station 100 maybe referred to as a receiving station, and in some embodiments, communication station 100 may be referred to as a transmitting station. The term transmitting station refers to the station that is to transmit payload data, while the term receiving station refers to the station that is to receive the payload data. In general, both transmitting and receiving stations may transmit and receive packets.

[0009] In accordance with embodiments of the present invention, communication station 100 may select a data rate for communications with another communication station to provide uniform bit loading (UBL) for faster link adaptation. In these embodiments, channel state information (CSI) processing circuitry 108 calculate momentary signal to noise ratios (SNRs) for subcarriers of a multicarrier communication channel from a transmit power level and channel state information. Data rate selection circuitry 110 may estimate a throughput for each of several possible data rates from the SNRs and may select one of the data rates based on the estimated throughputs. In some embodiments, data rate selection circuitry 110 may select one of the data rates based on the estimated throughputs and predicted packet error ratios (PERs), discussed in more detail below.

[0010] In some embodiments, data rate selection circuitry 110 may select one of the data rates from a combination of modulations and code rates associated with a highest of the estimated throughputs for a target PER, although the scope of the present invention is not limited in this respect.

[0011] In some embodiments, data rate selection circuitry 110 may predict PERs from the SNRs for each of the possible data rates and may estimate the throughput for each data rate from the predicted PERs. In some embodiments, data rate selection circuitry 110 may predict PERs using SNR performance curves for the data rates to determine a PER for each data rate. The SNR performance curves may be predetermined and stored in a memory of communication station 100, although the scope of the present invention is not limited in this respect.

[0012] In some embodiments, data rate selection circuitry 110 may calculate a bit-error rate (BER), based on a known modulation of the current packet. In some of these embodiments, data rate selection circuitry 110 may determine a PER for each of the data rates based on a predetermined (i.e., a known) BER performance of the decoder used by the receiver circuitry 104, the calculated BER, and/or a length of the current packet. In some other of these embodiments, data rate selection circuitry 110 may determine a PER for each of the data rates based on a predetermined symbol error rate (SER), the calculated BER and a length of the current packet. The SER may be based on performance curves, although the scope of the invention is not limited in this respect..

[0013] In some embodiments, data rate selection circuitry 110 may estimate a throughput for each possible data rate by multiplying an associated one of the data rates by one minus the PER predicted for that data rate. This is described in more detail below.

[0014] In some embodiments, data rate selection circuitry 110 may select one of the data rates from a target PER using estimates of a mean and variance (M/V) adaptation of subcarrier SNRs for the current channel realization. In these embodiments, fast link adaptation is based on estimates of the mean and variance of subcarrier gains. In some embodiments, the M/V adaptation may be performed by calculating a mean channel power gain for each channel realization, calculating a variance of the normalized channel realization, and calculating suitable SNRs for supported data rates. In these embodiments, the M/V adaptation may also include comparing a current SNR averaged over the subcarriers for the current channel realization with predicted SNRs and choosing a suitable data rate. In these embodiments, the use of mean and variance (M/V) adaptation takes into account the variance of a frequency-selective channel, allowing a given PER system performance to be obtained for different channel realizations. In some embodiments, selecting the data rate may depend on the link adaptation strategy (e.g. throughput maximization or throughput maximization under PER constraints).

[0015] In some embodiments, the mean channel power gain (M) may be calculated using the following equation:



[0016] In this equation, Nsc is number of data subcarriers, k is a subcarrier index of the data subcarriers, and λ refers to the particular subcarrier.

[0017] In some embodiments, the variance of the normalized channel realization (K) may be calculated using the following equation:



[0018] In this equation, Nsc is number of data subcarriers, k is a subcarrier index of the data subcarriers, and λ refers to the particular subcarrier.

[0019] In some embodiments, suitable SNRs may be calculated for supported data rates may be calculated using the following equation:



[0020] In this equation, i refers to the data rate index, and fi(x) - is a function describing the dependence between channel variance and desired SNR.

[0021] FIG. 2 is a data rate table in accordance with some embodiments of the present invention. Column 202 of table 200 lists examples of possible data rates (in bits per second), column 204 lists modulation types and column 206 lists forward error correction (FEC) code rates. For any particular row, the data rate of column 202 may correspond with the associated modulation and code rate of columns 204 and 206 respectively. In some embodiments, data rate selection circuitry 110 (FIG. 1) may use the following expression to estimate a throughput for each possible data rate based on the predicted PER value for each data rate:



[0022] In this expression, i represents an index of the data rate, examples of which are listed in column 208. In some embodiments, more or fewer data rates than those illustrated in table 200 with indices in column 308 may be assigned an index and throughputs may be calculated. The data rates that are assigned indices are examples of possible data rates selected that may be used in calculating throughput. In some embodiments, other data rates may be assigned indices, and there is no requirement that only 8 indices are used.

[0023] Referring back to FIG. 1, in some embodiments, data rate selection circuitry 110 may generate a data rate instruction for use by transmitter circuitry of another communication station. The data rate instruction may include the selected modulation and code rate.

[0024] In some embodiments, channel state information processing circuitry 108 and data rate selection circuitry 110 may perform the operations discussed herein as part of a receiving station (e.g., communication station 100). In these embodiments, channel state information processing circuitry 108 may calculate the subcarrier SNRs for a transmit power level provided by a transmitting station (e.g., a station other than communication station 100) in a current packet. In other embodiments, channel state information processing circuitry 108 may calculate the subcarrier SNRs for other available transmit power levels which may be supported by a transmitting station in the next packets. The current packet may be a request to send (RTS) packet, although the scope of the present invention is not limited in this respect. In these embodiments, channel state information processing circuitry 108 may determine the channel state information from channel estimates and noise power estimates performed on the RTS packet. Data rate selection circuitry 110 may estimate throughputs, select the data rate and generate a data rate and transmit power level instructions for a next packet. In these embodiments, transmitter circuitry 102 may be used to send the data rate instructions to the transmitting station in another packet, such as a clear-to-send (CTS) packet. In response to the CTS packet, the transmitting station may transmit at least portions of a data packet (e.g., a packet having a data portion) to communication station 100 in accordance with the data rate and transmit power level instructions.

[0025] In some other embodiments, channel state information processing circuitry 108 and data rate selection circuitry 110 may perform the operations discussed herein as part of a transmitting station. In these embodiments, a receiving station (e.g., a station other than communication station 100) may provide the transmitting station (e.g., communication station 100) with channel state information in feedback packet, for example. In these embodiments, channel state information processing circuitry 108 may calculate the subcarrier SNRs based on a transmit power level (known by the transmitting station) and the provided channel state information. Data rate selection circuitry 110 may estimate throughputs, select the data rate and generate a data rate instruction. In these embodiments, transmitter circuitry 102 of communication station 100 may transmit at least portions of a data packet (e.g., a packet having a data portion) to the receiving station in accordance with the data rate instruction determined therein.

[0026] In some embodiments, communication station 100 may communicate with one or more other communication stations over a multicarrier communication channel, such as an OFDM communication channel. The multicarrier communication channel may be a slowly varying frequency selective channel, although the scope of the invention is not limited in this respect. The multicarrier channel may comprise one or more subchannels. The subchannels may be frequency-division multiplexed (i.e., separated in frequency) and may be within a predetermined frequency spectrum. The subchannels may comprise a plurality of orthogonal subcarriers. In some embodiments, the orthogonal subcarriers of a subchannel may be closely spaced OFDM subcarriers. To achieve orthogonality between closely spaced subcarriers, in some embodiments, the subcarriers of a particular subchannel may have a null at substantially a center frequency of the other subcarriers of that subchannel. In some embodiments, the subcarriers of a subchannel may have a spacing therebetween of between 300 and 400 kHz, although the scope of the invention is not limited in this respect.

[0027] In some embodiments, the multicarrier communication channel may comprise either a standard-throughput channel or a high-throughput communication channel. In these embodiments, the standard-throughput channel may comprise one subchannel and the high-throughput channel may comprise a combination of one or more subchannels and one or more spatial channels associated with each subchannel. Spatial channels are non-orthogonal channels (in terms of frequency) associated with a particular subchannel. In these embodiments, CSI processing circuitry 108 may calculate momentary SNRs for each subcarrier of the one or more subchannels and the one or more spatial channels comprising the multicarrier communication channel from the current and/or available transmit power level and the channel state information. In these embodiments, the data rate and transmit power level instructions may include a selected modulation type, a selected code rate and a transmit power allocation for each of the one or more subchannels and/or each of the one or more spatial channels comprising the multicarrier communication channel. In these embodiments, channel state information processing circuitry 110 may determine the channel state information including noise power estimates and a channel transfer function for each subcarrier of the one or more spatial channels and the one or more subchannels. The channel transfer function may define the frequency and/or time characteristics of the channel.

[0028] In some embodiments, a high-throughput communication channel may comprise a wideband channel having up to four frequency separated subchannels, a multiple-input-multiple-output (MIMO) channel comprising a single subchannel having up to four spatial subchannels, or a wideband-MIMO channel comprising two or more frequency separated subchannels where each subchannel has two or more spatial channels. In these embodiments, a wideband channel may have a wideband channel bandwidth of up to 80 MHz and may comprise up to four of the subchannels, although the scope of the invention is not limited in this respect. The subchannels may have a subchannel bandwidth of approximately 20 MHz, although the scope of the invention is not limited in this respect.

[0029] In some embodiments, communication station 100 may comprise more than one of antennas 106 to communicate over more than one spatial channel within a subchannel. In these embodiments, the multicarrier communication channel may be a high-throughput communication channel.

[0030] In some embodiments, receiver circuitry 104 may comprise a plurality of subcarrier demodulators to demodulate the subcarriers of the multicarrier channel that were modulated in accordance with modulations comprising at least some of binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8PSK, 16-quadrature amplitude modulation (16-QAM), 32-QAM, 64-QAM, 128-QAM, and 256-QAM. In these embodiments, receiver circuitry 104 may also include decoding circuitry, such as a convolutional decoder to decode bit streams encoded with forward error correction (FEC) code rates of ½, 2/3, and ¾, although the scope of the invention is not limited in this respect.

[0031] In some embodiments, data rate selection circuitry 110 may select various data rates (i.e., bit distributions) comprising various modulations and code rates for each of the subcarriers of the multicarrier communication channel based on the SNR for the associated subcarrier. In some embodiments, the bit distributions may be based on a bit loading per subcarrier in accordance with an adaptive bit loading (ABL) technique in which a modulation may be selected for each subcarrier based on the channel conditions of that subcarrier. In these embodiments, data rate selection circuitry 110 may calculate throughput estimate for each of the one or more spatial channels and/or each of the one or more subchannels for the multicarrier communication channel. Data rate selection circuitry 110 may further select a data rate for all data subcarriers of each of the one or more spatial channels and/or each of the one or more subchannels of the multicarrier communication channel based on the calculated throughput estimates.

[0032] In some embodiments, data rate selection circuitry 110 may determine an upper and a lower data rate based on the sum of the subcarrier throughputs (the sum of the bits distributed over subcarriers). In some embodiments, data rate selection circuitry 110 may determine the possible data rates just above and just below the sum of the subcarrier throughputs. In some embodiments, data rate selection circuitry 110 may calculate a first number of subcarriers with throughputs higher than the upper data rate, and may calculate a second number of subcarriers with throughputs lower than the lower data rate. Data rate selection circuitry 110 may then select the upper data rate when a difference between the first and second numbers is greater than a predetermined percentage (e.g., 25%) of the subcarriers comprising the multicarrier communication channel. The lower data rate may be selected when the difference between the first and second numbers is not greater than the predetermined percentage of the subcarriers. In some embodiments, the predetermined percentage may range between 0% and 60%, although the scope of the invention is not limited in this respect.

[0033] In some other examples useful for understanding the invention, data rate selection circuitry 110 may calculate a subcarrier capacity for each possible data rate based on the SNR calculated for each subcarrier of the multicarrier communication channel. Data rate selection circuitry 110 may refrain from estimating the throughput for each of the data rates, and may select one of the possible data rates of the plurality based on a sum of the subcarrier capacities. Data rate selection circuitry 110 may select a possible data rate closest to the sum of the subcarrier capacities. In these examples, data rate selection circuitry 110 may calculate the subcarrier capacity for each subcarrier substantially by multiplying a subcarrier frequency spacing (ΔF) by a logarithm of one plus the SNR for the associated subcarrier divided by a predetermined subcarrier SNR gap (Γ). The predetermined subcarrier SNR gap (Γ) may represent a predetermined SNR gap or SNR margin representing how far a practical communication station may be from achieving a theoretical capacity, although the scope of the present invention is not limited in this respect. The subcarrier capacity of each of the subcarrier may be calculated substantially from the following expression:



[0034] In this expression, i represents a subcarrier index, ΔF represents a subcarrier frequency spacing, and SNRi represents the SNR of the ith subcarrier.

[0035] Data rate selection circuitry 110 may determine an upper and a lower data rate based on the sum of the subcarrier capabilities. Data rate selection circuitry 110 may determine the possible data rates (i.e., from column 202 of table 200) just above and just below the sum of the subcarrier capacities. Data rate selection circuitry 110 may calculate a first number of subcarriers with capacities higher than the upper data rate, and may calculate a second number of subcarriers with capacities lower than the lower data rate. Data rate selection circuitry 110 may then select the upper data rate when a difference between the first and second numbers is greater than a predetermined percentage (e.g., 25%) of the subcarriers comprising the multicarrier communication channel. The lower data rate may be selected when the difference between the first and second numbers is not greater than the predetermined percentage of the subcarriers. The predetermined percentage may range between 20% and 60%, although the scope of the invention is not limited in this respect.

[0036] In some embodiments, each of the subchannels may have up to 48 or more orthogonal data subcarriers, and the subcarriers may have a spacing therebetween of approximately 312.5 kHz, although the scope of the invention is not limited in this respect. In some embodiments, the frequency spectrums for a multicarrier communication channel may comprise subchannels in either a 5 GHz frequency spectrum or a 2.4 GHz frequency spectrum. In these embodiments, the 5 GHz frequency spectrum may include frequencies ranging from approximately 4.9 to 5.9 GHz, and the 2.4 GHz spectrum may include frequencies ranging from approximately 2.3 to 2.5 GHz, although the scope of the invention is not limited in this respect, as other frequency spectrums are also equally suitable.

[0037] Communication station 100 may be a personal digital assistant (PDA), a laptop or portable computer with wireless-networking communication capability, a web tablet, a wireless telephone, a wireless headset, a pager, an instant messaging device, a digital camera, an access point or other device that may receive and/or transmit information wirelessly. In some embodiments, communication station 100 may transmit and/or receive radio-frequency (RF) communications in accordance with specific communication standards, such as the Institute of Electrical and Electronics Engineers (IEEE) standards including IEEE 802.11 (a), 802.11 (b), 802.11 (g/h), 802.11 (n) and/or 802.16 standards for wireless local area networks, although in other embodiments, communication station 100 may also be suitable to transmit and/or receive communications in accordance with other techniques including the Digital Video Broadcasting Terrestrial (DVB-T) broadcasting standard, and the High performance radio Local Area Network (HiperLAN) standard.

[0038] Antennas 106 may comprise one or more directional or omnidirectional antennas, including, for example, dipole antennas, monopole antennas, loop antennas, microstrip antennas, patch antennas, slot antennas or other type of antennas suitable for reception and/or transmission of the signals within the spectrum communication channel.

[0039] As used herein, channel state information may comprise one or more of a channel transfer function, or estimate thereof, one or more RF signal characteristics, and/or one or more channel quality parameters. In some embodiments, channel state information may include a channel transfer function estimate in the frequency or time domain. In some embodiments, channel state information may include one or more RF channel performance indicators such as SNR, signal-to-interference and noise ratio (SINR), a received signal strength indication (RSSI), and the like. In some embodiments, channel state information may also include one or more channel quality parameters associated with information decoded from a received signal.

[0040] Although communication station 100 is illustrated as having several separate functional elements, one or more of the functional elements may be combined and may be implemented by combinations of software-configured elements, such as processing elements including digital signal processors (DSPs), and/or other hardware elements. For example, the circuitry illustrated may comprise processing elements which may comprise one or more microprocessors, DSPs, application specific integrated circuits (ASICs), and combinations of various hardware and logic circuitry for performing at least the functions described herein.

[0041] FIG. 3 is a flow chart of a data rate selection procedure in accordance with some embodiments of the present invention. Data rate selection procedure 300 maybe performed by a communication station, such as communication station 100 (FIG. 1), although other communication stations may also be suitable for performing procedure 300. In some embodiments, data rate selection procedure 300 may select a data rate for subcarriers a subchannel comprising of a standard-throughput channel. In other embodiments, data rate selection procedure 300 may select a data rate for subcarriers each subchannel and/or each spatial channel comprising of a high-throughput channel. The data rates selected by procedure 300 may provide a uniform bit loading for faster link adaptation. In some embodiments, procedure 300 may be performed by a receiving station to generate data rate and transmit power level instructions for use by a transmitting station in transmitting a subsequent packet to the receiving station. In some other embodiments, procedure 300 may be performed by a transmitting station for use in transmitting a subsequent packet to a receiving station.

[0042] Operation 302 comprises receiving channel state information. In some embodiments, the channel state information may be generated by a receiving station from channel estimates 304, noise power estimated 306 and a transmit power level 308. In some embodiments, transmit power levels may be provided to the receiving station in a current packet sent by the transmitting station. In some embodiments, when procedure 300 is performed by a transmitting station, operation 302 may further comprise the receiving station sending the transmitting station the channel state information in a feedback packet. In some embodiments, the channel state information generated in operation 302 maybe generated by channel state information processing circuitry 108 (FIG. 1) of a receiving station, although the scope of the invention is not limited in this respect.

[0043] Operation 310 comprises calculating momentary signal to noise ratios (SNRs) for subcarriers of the multicarrier communication channel from the transmit power level and the channel state information from operation 302. In some embodiments, operation 310 may be performed by data rate selection circuitry 110 (FIG. 1), although the scope of the invention is not limited in this respect.

[0044] In some embodiments, operation 312 is performed. Operation 312 comprises predicting packet error ratios (PERs) from the SNRs for each of the data rates. In some embodiments, operation 312 comprises using SNR performance curves 314 for the data rates to determine a PER for each data rate. The SNR performance curves may be predetermined and may be stored in a memory of the communication station. In some other embodiments, operation 312 may comprise after demapping bits of a current packet, calculating bit-error rates (BERs) 316 based on a known modulation of the current packet (e.g., an RTS packet), and after decoding the bits of the current packet, determining a PER for each data rate based on a predetermined BER performance of a decoder, the calculated BER, and a length of the current packet. In some embodiments, operation 312 may be performed by data rate selection circuitry 110 (FIG. 1), although the scope of the invention is not limited in this respect.

[0045] Operation 318 comprises estimating a throughput for each of a plurality of data rates from the SNRs. In some embodiments, operation 318 may comprise estimating the throughput for each data rate by multiplying an associated one of the data rates by one minus the PER predicted for the associated data rate. In some embodiments, operation 318 may be performed by data rate selection circuitry 110 (FIG. 1), although the scope of the invention is not limited in this respect.

[0046] Operation 322 comprises selecting one of the data rates based on the estimated throughputs. In some embodiments, operation 322 may comprise selecting a combination modulations and code rates determined to provide a highest of the estimated throughputs. Examples of modulations and code rates associated with data rates are illustrated in table 200 (FIG. 2). When operation 312 is performed, operation 322 may comprise estimating a throughput for each of the data rates from the predicted PERs.

[0047] Operation 324 comprises generating data rate and transmit power level instructions for a transmitting station. The data rate instruction may include the selected modulation type and code rate. In some embodiments, operation 324 may be performed by data rate selection circuitry 110 (FIG. 1), although the scope of the invention is not limited in this respect.

[0048] In some embodiments, operation 302 may be performed by a receiving station based on a known transmit power level provided by the transmitting station in a current packet. The known transmit power level refers to the transmit power level of the current packet as well as available transmit power levels that the transmitting station may use. The current packet may be a request to send (RTS) packet. In these embodiments, the receiving station may determine the channel state information from channel estimates and noise power estimates performed on the RTS packet. After operation 324, the receiving station may send the data rate and transmit power level instructions to a transmitting station in a clear-to-sent (CTS) packet, and the transmitting station to responsively transmit at least portions of a data packet to the receiving station in accordance with the data rate instruction.

[0049] In some embodiments, the multicarrier communication channel may comprise either a standard-throughput channel or a high-throughput communication channel. In these embodiments, the standard-throughput channel may comprise one subchannel and the high-throughput channel may comprising a combination of one or more subchannels and/or one or more spatial channels associated with each subchannel. In these embodiments, operation 310 may comprise calculating momentary SNRs for each subcarrier of the one or more subchannels and/or the one or more spatial channels comprising the multicarrier communication channel from the transmit power level and the channel state information. In these embodiments, operation 324 may comprise generating a data rate instruction to include a selected modulation type, a selected code rate and transmit power allocation for each of the one or more subchannels and/or each of the one or more spatial channels comprising the multicarrier communication channel. In these embodiments, operation 302 may comprise determining the channel state information including noise power estimates and a channel transfer function for each subcarrier of the one or more spatial channels and/or the one or more subchannels of the multicarrier communication channel.

[0050] In some embodiments, transmit power may be allocated to subchannels and/or spatial channels of a high-throughput multicarrier communication channel in accordance with a power allocation algorithm. The power allocation algorithm may use SNR, PER, BER and/or other capabilities of the subchannels and/or spatial channels to allocate transmit power to the subcarriers.

[0051] In some other embodiments, operation 318 may comprise selecting various data rates (bit distributions) comprising various modulations and code rates for each of the subcarriers of the multicarrier communication channel based on the SNR for the associated subcarrier and calculating throughputs for each of the one or more spatial channels and/or each of the one or more subchannels of the multicarrier communication channel. In these other embodiments, operation 322 may comprise selecting a data rate for the subcarriers of each of the one or more spatial channels and/or each of the one or more subchannels of the multicarrier communication channel.

[0052] In accordance with other examples useful for understanding the invention, operation 310 may further comprise calculating a subcarrier capacity for each of the data rates based on the SNR calculated in operation 310 for an associated one of the subcarriers. In these examples, operations 322 may comprise selecting one of the data rates based on a sum of the subcarrier capacities. In these examples, the subcarrier capacity for each subcarrier may be calculated by multiplying a subcarrier frequency spacing (ΔF) by a logarithm of one plus the SNR for the associated subcarrier divided by a predetermined subcarrier SNR gap (Γ). In these examples, operation 322 may comprise determining an upper and a lower data rate based on the sum of the subcarrier capabilities, calculating a first number of subcarriers with capacities higher than the upper data rate, and calculating a second number of subcarriers with capacities lower than the lower data rate. In these examples, operation 322 may also comprise selecting the upper data rate when a difference between the first and second numbers is greater than a predetermined percentage of the subcarriers comprising the multicarrier communication channel. Otherwise, the lower data rate may be selected.

[0053] Although the individual operations of procedure 300 are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Unless specifically stated otherwise, terms such as processing, computing, calculating, determining, displaying, or the like, may refer to an action and/or process of one or more processing or computing systems or similar devices that may manipulate and transform data represented as physical (e.g., electronic) quantities within a processing system's registers and memory into other data similarly represented as physical quantities within the processing system's registers or memories, or other such information storage, transmission or display devices.

[0054] Some embodiments of the present invention may be implemented in one or a combination of hardware, firmware and software. Embodiments of the invention may also be implemented as instructions stored on a machine-readable medium, which may be read and executed by at least one processor to perform the operations described herein. A machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium may include read-only memory (ROM), random-access memory (RAM), magnetic disk storage media, optical storage media, flash-memory devices, electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.), and others.

[0055] The Abstract is provided to comply with 37 C.F.R. Section 1.72(b) requiring an abstract that will allow the reader to ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to limit or interpret the scope or meaning of the claims.

[0056] In the foregoing detailed description, various features are occasionally grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments of the subject matter require more features than are expressly recited in each claim. Rather, as the following claims reflect, invention lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate preferred embodiment.


Claims

1. A method of selecting a data rate of a multicarrier communication channel, the method comprising:

calculating a respective signal-to-noise ratio (SNR) for each subcarrier of a plurality of subcarriers of the multicarrier communication channel from channel state information and a transmit power level;

predicting packet error ratios (PERs) from the SNRs for each of a plurality of data rates;

estimating a throughput for each of the data rates from the predicted PERs; and

selecting one of the data rates based on the estimated throughputs,

wherein selecting one of the data rates comprises selecting a combination of one of a plurality of modulations and one of a plurality of code rates associated with a highest of the estimated throughputs.
 
2. The method of claim 1 wherein predicting the PERs comprises using SNR performance curves for the plurality of data rates to determine a PER for each data rate, the SNR performance curves being predetermined and stored in a memory of a receiving station.
 
3. The method of claim 1 wherein the predicting PERs comprises:

after demapping bits of a current packet, calculating a bit-error rate (BER), based on a modulation of the current packet; and

after decoding the bits of the current packet, determining a PER for each of the plurality of data rates based on a predetermined BER performance of a decoder, the calculated BER, and a length of the current packet.


 
4. The method of claim 1 wherein the estimating the throughput comprises estimating a throughput for each data rate of the plurality by multiplying an associated one of the data rates by one minus the PER predicted for the associated data rate.
 
5. The method of claim 1 further comprising generating transmit power level and data rate instructions for a transmitting station, the transmit power level and data rate instructions to include the selected modulation and code rate and a selected transmit power level.
 
6. The method of claim 5 wherein the calculating operation is performed by a receiving station based on a known transmit power level provided by the transmitting station in a current packet, the current packet being a request to send (RTS) packet,
wherein the method further comprises:

determining, by the receiving station, the channel state information from channel estimates and noise power estimates performed on the RTS packet; and

sending, by the receiving station, the data rate instruction to the transmitting station in a clear-to-sent (CTS) packet, the transmitting station to responsively transmit at least portions of a data packet to the receiving station in accordance with the data rate instruction.


 
7. The method of claim 1 wherein the multicarrier communication channel comprises either a standard-throughput channel or a high-throughput communication channel, the standard-throughput channel comprising one subchannel, the high-throughput channel comprising a combination of one or more subchannels and one or more spatial channels associated with each subchannel, and
wherein calculating the SNRs comprises calculating SNRs for each subcarrier of the one or more subchannels and the one or more spatial channels comprising the multicarrier communication channel from the transmit power level and the channel state information, and
wherein the method further comprises generating a data rate instruction for a transmitter, the data rate instruction to include a selected modulation and a selected code rate for the one or more sub channels and the one or more spatial channels comprising the multicarrier communication channel.
 
8. The method of claim 7 further comprising determining the channel state information, the channel state information including noise power estimates and a channel transfer function for each subcarrier of the one or more spatial channels and the one or more subchannels.
 
9. The method of claim 7 wherein the high-throughput channel comprises one of:

a wideband channel having up to four frequency separated subchannels;

a multiple-input-multiple-output (MIMO) channel comprising a single subchannel having up to four spatial subchannels; and

a wideband-MIMO channel comprising two or more frequency separated subchannels, each sub channel having two or more spatial channels.


 
10. The method of claim 9 wherein the wideband channel has a wideband channel bandwidth of up to 80 MHz and comprises up to four of the subchannels,
wherein the sub channels are non-overlapping orthogonal frequency division multiplexed channels,
wherein each subchannel has a sub channel bandwidth of approximately 20 MHz and comprises a plurality of orthogonal subcarriers, and
wherein the one or more spatial channels are non-orthogonal channels associated with one of the subchannels.
 
11. The method of claim 7 wherein when the multicarrier communication channel is a high-throughput channel, the one or more spatial channels and the one or more subchannels are provided by a corresponding one or more transmit antennas of a transmitting station.
 
12. The method of claim 7 wherein the subcarriers of an associated subchannel have a null at a center frequency of the other subcarriers to achieve substantial orthogonality between the subcarriers of the associated subchannel.
 
13. The method of claim1 wherein the plurality of modulations comprise binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8PSK, 16-quadrature amplitude modulation (16-QAM), 32-QAM, 64-QAM, 128-QAM, and 256-QAM, and
wherein the plurality of code rates comprise forward error correction (FEC) code rates of ½, 2/3, and 3/4.
 
14. A communication station comprising:

channel state information processing circuitry to calculate a respective signal-to-noise ratio (SNR) for each subcarrier of a plurality of subcarriers of the multicarrier communication channel from a transmit power level and channel state information; and

data rate selection circuitry to predict packet error ratios (PERs) from the SNRs for each of a plurality of data rates and to estimate a throughput for each of the data rates from the predicted PERs,

wherein the data rate selection circuitry is adapted to select one of the data rates based on the estimated throughputs, wherein the data rate selection circuitry is adapted to select one of the data rates from a combination of one of a plurality of modulations and one of a plurality of code rates associated with a highest of the estimated throughputs.


 
15. The communication station of claim 14 wherein the data rate selection circuitry is adapted to predict PERs using SNR performance curves for the plurality of data rates to determine a PER for each data rate, the SNR performance curves being predetermined and stored in a memory of a receiving station.
 
16. The communication station of claim 14 wherein the data rate selection circuitry is adapted to calculate a bit-error rate (BER), based on a known modulation of a current packet, and adapted to determine a PER for each of the plurality of data rates based on a predetermined BER performance of a decoder, the calculated BER, and a length of the current packet.
 
17. The communication station of claim 14 wherein the data rate selection circuitry is adapted to estimate a throughput for each data rate of the plurality by multiplying an associated one of the data rates by one minus the PER predicted for the associated data rate.
 
18. The communication station of claim 14 wherein the data rate selection circuitry is adapted to generate transmit power level and data rate instructions for a transmitting station, the transmit power level and data rate instructions to include the selected modulation and code rate and a selected transmit power level.
 
19. The communication station of claim 18 wherein the channel state information processing circuitry and the data rate selection circuitry are part of a receiving station, and wherein the data rate selection circuitry is adapted to calculate the SNRs based on a known transmit power level provided by the transmitting station in a current packet, the current packet being a request to send (RTS) packet,
wherein the channel state information processing circuitry is adapted to determine the channel state information from channel estimates and noise power estimates performed on the RTS packet, and
wherein transmitter circuitry of the receiving station sends the data rate instruction to the transmitting station in a clear-to-sent (CTS) packet, the transmitting station to responsively transmit at least portions of a data packet to the receiving station in accordance with the data rate instruction.
 
20. The communication station of claim 14 wherein the multicarrier communication channel comprises either a standard-throughput channel or a high-throughput communication channel, the standard-throughput channel comprising one subchannel, the high-throughput channel comprising a combination of one or more subchannels and one or more spatial channels associated with each subchannel, and
wherein calculating the SNRs comprises calculating SNRs for each subcarrier of the one or more subchannels and the one or more spatial channels comprising the multicarrier communication channel from the transmit power level and the channel state information, and
wherein the communication station further comprises is adapted to generate a data rate instruction for a transmitter, the data rate instruction to include a selected modulation and a selected code rate for the one or more subchannels and the one or more spatial channels comprising the multicarrier communication channel.
 
21. The communication station of claim 20 where the channel state information processing circuitry is further adapted to determine the channel state information, the channel state information including noise power estimates and a channel transfer function for each subcarrier of the one or more spatial channels and the one or more subchannels.
 
22. The communication station of claim 20 wherein the high-throughput channel comprises one of a wideb and channel having up to four frequency separated subchannels, a multiple-input-multiple-output (MIMO) channel comprising a single subchannel having up to four spatial subchannels, and a wideband-MIMO channel comprising two or more frequency separated subchannels, each subchannel having two or more spatial channels.
 
23. The communication station of claim 22 wherein the wideband channel has a bandwidth of up to 80 MHz and comprises up to four of the subchannels,
wherein the sub channels are orthogonal frequency division multiplexed channels,
wherein each subchannel has a sub channel bandwidth of approximately 20 MHz and comprises a plurality of orthogonal subcarriers, and
wherein the one or more spatial channels are non-orthogonal channels associated with one of the subchannels.
 
24. The communication station of claim 20 further comprising one or more antennas to communicate over the one or more spatial channels and the one or more subchannels when the multicarrier communication channel is a high-throughput communication channel.
 
25. The communication station of claim 20 wherein the subcarriers of an associated subchannel have a null at a center frequency of the other subcarriers to achieve substantial orthogonality between the subcarriers of the associated subchannel.
 
26. The communication station of claim 14 wherein the plurality of modulations comprise binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8PSK, 16-quadrature amplitude modulation (16-QAM), 32-QAM, 64-QAM, 128-QAM, and 256-QAM, and
wherein the plurality of code rates comprise forward error correction (FEC) code rates of ½, 2/3, and ¾.
 
27. A system comprising:

a substantially omnidirectional antenna;

a receiver to receive signals through the antenna through a multicarrier communication channel; and

a communication station as claimed in any of claims 14 to 26.


 
28. A program comprising instructions arranged, when executed, to implement a method as claimed in any of claims 1 to 13.
 
29. Machine-readable storage storing a program as claimed in claim 28.
 


Ansprüche

1. Verfahren zur Auswahl einer Datenrate eines Mehrträger-Kommunikationskanals, wobei das Verfahren umfasst:

Berechnen eines jeweiligen Signal-Rausch-Abstands (Signal-to-Noise Ratio, SNR) für jeden Unterträger von mehreren Unterträgern des Mehrträger-Kommunikationskanals anhand von Kanalzustandsinformationen und eines Sendeleistungspegels;

Vorhersagen von Paketfehlerraten (Packet Error Ratios, PERs) anhand der SNRs für jede von mehreren Datenraten;

Schätzen eines Durchsatzes für jede der Datenraten anhand der vorhergesagten PERs; und

Auswählen einer der Datenraten basierend auf den geschätzten Durchsätzen,

wobei das Auswählen einer der Datenraten umfasst, eine Kombination aus einer von mehreren Modulationen und einer von mehreren Coderaten, die mit dem höchsten der geschätzten Durchsätze verknüpft sind, auszuwählen.


 
2. Verfahren nach Anspruch 1, wobei das Vorhersagen der PERs umfasst, SNR-Leistungskurven für die mehreren Datenraten heranzuziehen, um eine PER für jede Datenrate zu bestimmen, wobei die SNR-Leistungskurven vorbestimmt und in einem Speicher einer empfangenden Station gespeichert sind.
 
3. Verfahren nach Anspruch 1, wobei das Vorhersagen von PERs umfasst:

nach dem Demapping von Bits eines aktuellen Pakets, Berechnen einer Bitfehlerrate (Bit-Error Rate, BER) basierend auf einer Modulation des aktuellen Pakets; und

nach dem Decodieren der Bits des aktuellen Pakets, Bestimmen einer PER für jede der mehreren Datenraten basierend auf einer vorbestimmten BER-Leistung eines Decodierers, der berechneten BER und einer Länge des aktuellen Pakets.


 
4. Verfahren nach Anspruch 1, wobei das Schätzen des Durchsatzes umfasst, einen Durchsatz für jede der mehreren Datenraten zu schätzen, indem eine zugeordnete der Datenraten mit eins minus die PER, die für die zugeordnete Datenrate vorhergesagt wurde, multipliziert wird.
 
5. Verfahren nach Anspruch 1, ferner umfassend das Erzeugen von Sendeleistungspegel- und Datenraten-Anweisungen für eine sendende Station, wobei die Sendeleistungspegel- und Datenraten-Anweisungen die ausgewählte Modulation und Coderate sowie einen ausgewählten Sendeleistungspegel beinhalten.
 
6. Verfahren nach Anspruch 5, wobei die Berechnungsoperation von einer empfangenden Station durchgeführt wird, basierend auf einem bekannten Sendeleistungspegel, der von der sendenden Station in einem aktuellen Paket bereitgestellt wird, wobei das aktuelle Paket ein Sendeanforderung (Request to Send, RTS)-Paket ist,
wobei das Verfahren ferner umfasst:

Bestimmen, durch die empfangende Station, der Kanalzustandsinformationen anhand von Kanalschätzungen und Rauschleistungsschätzungen, die an dem RTS-Paket durchgeführt werden; und

Senden, durch die empfangende Station, der Datenraten-Anweisung an die sendende Station in einem Sendefreigabe (Clear-to-Send, CTS)-Paket, wobei die sendende Station in Reaktion wenigstens Teile eines Datenpakets entsprechend der Datenraten-Anweisung an die empfangende Station senden soll.


 
7. Verfahren nach Anspruch 1, wobei der Mehrträger-Kommunikationskanal entweder einen Kanal mit Standard-Durchsatz oder einen Kommunikationskanal mit hohem Durchsatz umfasst, wobei der Kanal mit Standard-Durchsatz einen Unterkanal umfasst, wobei der Kanal mit hohem Durchsatz eine Kombination eines oder mehrerer Unterkanäle und eines oder mehrerer räumlicher Kanäle, die jedem Unterkanal zugeordnet sind, umfasst, und wobei das Berechnen der SNRs umfasst, SNRs für jeden Unterträger der ein oder mehreren Unterkanäle und der ein oder mehreren räumlichen Kanäle, umfassend den Mehrträger-Kommunikationskanal, anhand des Sendeleistungspegels und der Kanalzustandsinformationen zu berechnen, und
wobei das Verfahren ferner umfasst, eine Datenraten-Anweisung für einen Sender zu erzeugen, wobei die Datenraten-Anweisung eine ausgewählte Modulation und eine ausgewählte Coderate für die ein oder mehreren Unterkanäle und die ein oder mehreren räumlichen Kanäle, die den Mehrträger-Kommunikationskanal umfassen, enthalten soll.
 
8. Verfahren nach Anspruch 7, ferner umfassend das Bestimmen der Kanalzustandsinformationen, wobei die Kanalzustandsinformationen Rauschleistungsschätzungen und eine Kanaltransferfunktion für jeden Unterträger der ein oder mehreren räumlichen Kanäle und der ein oder mehreren Unterkanäle beinhalten.
 
9. Verfahren nach Anspruch 7, wobei der Kanal mit hohem Durchsatz eines der Folgenden umfasst:

einen Breitbandkanal mit bis zu vier frequenzgetrennten Unterkanälen;

einen MIMO (Multiple-Input-Multiple-Output)-Kanal, der einen einzelnen Unterkanal mit bis zu vier räumlichen Unterkanälen umfasst; und

einen Breitband-MIMO-Kanal, der zwei oder mehr frequenzgetrennte Unterkanäle umfasst, wobei jeder Unterkanal zwei oder mehr räumliche Kanäle aufweist.


 
10. Verfahren nach Anspruch 9, wobei der Breitbandkanal eine Breitbandkanal-Bandbreite von bis zu 80 MHz hat und bis zu vier der Unterkanäle umfasst, wobei die Unterkanäle nichtüberlappende, orthogonale Frequenzmultiplex-Kanäle sind,
wobei jeder Unterkanal eine Unterkanal-Bandbreite von ungefähr 20 MHz hat und mehrere orthogonale Unterträger umfasst, und
wobei die ein oder mehreren räumlichen Kanäle nichtorthogonale Kanäle sind, die einem der Unterkanäle zugeordnet sind.
 
11. Verfahren nach Anspruch 7, wobei, wenn der Mehrträger-Kommunikationskanal ein Kanal mit hohem Durchsatz ist, die ein oder mehreren räumlichen Kanäle und die ein oder mehreren Unterkanäle durch eine oder mehrere Sendeantennen einer sendenden Station bereitgestellt werden.
 
12. Verfahren nach Anspruch 7, wobei die Unterträger eines zugeordneten Unterkanals einen Nullpunkt bei einer Mittenfrequenz der anderen Unterträger aufweisen, um im Wesentlichen Orthogonalität zwischen den Unterträgern des zugeordneten Unterkanals zu erzielen.
 
13. Verfahren nach Anspruch 1, wobei die mehreren Modulationen binäre Phasenmodulation (Binary Phase Shift Keying, BPSK), Quadratur-Phasenmodulation (Quadrature Phase Shift Keying, QPSK), 8PSK, Quadraturamplitudenmodulation mit 16 Symbolen (16-Quadrature Amplitude Modulation, 16-QAM), 32-QAM, 64-QAM, 128-QAM und 256-QAM umfassen, und
wobei die mehreren Coderaten Vorwärtsfehlerkorrektur (Forward Error Correction, FEC)-Coderaten von 1/2, 2/3 und 3/4 umfassen.
 
14. Kommunikationsstation, umfassend:

eine Kanalzustandsinformationen-Verarbeitungseinheit zum Berechnen eines jeweiligen Signal-Rausch-Abstands (SNR) für jeden Unterträger von mehreren Unterträgern des Mehrträger-Kommunikationskanals anhand eines Sendeleistungspegels und von Kanalzustandsinformationen; und

Datenraten-Auswahlschaltung zum Vorhersagen von Paketfehlerraten (PERs) anhand der SNRs für jede von mehreren Datenraten und zum Schätzen eines Durchsatzes für jede der Datenraten anhand der vorhergesagten PERs, wobei die Datenraten-Auswahlschaltung dafür ausgelegt ist, eine der Datenraten basierend auf den geschätzten Durchsätzen auszuwählen, wobei die Datenraten-Auswahlschaltung dafür ausgelegt ist, eine der Datenraten aus einer Kombination aus einer von mehreren Modulationen und einer von mehreren Coderaten, die mit einem höchsten der geschätzten Durchsätze verknüpft sind, auszuwählen.


 
15. Kommunikationsstation nach Anspruch 14, wobei die Datenraten-Auswahlschaltung dafür ausgelegt ist, PERs anhand von SNR-Leistungskurven für die mehreren Datenraten vorherzusagen, um eine PER für jede Datenrate zu bestimmen, wobei die SNR-Leistungskurven vorbestimmt und in einem Speicher einer empfangenden Station gespeichert sind.
 
16. Kommunikationsstation nach Anspruch 14, wobei die Datenraten-Auswahlschaltung dafür ausgelegt ist, eine Bitfehlerrate (BER) basierend auf einer bekannten Modulation eines aktuellen Pakets zu berechnen, und dafür ausgelegt ist, eine PER für jede der mehreren Datenraten basierend auf einer vorbestimmten BER-Leistung eines Decodierers, der berechneten BER und einer Länge des aktuellen Pakets zu berechnen.
 
17. Kommunikationsstation nach Anspruch 14, wobei die Datenraten-Auswahlschaltung dafür ausgelegt ist, einen Durchsatz für jede der mehreren Datenraten zu schätzen, indem eine zugeordnete der Datenraten mit eins minus die PER, die für die zugeordnete Datenrate vorhergesagt wurde, multipliziert wird.
 
18. Kommunikationsstation nach Anspruch 14, wobei die Datenraten-Auswahlschaltung dafür ausgelegt ist, Sendeleistungspegel- und Datenraten-Anweisungen für eine sendende Station zu erzeugen, wobei die Sendeleistungspegel- und Datenraten-Anweisungen die ausgewählte Modulation und Coderate sowie einen ausgewählten Sendeleistungspegel beinhalten.
 
19. Kommunikationsstation nach Anspruch 18, wobei die Kanalzustandsinformationen-Verarbeitungseinheit und die Datenraten-Auswahlschaltung Teil einer empfangenden Station sind und wobei die Datenraten-Auswahlschaltung dafür ausgelegt ist, die SNRs basierend auf einem bekannten Sendeleistungspegel, der von der sendenden Station in einem aktuellen Paket bereitgestellt wird, wobei das aktuelle Paket ein Sendeanforderung (RTS)-Paket ist, zu berechnen,
wobei die Kanalzustandsinformationen-Verarbeitungseinheit dafür ausgelegt ist, die Kanalzustandsinformationen anhand von Kanalschätzungen und Rauschleistungsschätzungen, die an dem RTS-Paket durchgeführt werden, zu bestimmen, und
wobei eine Senderschaltung der empfangenden Station die Datenraten-Anweisung in einem Sendefreigabe (CTS)-Paket an die sendende Station sendet, wobei die sendende Station in Reaktion wenigstens Teile eines Datenpakets entsprechend der Datenraten-Anweisung an die empfangende Station senden soll.
 
20. Kommunikationsstation nach Anspruch 14, wobei der Mehrträger-Kommunikationskanal entweder einen Kanal mit Standard-Durchsatz oder einen Kommunikationskanal mit hohem Durchsatz umfasst, wobei der Kanal mit Standard-Durchsatz einen Unterkanal umfasst, wobei der Kanal mit hohem Durchsatz eine Kombination eines oder mehrerer Unterkanäle und eines oder mehrerer räumlicher Kanäle, die jedem Unterkanal zugeordnet sind, umfasst, und wobei das Berechnen der SNRs umfasst, SNRs für jeden Unterträger der ein oder mehreren Unterkanäle und der ein oder mehreren räumlichen Kanäle, umfassend den Mehrträger-Kommunikationskanal, anhand des Sendeleistungspegels und der Kanalzustandsinformationen zu berechnen, und
wobei die Kommunikationsstation ferner umfasst dafür ausgelegt ist, eine Datenraten-Anweisung für einen Sender zu erzeugen, wobei die Datenraten-Anweisung eine ausgewählte Modulation und eine ausgewählte Coderate für die ein oder mehreren Unterkanäle und die ein oder mehreren räumlichen Kanäle, die den Mehrträger-Kommunikationskanal umfassen, enthalten soll.
 
21. Kommunikationsstation nach Anspruch 20 , wobei die Kanalzustandsinformationen-Verarbeitungsschaltung ferner dafür ausgelegt ist, die Kanalzustandsinformationen zu bestimmen, wobei die Kanalzustandsinformationen Rauschleistungsschätzungen und eine Kanaltransferfunktion für jeden Unterträger der ein oder mehreren räumlichen Kanäle und der ein oder mehreren Unterkanäle beinhalten.
 
22. Kommunikationsstation nach Anspruch 20, wobei der Kanal mit hohem Durchsatz entweder einen Breitbandkanal mit bis zu vier frequenzgetrennten Unterkanälen, einen MIMO (Multiple-Input-Multiple-Output)-Kanal, der einen einzelnen Unterkanal mit bis zu vier räumlichen Unterkanälen umfasst, oder einen Breitband-MIMO-Kanal, der zwei oder mehr frequenzgetrennte Unterkanäle umfasst, wobei jeder Unterkanal zwei oder mehr räumliche Kanäle aufweist, umfasst.
 
23. Kommunikationsstation nach Anspruch 22, wobei der Breitbandkanal eine Bandbreite von bis zu 80 MHz hat und bis zu vier der Unterkanäle umfasst,
wobei die Unterkanäle orthogonale Frequenzmultiplex-Kanäle sind,
wobei jeder Unterkanal eine Unterkanal-Bandbreite von ungefähr 20 MHz hat und mehrere orthogonale Unterträger umfasst, und
wobei die ein oder mehreren räumlichen Kanäle nichtorthogonale Kanäle sind, die einem der Unterkanäle zugeordnet sind.
 
24. Kommunikationsstation nach Anspruch 20, ferner eine oder mehrere Antennen umfassend, um über die ein oder mehreren räumlichen Kanäle und die ein oder mehreren Unterkanäle zu kommunizieren, wenn der Mehrträger-Kommunikationskanal ein Kommunikationskanal mit hohem Durchsatz ist.
 
25. Kommunikationsstation nach Anspruch 20, wobei die Unterträger eines zugeordneten Unterkanals einen Nullpunkt bei einer Mittenfrequenz der anderen Unterträger aufweisen, um eine wesentliche Orthogonalität zwischen den Unterträgern des zugeordneten Unterkanals zu erzielen.
 
26. Kommunikationsstation nach Anspruch 14, wobei die mehreren Modulationen binäre Phasenmodulation (BPSK), Quadratur-Phasenmodulation (QPSK), 8PSK, Quadraturamplitudenmodulation mit 16 Symbolen (16-QAM), 32-QAM, 64-QAM, 128-QAM und 256-QAM umfassen, und
wobei die mehreren Coderaten Vorwärtsfehlerkorrektur (Forward Error Correction, FEC)-Coderaten von 1/2, 2/3 und 3/4 umfassen.
 
27. System, umfassend:

eine im Wesentlichen omnidirektionale (Rundstrahl-)Antenne;

einen Empfänger zum Empfangen von Signalen über die Antenne über einen Mehrträger-Kommunikationskanal; und

eine Kommunikationsstation nach einem der Ansprüche 14 bis 26.


 
28. Programm, das Anweisungen umfasst, die dafür ausgelegt sind, wenn sie ausgeführt werden, ein Verfahren gemäß einem der Ansprüche 1 bis 13 zu implementieren.
 
29. Maschinenlesbarer Speicher, der ein Programm nach Anspruch 28 speichert.
 


Revendications

1. Procédé de sélection d'un débit de données d'un canal de communication multiporteuse, le procédé consistant :

à calculer un rapport signal sur bruit (SNR) respectif pour chaque sous-porteuse d'une pluralité de sous-porteuses du canal de communication multiporteuse à partir d'informations d'état de canal et d'un niveau de puissance de transmission ;

à prédire des rapports d'erreur de paquet (PER) à partir de rapports SNR pour chaque débit de données d'une pluralité de débits de données ;

à estimer un rendement pour chaque débit de données de la pluralité de débits de données à partir des rapports PER ; et

à sélectionner l'un des débits de données sur la base des rendements estimés, dans lequel la sélection de l'un des débits de données consiste à sélectionner une combinaison d'une modulation d'une pluralité de modulations et d'un débit de code d'une pluralité de débits de code associés au rendement le plus élevé des rendements estimés.


 
2. Procédé selon la revendication 1, dans lequel la prédiction du rapport PER consiste à utiliser des courbes de performance de rapport SNR pour la pluralité de débits de données pour déterminer un rapport PER pour chaque débit de données, les courbes de performance de rapport SNR étant prédéterminées et stockées dans une mémoire d'une station de réception.
 
3. Procédé selon la revendication 1, dans lequel la prédiction de rapports PER consiste :

après le démappage de bits d'un paquet actuel, à calculer un taux d'erreurs sur les bits (BER) en se basant sur une modulation du paquet actuel ; et

après le décodage des bits du paquet actuel, à déterminer un rapport PER pour chaque débit de données de la pluralité de débits de données en se basant sur une performance de taux BER prédéterminée d'un décodeur, le taux BER calculé et une longueur du paquet actuel.


 
4. Procédé selon la revendication 1, dans lequel l'estimation du rendement consiste à estimer un rendement pour chaque débit de données de la pluralité en multipliant un débit de données associé des débits de données par un moins le rapport PER prédit pour le débit de données associé.
 
5. Procédé selon la revendication 1, consistant en outre à générer un niveau de puissance de transmission et des instructions de débit de données pour une station de transmission, le niveau de puissance de transmission et les instructions de débit de données étant destinés à inclure la modulation et le débit de code sélectionnés et un niveau de puissance de transmission sélectionné.
 
6. Procédé selon la revendication 5, dans lequel le calcul d'une opération est réalisé par une station de réception en se basant sur un niveau de puissance de transmission connu fourni par la station de transmission dans un paquet actuel, le paquet actuel étant un paquet de demande de transmission (RTS),
dans lequel le procédé consiste en outre :

à déterminer, au moyen de la station de réception, les informations d'état de canal à partir d'estimations de canal et d'estimations de puissance de bruit effectuées sur le paquet de demande RTS ; et

à envoyer, au moyen de la station de réception, l'instruction de débit de données à la station de transmission dans un paquet prêt à émettre (CTS), la station de transmission étant destinée à transmettre en réponse au moins des parties d'un paquet de données à la station de réception en fonction de l'instruction de débit de données.


 
7. Procédé selon la revendication 1, dans lequel le canal de communication multiporteuse comprend soit un canal à rendement standard, soit un canal de communication à rendement élevé, le canal à rendement standard comprenant un seul sous-canal, le canal à rendement élevé comprenant une combinaison d'un ou de plusieurs sous-canaux et d'un ou de plusieurs canaux spatiaux associés à chaque sous-canal, et
dans lequel le calcul des rapports SNR consiste à calculer des rapports SNR pour chaque sous-porteuse du ou des sous-canaux et du ou des canaux spatiaux comprenant le canal de communication multiporteuse à partir du niveau de puissance de transmission et des informations d'état de canal, et
dans lequel le procédé consiste en outre à générer une instruction de débit de données pour un émetteur, l'instruction de débit de données étant destinée à inclure une modulation sélectionnée et un débit de code sélectionné pour le ou les sous-canaux et le ou les canaux spatiaux comprenant le canal de communication multiporteuse.
 
8. Procédé selon la revendication 7, consistant en outre à déterminer les informations d'état de canal, les informations d'état de canal comprenant des estimations de puissance de bruit et une fonction de transfert de canal pour chaque sous-porteuse du ou des canaux spatiaux et du ou des sous-canaux.
 
9. Procédé selon la revendication 7, dans lequel le canal à rendement élevé comprend :

soit un canal à large bande ayant jusqu'à quatre sous-canaux séparés en fréquence ;

soit un canal à entrées multiples et sorties multiples (MIMO) comprenant un seul sous-canal ayant jusqu'à quatre sous-canaux spatiaux ;

soit un canal MIMO à large bande comprenant au moins deux sous-canaux séparés en fréquence, chaque sous-canal ayant au moins deux canaux spatiaux.


 
10. Procédé selon la revendication 9, dans lequel le canal à large bande présente une largeur de bande de canal à large bande allant jusqu'à 80 MHz et comprend jusqu'à quatre des sous-canaux,
dans lequel les sous-canaux sont des canaux multiplexés par répartition orthogonale de la fréquence qui ne se chevauchent pas,
dans lequel chaque sous-canal présente une largeur de bande de sous-canal d'approximativement 20 MHz et comprend une pluralité de sous-porteuses orthogonales, et
dans lequel le ou les canaux spatiaux sont des canaux non orthogonaux associés à l'un des sous-canaux.
 
11. Procédé selon la revendication 7, dans lequel, lorsque le canal de communication multiporteuse est un canal à rendement élevé, le ou les canaux spatiaux et le ou les sous-canaux sont fournis par une ou plusieurs antennes de transmission correspondantes d'une station de transmission.
 
12. Procédé selon la revendication 7, dans lequel les sous-porteuses d'un sous-canal associé présentent un zéro à une fréquence centrale des autres sous-porteuses pour obtenir une orthogonalité importante entre les sous-porteuses du sous-canal associé.
 
13. Procédé selon la revendication 1, dans lequel la pluralité de modulations comprennent une modulation par déplacement de phase binaire (BPSK), une modulation par déplacement de phase en quadrature (QPSK), une modulation 8PSK, une modulation d'amplitude en quadrature à 16 états (16-QAM), une modulation QAM à 32 états (32-QAM), une modulation QAM à 64 états (64-QAM), une modulation QAM à 128 états (128-QAM) et une modulation QAM à 256 états (256-QAM), et
dans lequel la pluralité de débits de code comprennent des débits de code de correction d'erreur sans voie de retour (FEC) de 1/2, de 2/3 et de 3/4.
 
14. Station de communication comprenant :

un ensemble de circuits de traitement d'informations d'état de canal destiné à calculer un rapport signal sur bruit (SNR) respectif pour chaque sous-porteuse d'une pluralité de sous-porteuses du canal de communication multiporteuse à partir d'un niveau de puissance de transmission et d'informations d'état de canal ; et

un ensemble de circuits de sélection de débit de données destiné à prédire des rapports d'erreur de paquet (PER) à partir de rapports SNR pour chaque débit de données d'une pluralité de débits de données pour estimer un rendement pour chaque débit de données de la pluralité de débits de données à partir des rapports PER,

dans laquelle l'ensemble de circuits de sélection de débit de données est conçu pour sélectionner l'un des débits de données sur la base des rendements estimés, dans laquelle l'ensemble de circuits de sélection de débit de données est conçu pour sélectionner l'un des débits de données à partir d'une combinaison d'une modulation d'une pluralité de modulations et d'un débit de code d'une pluralité de débits de code associés au rendement le plus élevé des rendements estimés.


 
15. Station de communication selon la revendication 14, dans laquelle l'ensemble de circuits de sélection de débit de données est conçu pour prédire des rapports PER à l'aide de courbes de performance de rapport SNR pour la pluralité de débits de données pour déterminer un rapport PER pour chaque débit de données, les courbes de performance de rapport SNR étant prédéterminées et stockées dans une mémoire d'une station de réception.
 
16. Station de communication selon la revendication 14, dans laquelle l'ensemble de circuits de sélection de débit de données est conçu pour calculer un taux d'erreurs sur les bits (BER) en se basant sur une modulation connue d'un paquet actuel et conçu pour déterminer un rapport PER pour chaque débit de données de la pluralité de débits de données en se basant sur une performance de taux BER prédéterminée d'un décodeur, le taux BER calculé et une longueur du courant actuel.
 
17. Station de communication selon la revendication 14, dans laquelle l'ensemble de circuits de sélection de débit de données est conçu pour estimer un rendement pour chaque débit de données de la pluralité en multipliant un débit de données associé des débits de données par un moins le rapport PER prédit pour le débit de données associé.
 
18. Station de communication selon la revendication 14, dans laquelle l'ensemble de circuits de sélection de débit de données est conçu pour générer un niveau de puissance de transmission et des instructions de débit de données pour une station de transmission, le niveau de puissance de transmission et les instructions de débit de données étant destinés à inclure la modulation et le débit de code sélectionnés et un niveau de puissance de transmission sélectionné.
 
19. Station de communication selon la revendication 18, dans laquelle l'ensemble de circuits de traitement d'informations d'état de canal et l'ensemble de circuits de sélection de débit de données font partie d'une station de réception et dans laquelle l'ensemble de circuits de sélection de débit de données est conçu pour calculer les rapports SNR en se basant sur un niveau de puissance de transmission connu fourni par la station de transmission dans un paquet actuel, le paquet actuel étant un paquet de demande de transmission (RTS),
dans laquelle l'ensemble de circuits de traitement d'informations d'état de canal est conçu pour déterminer les informations d'état de canal à partir d'estimations de canal et d'estimations de puissance de bruit effectuées sur le paquet de demande RTS, et
dans laquelle l'ensemble de circuits d'émetteur de la station de réception envoie l'instruction de débit de données à la station de transmission dans un paquet prêt à émettre (CTS), la station de transmission étant destinée à transmettre en réponse au moins des parties d'un paquet de données à la station de réception en fonction de l'instruction de débit de données.
 
20. Station de communication selon la revendication 14, dans laquelle le canal de communication multiporteuse comprend soit un canal à rendement standard, soit un canal de communication à rendement élevé, le canal à rendement standard comprenant un seul sous-canal, le canal à rendement élevé comprenant une combinaison d'un ou de plusieurs sous-canaux et d'un ou de plusieurs canaux spatiaux associés à chaque sous-canal, et
dans laquelle le calcul des rapports SNR consiste à calculer des rapports SNR pour chaque sous-porteuse du ou des sous-canaux et du ou des canaux spatiaux comprenant le canal de communication multiporteuse à partir du niveau de puissance de transmission et des informations d'état de canal, et
dans laquelle la station de communication comprend en outre est adaptée pour générer une instruction de débit de données pour un émetteur, l'instruction de débit de données étant destinée à inclure une modulation sélectionnée et un débit de code sélectionné pour le ou les sous-canaux et le ou les canaux spatiaux comprenant le canal de communication multiporteuse.
 
21. Station de communication selon la revendication 20, où l'ensemble de circuits de traitement d'informations d'état de canal est en outre conçu pour déterminer les informations d'état de canal, les informations d'état de canal comprenant des estimations de puissance de bruit et une fonction de transfert de canal pour chaque sous-porteuse du ou des canaux spatiaux et du ou des sous-canaux.
 
22. Station de communication selon la revendication 20, dans laquelle le canal à rendement élevé comprend soit un canal à large bande ayant jusqu'à quatre sous-canaux séparés en fréquence, soit un canal à entrées multiples et sorties multiples (MIMO) comprenant un seul sous-canal ayant jusqu'à quatre sous-canaux spatiaux, soit un canal MIMO à large bande comprenant au moins deux sous-canaux séparés en fréquence, chaque sous-canal ayant au moins deux canaux spatiaux.
 
23. Station de communication selon la revendication 22, dans laquelle le canal à large bande présente une largeur de bande allant jusqu'à 80 MHz et comprend jusqu'à quatre des sous-canaux,
dans laquelle les sous-canaux sont des canaux multiplexés par répartition orthogonale de la fréquence,
dans laquelle chaque sous-canal présente une largeur de bande de sous-canal d'approximativement 20 MHz et comprend une pluralité de sous-porteuses orthogonales, et
dans laquelle le ou les canaux spatiaux sont des canaux non orthogonaux associés à l'un des sous-canaux.
 
24. Station de communication selon la revendication 20, comprenant en outre une ou plusieurs antennes pour communiquer sur le ou les canaux spatiaux et le ou les sous-canaux lorsque le canal de communication multiporteuse est un canal de communication à rendement élevé.
 
25. Station de communication selon la revendication 20, dans laquelle les sous-porteuses d'un sous-canal associé présentent un zéro à une fréquence centrale des autres sous-porteuses pour obtenir une orthogonalité importante entre les sous-porteuses du sous-canal associé.
 
26. Station de communication selon la revendication 14, dans laquelle la pluralité de modulations comprennent une modulation par déplacement de phase binaire (BPSK), une modulation par déplacement de phase en quadrature (QPSK), une modulation 8PSK, une modulation d'amplitude en quadrature à 16 états (16-QAM), une modulation QAM à 32 états (32-QAM), une modulation QAM à 64 états (64-QAM), une modulation QAM à 128 états (128-QAM) et une modulation QAM à 256 états (256-QAM), et
dans lequel la pluralité de débits de code comprennent des débits de code de correction d'erreur sans voie de retour (FEC) de 1/2, de 2/3 et de 3/4.
 
27. Système comprenant :

une antenne sensiblement omnidirectionnelle ;

un récepteur destiné à recevoir des signaux par le biais de l'antenne par le biais d'un canal de communication multiporteuse ; et

une station de communication selon l'une quelconque des revendications 14 à 26.


 
28. Programme comprenant des instructions conçues, lorsqu'elles sont exécutées, pour mettre en oeuvre un procédé selon l'une quelconque des revendications 1 à 13.
 
29. Stockage lisible par une machine stockant un programme selon la revendication 28.
 




Drawing














Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description