(19)
(11)EP 1 748 516 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21)Application number: 06252905.2

(22)Date of filing:  05.06.2006
(51)Int. Cl.: 
H01Q 1/52  (2006.01)
H01Q 9/04  (2006.01)
H01Q 1/38  (2006.01)
H01Q 21/28  (2006.01)

(54)

Plate board type mimo array antenna including isolation element

Flache MIMO-Gruppenantenna mit Isolationselement

Réseau d'antennes plat avec element d'isolation


(84)Designated Contracting States:
DE FR GB

(30)Priority: 13.06.2005 KR 550636

(43)Date of publication of application:
31.01.2007 Bulletin 2007/05

(73)Proprietor: Samsung Electronics Co., Ltd.
Suwon-si, Gyeonggi-do, 443-742 (KR)

(72)Inventors:
  • Moon, Young-min
    Seocho-gu, Seoul (KR)
  • Kim, Young-eil c/o 305-1803 Cheongmyeong-maeul
    Suwon-si, Gyeonggi-do (KR)
  • Min, Kyeong-sik
    Dongsam 1-dong, Yeongdo-gu (KR)

(74)Representative: Elkington and Fife LLP 
Prospect House 8 Pembroke Road
Sevenoaks, Kent TN13 1XR
Sevenoaks, Kent TN13 1XR (GB)


(56)References cited: : 
EP-A- 0 720 252
EP-A- 1 434 301
US-A- 6 069 586
EP-A- 0 847 101
WO-A-2004/017462
US-B1- 6 473 040
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] Apparatuses consistent with the present invention relate to a Multiple-Input Multiple-Output (MIMO) array antenna, and more particularly, to a plate board type MIMO array antenna formed as a plate board type on a board and including an isolation element preventing an interference between antenna elements.

    [0002] Antennas are devices which convert electric signals into predetermined electromagnetic waves and radiate the electromagnetic waves to a free space or performing opposite operations. Patterns of effective areas onto or from which antennas can radiate or sense electromagnetic waves are generally referred to as radiation patterns. A plurality of antennas may be arrayed in a specific structure to combine radiation patterns and radiation powers of the antennas. Thus, the radiation patterns may be sharp, and electromagnetic waves of the antennas may be further radiated. An antenna having the above-described structure is referred to as an array antenna. Such an array antenna is used in an MIMO system performing a multiple-input multiple-output operation.

    [0003] A plurality of antennas are used in an array antenna, and thus an interference may occur between the antennas. Thus, radiation patterns may be distorted or antenna elements may be combined with one another.

    [0004] To prevent this, in a conventional MIMO array antenna, walls having three-dimensional structure are piled up between antenna elements arrayed on a board to prevent electromagnetic waves radiated from each of antennas from being propagated to another antenna. In this case, an interference between antennas may be prevented. However, a volume of an entire antenna chip is increased, and thus the entire antenna chip is difficult to use in a subminiature electronic apparatus. Also, it is difficult to manufacture the antenna chip.

    [0005] Documents EP0720252 A, EP0847101 A, US6069586 A, WO2004017462 A, EP1434301 A and US6473040 B1 all recite prior art antenna arrays with isolation units between adjacent antenna elements.

    SUMMARY OF THE INVENTION



    [0006] According to an aspect of the present invention, there is provided a plate board type MIMO array antenna according to claim 1. Optional features are set out in the dependant claims.

    [0007] The invention thus provides a plate board type MIMO array antenna which is easily manufactured to be small in size and can offset electromagnetic waves radiated from a plurality of antenna elements manufactured as plate board types on a board and propagated to other antenna elements of the plurality of antenna elements. This can prevent the plurality of antenna elements from interfering with each other so as to prevent radiation patterns from being distorted. An output gain can accordingly be increased.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] The above and other aspects of the present invention will be more apparent by describing exemplary embodiments of the present invention with reference to the accompanying drawings, in which:

    FIG. 1 is a view illustrating a configuration of a plate board type MIMO array antenna according to an exemplary embodiment of the present invention;

    FIG. 2 is a graph illustrating a return-loss characteristic with respect to a frequency depending on lengths of first and second isolation elements in the plate board type MIMO array antenna of FIG. 1;

    FIG. 3 is a graph illustrating a return-loss characteristic with respect to a frequency depending on a distance between first and second isolation elements in the plate board type MIMO array antenna of FIG. 1;

    FIG. 4 is a view illustrating a configuration of a plate board type MIMO array antenna according to an example, not an embodiment of the present invention.

    FIG. 5 is a graph illustrating a return-loss characteristic with respect to a frequency depending on lengths of first and second isolation elements in the plate board type MIMO array antenna of FIG. 4;

    FIG. 6 is a graph illustrating a return-loss characteristic with respect to a frequency depending on a distance between first and second isolation elements in the plate board type MIMO array antenna of FIG. 4;

    FIGS. 7A and 7B are graphs comparing a return-loss characteristic of a plate board type MIMO array antenna of an exemplary embodiment of the present invention with a return-loss characteristic of a conventional MIMO array antenna;

    FIG. 8 is a graph illustrating an output gain characteristic of a plate board type MIMO array antenna of an exemplary embodiment of the present invention with an output gain characteristic of a conventional MIMO array antenna;

    FIG. 9 is a view illustrating a configuration of a plate board type MIMO array antenna according to yet another exemplary embodiment of the present invention;

    FIG. 10 is a view illustrating a prevention of an interference among first through fourth antenna elements in the plate board type MIMO array antenna of FIG. 9;

    FIGS. 11A to 11D are views illustrating radiation patterns of a conventional MIMO array antenna not including an isolation unit;

    FIGS. 12A to 12D are views illustrating a radiation pattern of the plate board type MIMO array antenna of FIG. 9; and

    FIG. 13 is a graph illustrating a return-loss characteristic with respect to a frequency depending on a variation in a number of isolation elements in the plate board type MIMO array antenna of FIG. 1.


    DETAILED DESCRIPTION



    [0009] Exemplary embodiments of the present invention will be described in greater detail with reference to the accompanying drawings.

    [0010] In the following description, same drawing reference numerals are used for the same elements even in different drawings. The matters defined in the description such as a detailed construction and elements are provided to assist in a comprehensive understanding of the invention. Thus, it is apparent that the present invention can be carried out without those defined matters. Also, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail.

    [0011] FIG. 1 is a view illustrating a configuration of a plate board type MIMO array antenna according to an exemplary embodiment of the present invention. Referring to FIG. 1, the plate board type MIMO array antenna includes first and second antenna elements 110 and 120 formed as plate board types on a board 100, an isolation unit 130, and two feeders 141 and 142.

    [0012] The board 100 may be printed circuit board (PCB). Thus, a metal layer on a surface of the PCB may be removed to be a predetermined pattern so as to manufacture the first and second antenna elements 110 and 120 and the isolation unit 130 at a time. Since an additional material does not need to be stacked on the board 100 and a very thin metal layer constitutes the first and second antenna elements 110 and 120 and the isolation unit 130, the first and second antenna elements 110 and 120 may be realized as almost two-dimensional plate boards. Thus, a volume of the MIMO array antenna can be minimized. In this case, a distance between central points of the first and second antenna elements 110 and 120 may be 1/2 of a wavelength λ. of a signal the MIMO array antennal desires to output.

    [0013] The isolation unit 130 includes first and second isolation elements 131 and 132 symmetric with respect to a center of a distance between the first and second antenna elements 110 and 120. The first and second isolation elements 131 and 131 are disposed at a predetermined distance from each other within a space between the first and second antenna elements 110 and 120. The first and second isolation elements 131 and 132 are symmetric with respect to the center of the distance between the first and second antenna elements 110 and 120. The first and second isolation elements 131 and 132 may each be set to 1/4 of a wavelength λ of an output signal.

    [0014] As shown in FIG. 1, the first and second isolation elements 131 and 132 are bar-shaped so as to be disposed toward the first and second antenna elements 110 and 120 in long axis directions of bars of the first and second isolation elements 131 and 132. Also, the isolation unit 130 includes the first and second isolation elements 131 and 132 as shown in FIG. 1 but may include three or more isolation elements. In this case, the three or more isolation elements must be symmetric with respect to the center of the distance of the first and second antenna elements 110 and 120. A return-loss characteristic depending on a number of isolation elements will be described later in the present specification.

    [0015] The two feeders 141 and 142 respectively feed the first and second antenna elements 110 and 120. As shown in FIG. 1, the feeders 141 and 142 are respectively spaced apart from the first and second antenna elements 110 and 120 under the first and second antenna elements 110 and 120. The feeders 141 and 142 are connected to a lower portion of the board 100 to be supplied with external electromagnetic energies. Thus, the external electromagnetic energies are coupled and then transmitted to the first and second antenna elements 110 and 120. As a result, the first and second antenna elements 110 and 120 respectively radiate electromagnetic waves.

    [0016] If the first and second antenna elements 110 and 120 are positioned within a radiation area therebetween, the electromagnetic wave radiated from the first or second antenna element 110 or 120 is propagated to the other antenna element, i.e., the other one of the first or second antenna element. In this case, the electromagnetic wave radiated from the first antenna element 110 is propagated to the first and second isolation elements 131 and 132 and then to the second antenna element 120. Also, the electromagnetic wave radiated from the second antenna element 120 is also propagated to the first and second isolation elements 131 and 132. Thus, the first and second isolation elements 131 and 132 reflect the electromagnetic waves propagated from the first and second antenna elements 110 and 120 toward opposite directions to directions along which the electromagnetic waves are propagated from the first and second antenna elements 110 and 120. Therefore, effects of the electromagnetic waves propagated from the first and second antenna elements 110 and 120 on the antenna elements 110 and 120 respectively are offset. As a result, the first and second antenna elements 110 and 120 are electrically isolated from each other.

    [0017] FIG. 2 is a graph illustrating a return-loss characteristic with respect to a frequency depending on lengths of the first and second isolation elements 131 and 132. FIG. 2 is generated based on conditions such that in the MIMO array antenna shown in FIG. 1, horizontal lengths of the first and second antenna elements 110 and 120 was each about 7 mm, vertical lengths of the first and second antenna elements 110 and 120 was each about 14.5 mm, the distance between the central points of the first and second antenna elements 110 and 120 was about 35 mm, vertical lengths of the first and second isolation elements 131 and 132 was each about 2.2 mm, and a distance between the first and second isolation elements 131 and 132 was about 11.8 mm, the return-loss characteristic was measured with respect to the frequency with varying lengths a of the first and second isolation elements 131 and 132.

    [0018] Referring to FIG. 2, on a line graph S11 that is an S parameter indicating an input reflection coefficient, a maximum electromagnetic wave is radiated to the outside within a range between about 4.3 GHz and 5.5 GHz. The return-loss characteristic was observed with changing the length a of each of the first and second isolation elements 131 and 132 to 16.05 mm, 16.55 mm, and 17.05 mm. When the length a is 16.55 mm, the return-loss characteristic satisfies a central frequency between 5.15 GHz and 5.35 GHz. Also, when the length a is 16.55 mm, the return-loss is about -45 dB. An interference between the first and second antenna elements 110 and 120 may be minimized so as to maximize an output gain of the plate board type MIMO array antenna. As described above, the plate board type MIMO array antenna shown in FIG. 1 adjusts lengths of the first and second isolation elements 131 and 132 so that a resonance occurs at a desired frequency. Thus, the characteristic of the plate board type MIMO antenna can be easily adjusted.

    [0019] FIG. 3 is a graph illustrating a return-loss characteristic with respect to a frequency depending on a variation in the distance between the first and second isolation elements 131 and 132. When the length of each of the first and second isolation element 131 and 132 was 16.55 mm and the other conditions were the same as those of FIG. 2, the return-loss characteristic was measured with adjusting a distance b. Referring to FIG. 3, when the distance b is about 11.8 mm, the return-loss characteristic satisfies a central frequency between 5.15 GHz and 5.35 GHz.

    [0020] FIG. 4 is a view illustrating a configuration of a plate board type MIMO array antenna not being exemplary embodiment of the present invention. Referring to FIG. 4, the plate board type MIMO array antenna includes first and second antenna elements 210 and 220 stacked on a board 200, an isolation unit 230, and first and second feeders 241 and 242.

    [0021] In a case where the first and second antenna elements 210 and 220 are longitudinally disposed as shown in FIG. 4, the isolation unit 230 cannot be disposed between the first and second antenna elements 210 and 220 due to positions of the first and second feeders 241 and 242. In other words, if isolation elements are disposed as shown in FIG. 1, the isolation elements are not symmetric. As a result, electromagnetic waves are not offset.

    [0022] In a case where the first and second antenna elements 210 and 220 are longitudinally disposed as shown in FIG. 4, the isolation unit 230 is disposed at a predetermined distance from the first and second antenna elements 210 and 220. In this case, the isolation unit 230 is kept at a distance d from each of the first and second antenna elements 210 and 220. The distance d may be about 1/4 of a wavelength λ of a signal the plate board type MIMO array antenna desires to output.

    [0023] The isolation unit 230 is realized as one element and is symmetric with respect to a center of a distance between the first and second antenna elements 210 and 220. The isolation unit 230 may be manufactured in one of other specific shape besides a bar shape as described above. An operation of the isolation unit 230 is the same as that of the isolation unit 130 shown in FIG. 1 and thus will not be described herein.

    [0024] FIG. 5 is a graph illustrating a return-loss characteristic with respect to a frequency. When a distance d of the isolation unit 230 from the first and second antenna elements 210 and 220 was 15mm and the other conditions were the same as those of FIG. 2 in the plate board type MIMO array antenna shown in FIG. 4, the return-loss characteristic was measured with changing a length c of the isolation unit 230 to 37 mm, 37.5 mm, and 38 mm. Referring to FIG. 5, on a line graph S11, a large amount of electromagnetic wave is radiated at a frequency between about 4.3 GHz and 5.5 GHz. Also, when the length c of the isolation unit 230 is 37.5 mm, the return-loss characteristic satisfies a central frequency of the plate board type MIMO array antenna between 5.15 GHz and 5.35 GHz.

    [0025] FIG. 6 is a graph illustrating a return-loss characteristic with respect to a frequency. The return-loss characteristic was measured with changing the distance d between the isolation unit 230 and the first and second antenna elements 210 and 220 to 14 mm, 15 mm, and 16 mm in the plate board type MIMO array antenna shown in FIG. 4. Referring to FIG. 6, when the distance d is about 15mm, the return-loss characteristic satisfies a central frequency.

    [0026] FIGS. 7A and 7B are graphs comparing a return-loss characteristic of a plate board type MIMO array antenna of the present invention with a return-loss characteristic of a conventional array antenna. FIG. 7A denotes a graph illustrating a return-loss characteristic of the conventional array antenna with respect to a frequency, and FIG. 7B denotes a graph illustrating a return-loss characteristic of the plate board type MIMO array antenna of an exemplary embodiment of the present invention with respect to a frequency.

    [0027] On each of line graphs S21 of the graphs in FIGS. 7A and 7B, the loss characteristic is improved at a central frequency. Also, on each of line graphs S31, the loss characteristic is improved at the central frequency. On each of line graphs S41, the loss characteristic is improved at the central frequency.

    [0028] FIG. 8 is a graph illustrating a variation in an output gain with respect to a frequency. Referring to FIG. 8, a line graph illustrating an output gain of the conventional array antenna not including the isolation unit 130 or 230 is marked with "■", and a line graph illustrating an output gain of the plate board type MIMO array antenna of the present invention is marked with "◆." The output gain is increased at a central frequency between 5.15 GHz and 5.35 GHz with an improvement of return-loss by the isolation unit 130 or 230.

    [0029] In the exemplary embodiment described with reference to FIG. 1, two antenna elements are used. However, according to another exemplary embodiment of the present invention, two or more antenna elements may be used.

    [0030] FIG. 9 is a view illustrating a configuration of a plate board type MIMO array antenna using four antenna elements according to still another exemplary embodiment of the present invention. Referring to FIG. 9, the plate board type MIMO array antenna includes first through fourth antenna elements 310 through 340, first through fourth isolation units 350 through 380, and first through fourth feeders 391 through 394.

    [0031] The first through fourth antenna elements 310 through 340 are manufactured on a board 300. When a distance between the first and second antenna elements 310 and 320 is α, the third antenna element 330 is kept at a predetermined distance β from the second antenna element 320 in a perpendicular direction to a direction along which the first and second antenna elements 310 and 320 are disposed. Also, the fourth antenna element 340 is kept at a distance β from the first antenna element 310 and a distance α from the third antenna element 330. In other words, as shown in FIG. 9, the first through fourth antenna elements 310 through 340 are respectively manufactured on vertexes of a square having a predetermined size.

    [0032] The first through fourth feeders 391 through 394 feeding the first through fourth antenna elements 310 through 340 are also manufactured on the board 300. In this case, positions of the first through fourth isolation units 350 through 380 are determined depending on positions of the first through fourth feeders 391 through 394.

    [0033] In other words, if the first through fourth feeders 391 through 394 are respectively manufactured under the first through fourth antenna elements 310 through 340 as shown in FIG. 9, the first isolation unit 350 is positioned between the first and second antenna elements 310 and 320. As a result, the first isolation unit 350 prevents the first and second antenna elements 310 and 320 from interfering with each other.

    [0034] The second isolation unit 360 is positioned between the third and fourth antenna elements 330 and 340 to prevent the third and fourth antenna elements 330 and 340 from interfering with each other. The first and second isolation units 350 and 360 may respectively include two isolation elements 351 and 352 and two isolation elements 361 and 362 or respectively include three or more isolation elements. Configurations and operations of the first and second isolation units 350 and 360 are the same as those of the isolation unit 130 shown in FIG. 1 and thus will not be described herein.

    [0035] The third isolation unit 370 is positioned at a predetermined distance from the first and fourth antenna elements 310 and 340 to prevent the first and fourth antenna elements 310 and 340 from interfering with each other. The fourth isolation unit 380 is positioned at a predetermined distance from the second and third antenna elements 320 and 330 to prevent the second and third antenna elements 320 and 330 from interfering with each other. Configurations and operations of the third and fourth isolation units 370 and 380 are the same as those of the isolation unit 230 shown in FIG. 4 and thus will not be described herein. If the first through fourth isolation units 350 through 380 are disposed as shown in FIG. 9 to prevent the first through fourth antenna elements 310 through 340 from interfering with one another, radiation patterns may be prevented from being distorted or output efficiency may be prevented from being deteriorated.

    [0036] Values expressed by reference characters e, f, g, h, and i shown in FIG. 9 are relatively determined depending on distances α and β between horizontal and vertical lengths of the first through fourth antenna elements 310 through 340 or the like. In particular, the values expressed by the reference characters f, g, h, and i may be determined by observing the return-loss characteristic with respect to the frequency as shown in FIG. 2, 3, 5, or 6.

    [0037] FIG. 10 illustrates a prevention of an interference among the first through fourth antenna elements 310 through 340 in the plate board type MIMO array antenna shown in FIG. 9. FIG. 10 shows an operation of the plate board type MIMO array antenna at a central frequency of 5.25 GHz. As shown in FIG. 10, the plate board type MIMO array antenna is increasingly affected by an electromagnetic wave as the pattern of cross-hatching changes in the direction of the arrow.

    [0038] In a case where only the first antenna element 310 has been fed, an electric field is formed around the first antenna element 310. Referring to FIG. 10, the electromagnetic wave is propagated to the isolation elements 351 and 352 of the first isolation unit 350, the third isolation unit 370, and the second antenna element 320. If the second antenna element 320 is fed in this state, the isolation elements 351 and 352 of the first isolation unit 350 are hardly affected by the electromagnetic wave. This means that the first and second antenna elements 310 and 320 are isolated from each other by the first isolation unit 350.

    [0039] If the first and second antenna elements 310 and 320 are fed and then the third antenna element 330 is fed, the first through fourth antenna elements 310 through 340 and the first through fourth isolation units 350 through 380 are also affected by the electromagnetic wave. If the fourth antenna element 340 is fed in this state, the first through fourth isolation units 350 through 380 are hardly affected by the electromagnetic wave. Thus, the first through fourth antenna elements 310 through 340 are isolated from one another and thus prevented from interfering with one another.

    [0040] FIGS. 11A to 11D illustrate radiation patterns of the conventional MIMO array antenna not including the isolation unit. Referring to FIG. 11A, a radiation pattern of the first antenna element 310 is distorted at an angle of about 30° on the right side. FIGS. 11B to 11D respectively show that radiation patterns of the second through fourth antenna elements 320 through 340 are distorted on one side based on 0°.

    [0041] FIGS. 12A to 12D illustrate a radiation pattern of the plate board type MIMO array antenna shown in FIG. 9. FIGS. 12A to 12D respectively show radiation patterns of the first through fourth antenna elements 310 through 340. In FIGS. 12A to 12D, the radiation patterns of the first through fourth antenna elements 310 through 340 face about 0°. In other words, the first through fourth antenna elements 310 through 340 are prevented from interfering with one another by the first through fourth isolation units 350 through 380 so as to prevent the radiation patterns from being distorted.

    [0042] FIG. 13 is a graph illustrating a return-loss characteristic with respect to a frequency depending on a variation in a number of isolation elements in the plate board type MIMO array antenna shown in FIG. 1. Referring to FIG. 13, in a case where the number of isolation elements is "1," the return-loss is about -35 dB at a frequency of 5.08 GHz. In a case where the number of isolation elements is "2" and "3," the return-loss is about -45 dB, i.e., almost equal. Thus, two or more isolation elements may be disposed between two antenna elements.

    [0043] As described above, according to exemplary embodiments of the present invention, an isolation unit can be used to prevent antenna elements from interfering with each other. Thus, a radiation pattern can be prevented from being distorted, and an output gain can be increased. Also, metal layers stacked on a board can be etched in predetermined shapes so as to manufacture the isolation unit and the antenna elements. Thus, a method of manufacturing the isolation unit and the antenna elements can be simplified. Since the metal layers on the board constitute the isolation unit, the isolation unit can be almost two-dimensional plate board type. Thus, the isolation unit can be used in a subminiature MIMO system.

    [0044] The foregoing embodiments are merely exemplary and are not to be construed as limiting the present invention. Also, the description of the exemplary embodiments of the present invention is intended to be illustrative, and not to limit the scope of the claims, and many alternatives, modifications, and variations will be apparent to those skilled in the art without departing from the scope of the appended claims.


    Claims

    1. A plate board type multiple-input multiple-output, MIMO, array antenna comprising:

    a board (100, 300);

    a first antenna element (110, 310) and a second antenna element (120, 320) which are formed on the board and configured to radiate electromagnetic waves, wherein the second antenna element (120, 320) is disposed at a predetermined distance α next to the first antenna element (110, 310);

    two feeders (141, 142, 391, 392) which respectively feed the first (110, 310) and second (120, 320) antenna elements; and

    a first isolation unit (130, 350) which is configured to offset effects of the antenna elements interfering with one another;

    characterised in that

    each feeder is located spaced apart from the respective antenna element under the respective antenna element in a direction perpendicular to the direction along which the first and second antenna elements are disposed on the board, and

    the first isolation unit comprises a thin metal layer, patterned to form a plurality of bar-shaped isolation elements (131, 132, 351, 352) positioned within a space between the first and second antenna elements on the board, each symmetric with respect to a centre line between the first and second antenna elements, spaced apart from each other, and disposed pointing toward the first and second antenna elements (110, 120) along the long-axis direction of the bars.


     
    2. The plate board type MIMO array antenna of claim 1 wherein each of the plurality of bar-shaped isolation elements has a length corresponding to 1/2 of a distance between centers of the first and second antenna elements.
     
    3. The plate board type MIMO array antenna of claim 1, further comprising:

    a third antenna element (330) disposed a predetermined distance β from the second antenna element in a direction perpendicular to a direction along which the first and second antenna elements are disposed on the board;

    a fourth antenna element (340) disposed at the predetermined distance β from the first antenna element and at the predetermined distance α from the third antenna element on the board,

    a third feeder (393) and a fourth feeder (394) respectively located under the third and fourth antenna elements (330, 340);

    a second isolation unit (360) similar to the first isolation unit (130, 350) disposed between the third and the fourth antenna elements (330, 340) and which is configured to offset effects of electromagnetic waves radiated from the third and fourth antenna elements on each other;

    a third isolation unit (370) which is configured to offset effects of the electromagnetic waves radiated from the first and fourth antenna elements on each other; and

    a fourth isolation unit (380) which is configured to offset effects of the electromagnetic waves radiated from the second and third antenna elements on each other;

    wherein the third isolation unit comprises an isolation element (370) which is symmetric with respect to a centre line between the first and fourth antenna elements and disposed at a predetermined distance from each of the first and fourth antenna elements (310, 340) in a direction perpendicular to the direction along which the first and fourth antenna elements are disposed on the board, and

    wherein the fourth isolation unit comprises an isolation element (380) which is symmetric with respect to a centre line between the second and third antenna elements and disposed at a predetermined distance h from each of the second and third antenna elements (320, 330) in a direction perpendicular to the direction along which the second and third antenna elements are disposed on the board.


     


    Ansprüche

    1. Array-Antenne mit mehreren Eingängen und mehreren Ausgängen (MIMO-Array-Antenne) des Typs der Plattenplatine, umfassend:

    eine Platine (100, 300);

    ein erstes Antennenelement (110, 310) und ein zweites Antennenelement (120, 320), die auf der Platine ausgebildet sind und konfiguriert sind, um elektromagnetische Wellen abzustrahlen, wobei das zweite Antennenelement (120, 320) in einem vorbestimmten Abstand a neben dem ersten Antennenelement (110, 310) angeordnet ist;

    zwei Antennenzuleitungen (141, 142, 391, 392), die jeweils das erste (110, 310) und das zweite (120, 320) Antennenelement versorgen; und

    eine erste Isolationseinheit (130, 350), die konfiguriert ist, um Wirkungen der sich gegenseitig störenden Antennenelemente auszugleichen;

    dadurch gekennzeichnet, dass

    jede Antennenzuleitung sich in einem Abstand von dem jeweiligen Antennenelement unter dem jeweiligen Antennenelement in einer Richtung senkrecht zu der Richtung befindet, in der das erste und das zweite Antennenelement auf der Platine angeordnet sind, und die erste Isolationseinheit eine dünne Metallschicht umfasst, die strukturiert ist, um mehrere stabförmige Isolationselemente (131, 132, 351, 352) auszubilden, die in einem Raum zwischen dem ersten und dem zweiten Antennenelement auf der Platine angeordnet sind, die jeweils symmetrisch in Bezug auf eine Mittellinie zwischen dem ersten und dem zweiten Antennenelement sind, die voneinander beabstandet sind und in Richtung des ersten und zweiten Antennenelements (110, 120) entlang der Längsachsenrichtung der Stangen angeordnet sind.


     
    2. MIMO-Array-Antenne des Typs der Plattenplatine nach Anspruch 1, wobei jedes der mehreren stabförmigen Isolationselemente eine Länge aufweist, die einem 1/2 eines Abstands zwischen den Mitten des ersten und des zweiten Antennenelements entspricht.
     
    3. MIMO-Array-Antenne des Typs der Plattenplatine nach Anspruch 1, ferner umfassend:

    ein drittes Antennenelement (330), das in einem vorbestimmten Abstand β von dem zweiten Antennenelement in einer Richtung senkrecht zu einer Richtung angeordnet ist, entlang der das erste und das zweite Antennenelement auf der Platine angeordnet sind;

    ein viertes Antennenelement (340), das in dem vorbestimmten Abstand β von dem ersten Antennenelement und in dem vorbestimmten Abstand a von dem dritten Antennenelement auf der Platine angeordnet ist,

    eine dritte Antennenzuleitung (393) und eine vierte Antennenzuleitung (394), die sich jeweils unter dem dritten und dem vierten Antennenelement (330, 340) befinden;

    eine zweite Isolationseinheit (360) ähnlich der ersten Isolationseinheit (130, 350), die zwischen dem dritten und dem vierten Antennenelement (330, 340) angeordnet ist und die konfiguriert ist, um die Wirkungen aufeinander von elektromagnetischen Wellen, die von dem dritten und dem vierten Antennenelement abgestrahlt werden, auszugleichen;

    eine dritte Isolationseinheit (370), die konfiguriert ist, um die Wirkungen aufeinander der elektromagnetischen Wellen, die von dem ersten und dem vierten Antennenelement abgestrahlt werden, auszugleichen; und

    eine vierte Isolationseinheit (380), die konfiguriert ist, um die Wirkungen aufeinander der elektromagnetischen Wellen, die von dem zweiten und dem dritten Antennenelement abgestrahlt werden, auszugleichen;

    wobei die dritte Isolationseinheit ein Isolationselement (370) umfasst, das in Bezug auf eine Mittellinie zwischen dem ersten und dem vierten Antennenelement symmetrisch ist und in einem vorbestimmten Abstand von jedem des ersten und des vierten Antennenelements (310, 340) in einer Richtung senkrecht zu der Richtung angeordnet ist, in der das erste und das vierte Antennenelement auf der Platine angeordnet sind, und

    wobei die vierte Isolationseinheit ein Isolationselement (380) umfasst, das in Bezug auf eine Mittellinie zwischen dem zweiten und dem dritten Antennenelement symmetrisch ist und in einem vorbestimmten Abstand h von jedem des zweiten und des dritten Antennenelements (320, 330) in einer Richtung senkrecht zu der Richtung angeordnet ist, in der das zweite und das dritte Antennenelement auf der Platine angeordnet sind.


     


    Revendications

    1. Antenne réseau à entrées multiples et sorties multiples (MIMO) de type plaque, comprenant :

    une carte (100, 300) ;

    un premier élément d'antenne (110, 310) et un deuxième élément d'antenne (120, 320) qui sont formés sur

    la carte et configurés pour rayonner des ondes électromagnétiques, ledit deuxième élément d'antenne (120, 320) étant disposé à une distance prédéfinie a à côté du premier élément d'antenne (110,310) ;

    deux alimentations (141, 142, 391, 392) qui alimentent respectivement les premier (110, 310) et deuxième (120, 320) éléments d'antenne ; et une première unité d'isolation (130, 350) qui est conçue pour contrer les effets des éléments d'antenne interférant les uns avec les autres ;

    caractérisé en ce que

    chaque alimentation est située à distance de l'élément d'antenne respectif sous l'élément d'antenne respectif dans une direction perpendiculaire à la direction le long de laquelle les premier et deuxième éléments d'antenne sont disposés sur la carte, et la première unité d'isolation comprend une fine couche métallique, modelée pour former une pluralité d'éléments d'isolation en forme de barre (131, 132, 351, 352) positionnés dans un espace entre les premier et deuxième éléments d'antenne sur la carte, chacun symétrique par rapport à une ligne centrale entre les premier et deuxième éléments d'antenne, espacés les uns des autres, et disposés pointant vers les premier et deuxième éléments d'antenne (110, 120) le long de la direction de l'axe long des barres.


     
    2. Antenne réseau MIMO du type plaque selon la revendication 1, chacun de la pluralité d'éléments d'isolation en forme de barre possédant une longueur correspondant à 1/2 d'une distance entre les centres des premier et deuxième éléments d'antenne.
     
    3. Antenne réseau MIMO du type de plaque selon la revendication 1, comprenant en outre :

    un troisième élément d'antenne (330) disposé à une distance prédéfinie β à partir du deuxième élément d'antenne dans une direction perpendiculaire à une direction le long de laquelle les premier et deuxième éléments d'antenne

    sont disposés sur la carte ; un quatrième élément d'antenne (340) disposé à la distance prédéfinie β à partir du premier élément d'antenne et à la distance prédéfinie a du troisième élément d'antenne sur la carte,

    une troisième alimentation (393) et une quatrième alimentation (394) situées respectivement sous les troisième et quatrième éléments d'antenne (330, 340) ;

    une seconde unité d'isolation (360) similaire à la première unité d'isolement (130, 350) disposée entre les troisième et quatrième éléments d'antenne (330, 340) et qui est conçue pour contrer les effets des ondes électromagnétiques rayonnées par les troisième et quatrième éléments d'antenne l'une envers l'autre ; une troisième unité d'isolation (370) qui est conçue pour contrer les effets des ondes électromagnétiques rayonnées par les premier et quatrième éléments d'antenne l'une envers l'autre ; et une quatrième unité d'isolation (380) qui est conçue pour contrer les effets des ondes électromagnétiques rayonnées par les deuxième et troisième éléments d'antenne l'une envers l'autre ;

    ladite troisième unité d'isolation comprenant un élément d'isolation (370) qui est symétrique par rapport à une ligne centrale entre les premier et quatrième éléments d'antenne et disposé à une distance prédéfinie à partir de chacun des premier et quatrième éléments d'antenne (310, 340) dans une direction perpendiculaire à la direction le long de laquelle les premier et quatrième éléments d'antenne sont disposés sur la carte, et

    ladite quatrième unité d'isolation comprenant un élément d'isolation (380) qui est symétrique par rapport à une ligne centrale entre les deuxième et troisième éléments d'antenne et disposé à une distance prédéfinie h à partir de chacun des deuxième et troisième éléments d'antenne (320, 330) dans une direction perpendiculaire à la direction le long de laquelle les deuxième et troisième éléments d'antenne sont disposés sur la carte.


     




    Drawing




































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description