(19)
(11)EP 1 754 974 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
08.01.2014 Bulletin 2014/02

(21)Application number: 06118987.4

(22)Date of filing:  16.08.2006
(51)Int. Cl.: 
G01P 15/13  (2006.01)

(54)

Methods and systems for adjusting magnetic return path with minimized reluctance

Verfahren und Systeme zur Anpassung der magnetischen Flussrückführung mit minimaler Reluktanz

Procédés et systèmes pour ajuster la voie de retour magnétique avec une réluctance minimisée


(84)Designated Contracting States:
FR

(30)Priority: 17.08.2005 US 161815

(43)Date of publication of application:
21.02.2007 Bulletin 2007/08

(73)Proprietor: Honeywell International, Inc.
Morristown NJ 07962 (US)

(72)Inventors:
  • Dwyer, Paul W.
    Seattle, WA 98103 (US)
  • Scott, Charles
    Redmond, WA 98052 (US)

(74)Representative: Buckley, Guy Julian et al
Patent Outsourcing Limited Cornerhourse 1 King Street Bakewell
Derbyshire DE45 1EW
Derbyshire DE45 1EW (GB)


(56)References cited: : 
FR-A- 1 535 985
US-A- 4 394 405
US-A- 5 693 883
US-A- 3 702 073
US-A- 4 944 184
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] Conventional magnetic return paths for accelerometers, such as the accelerometer shown in FIGURES 1 and 2, create a flux distribution in an air gap that interacts with a coil that is attached to a flexible proof mass. The flux interacts with the current in the coil to produce a rebalance force proportional to the acceleration to which the device is subjected. The flux density across the air gap is not uniform given geometric constraints of constructing useful circuits. Further the field strength of a magnetic circuit is not constant when it interacts with the coil with changing direction of current flow. The field strength follows the minor loop slope of the magnet. If the device is subjected to vibration which can change the orientation of the coil with respect to the flux and the amplitude of the flux itself, the output of the device will change independent of the acceleration being measured. This error is called vibration rectification. For any given magnetic circuit, there is an optimum location of the coil in the field to minimize this effect. Means have been developed to cope with this problem using spacers located between the coil and the proof mass. The spacers increase the pendulosity, add cost and increase the difficulty of manufacturing. Also, the desire to minimize the output change under vibration has lead to the development of short coils that need to be extremely clean and uniformly manufactured to avoid contact with the components that define the air gap.

    [0002] Therefore, there exists a need to simplify the manufacturing and reduce the cost and complexity of interacting with the flux distribution in accelerometers of this type.

    [0003] US-A-3702073 and US-A-4944184 both disclose accelerometers employing proof masses with coils attached thereto.

    [0004] US-A-3513711 (corresponding to FR 1535985 A) discloses an accelerometer that includes two magnetic assemblies, each assembly comprising a magnetic, a pole piece, and a return path.

    [0005] US-A-5693883 discloses an electromagnetic accelerometer that includes a moving mass suspended to a peripheral frame and associated with stress gauges forming sensors for detecting the displacement of the moving mass which supports a coil, and a permanent magnet which is associated with a magnetic circuit formed by two pole pieces defining two air-gaps for channeling the magnetic field of the magnet.

    [0006] The present invention provides for an accelerometer as claimed in any of the accompanying claims.

    In the Drawings:



    [0007] 

    The preferred and alternative embodiments of the present invention are described in detail below with reference to the following drawings.

    FIGURES 1 and 2 show accelerometers formed in accordance with the prior art; and

    FIGURES 3-7 illustrate cross-sectional views of accelerometers formed in accordance with various embodiments of the present invention.

    FIGURES 3-5 illustrate cress-sectional views of various embodiments of the present invention. Shown are cross-sectional views of half of an excitation ring with a mounted magnet and pole piece. The excitation rings have been modified in order to move magnetic flux experienced between the excitation ring and the magnet pole piece closer to a planar or top surface of the excitation ring. FIGURES 3-5 shows two-piece construction that simplifies the manufacturing because complex machining tools are not needed.



    [0008] As shown in FIGURE 3, an exemplary accelerometer 113 includes an excitation ring 114, a pole piece 117, and a magnet 116. In this embodiment, the excitation ring 114 is manufactured from two pieces: a base portion 120 and a top ring 119. Prior to mounting the top ring 119 to the base 120, a groove 118 is machined out of the base portion 120 interior to the edge of a sidewall of the base 120 when attached. Because the base portion 120 is a circular disk, the groove 118 is annular. Because the return path (excitation ring 114) is manufactured in two parts, this groove can be manufactured using conventional turning methods on a lathe. Further, a similar groove can be used to bond the two pieces together with an epoxy perform or carefully applied free-form liquid epoxy without increasing the reluctance of the return path, owing to the fact that there is an excess capacity for flux in that region.

    [0009] As shown in FIGURE 4, an exemplary accelerometer 20 includes an excitation ring 22 having a top ring 30 that has been machined to remove a portion of the material to form a groove 36 on a bottom side of the ring 30 when mounted to a base section 32. The groove 36 extends approximately from the interior edge of the base section 32 some distance towards a exterior edge of the ring 30.

    [0010] As shown in FIGURE 5, an exemplary accelerometer 50 includes an excitation ring 52 having a top ring 54 that has been machined to remove a portion of the material to form a groove 60 on a bottom side of the ring 54 when mounted to a base section 56. The groove 60 extends approximately from the interior edge of the base section 56 some distance towards a center of the accelerometer 50, thereby giving the cross-sectional shape of an upper half of the excitation ring 52 a hook shape.

    [0011] As shown in FIGURE 6, an exemplary accelerometer 70 includes an excitation ring 72 having a top ring 74 that has been machined to remove a portion of the material forming a groove 80 on a bottom side of the ring 74 when mounted to a base section 76. The groove 80 is formed by a first wall located approximately at an interior edge of the base section 76 and a second wall approximately orthogonal to the first wall. The second wall is on the bottom surface the ring 74 some distance above a seam formed between the ring 74 and the base section 76, thereby making the cross-sectional shape of an upper half of the excitation ring 72 L-shaped.

    [0012] FIGURE 7 illustrates another embodiment of the present invention. An accelerometer 100 includes a one piece excitation ring 102 that has been machined at a top section to include a groove similar to the accelerometer 70 as shown in FIGURE 5. Also in this embodiment, a pole piece 106 that is mounted on top of a magnet 104 has been machined to form a groove 108 located between the magnet 104 and a flange 110 of the pole piece 106. The groove 108 and the groove in the excitation ring 102 moves magnetic flux, as shown by the flux lines, between the excitation ring 102 and the pole piece 106 closer to the planar surface of the excitation ring 102 and the pole piece 106. This allows for the use of a coil 112 that has no inactive spacer required to locate the coil in the intense magnetic field. A coil 116 that is attached to a proof mass (not shown) extends into the space between the excitation ring 102 and the magnet 104 and the pole piece 106.

    [0013] All the excitation rings with the machined grooves alone or in combination with the grooved pole piece shown in FIGURES 3-7 concentrate the flux closer to the longitudinal center of the accelerometer and closer to the proof mass. Thus, because the flux is stronger and closer to the proof mass, the coil does not need to protrude into the air gap as far as previous designs. Therefore, the coil does not need the aid of a spacer. Also, less coil (less thickness) and/or coil with a greater distance starting from the proof mass can be used in an embodiment where the length of the coil is such that the flux wanes equally at both ends.

    [0014] Various heights of the coil may be chosen. For example, coil heights between 0.121 to 0.19cm (50-75 mil) may be chosen depending upon the grooves included in the excitation ring or pole piece and desired results.


    Claims

    1. An accelerometer comprising:

    a proof mass;

    an excitation ring (102) comprising first and second sections;

    a magnet (104) mounted to the second section of the excitation ring;

    a pole piece (106) mounted on top of the magnet; and

    a coil (112) attached directly to the proof mass,

    the accelerometer characterised in that:

    the first section of the excitation ring includes an annular groove;

    the pole piece includes first and second sections, the second section of the pole piece being positioned adjacent the magnet, wherein magnet and pole piece define a groove (108) between the magnet and the first section (110), the groove (108) defined by magnet and pole piece and the groove in the excitation ring being configured to move magnetic flux closer to a planar surface of the excitation ring and the pole piece, wherein the first section (110) of the pole piece has a radius greater than the radius of the second section of the pole piece, and wherein the first section of the pole piece is adjacent to the first section of the excitation ring across a gap, and

    the coil is positioned in the gap between the first section of the excitation ring and the first section of the pole piece.


     
    2. The accelerometer of Claim 1, wherein the coil (112) extends away from the proof mass more than 0.127 cm (50 mil).
     
    3. The accelerometer of Claim 1, wherein the coil (112) extends away from the proof mass more than 0.165 cm (65 mil).
     
    4. The accelerometer of Claim 1, wherein the first and second sections of the excitation ring (102) are separate pieces and are attached by at least one of an adhesive or a weld.
     


    Ansprüche

    1. Beschleunigungsmesser, der Folgendes umfasst:

    eine Prüfmasse;

    einen Erregungsring (102), der einen ersten und einen zweiten Abschnitt umfasst;

    einen Magneten (104), der auf dem zweiten Abschnitt des Erregungsrings montiert ist;

    ein Polstück (106), das auf der Oberseite des Magneten montiert ist; und

    eine Spule (112), die direkt an der Prüfmasse befestigt ist,

    wobei der Beschleunigungsmesser dadurch gekennzeichnet ist, dass:

    der erste Abschnitt des Erregungsrings einen ringförmigen Einschnitt enthält;

    das Polstück einen ersten und einen zweiten Abschnitt enthält, wobei der zweite Abschnitt des Polstücks zu dem Magneten benachbart positioniert ist, wobei der Magnet und das Polstück einen Einschnitt (108) zwischen dem Magneten und dem ersten Abschnitt (110) definieren, wobei der Einschnitt (108), der durch den Magneten und durch das Polstück definiert ist, und der Einschnitt in dem Erregungsring konfiguriert sind, den magnetischen Fluss enger an eine ebene Oberfläche des Erregungsrings und des Polstücks zu bewegen, wobei der erste Abschnitt (110) des Polstücks einen Radius aufweist, der größer als der Radius des zweiten Abschnitts des Polstücks ist, und wobei der erste Abschnitt des Polstücks zu dem ersten Abschnitt des Erregungsrings über einen Spalt benachbart ist, und

    die Spule in dem Luftspalt zwischen dem ersten Abschnitt des Erregungsrings und dem ersten Abschnitt des Polstücks positioniert ist.


     
    2. Beschleunigungsmesser nach Anspruch 1, wobei sich die Spule (112) von der Prüfmasse über mehr als 0,127 cm (50 mil) erstreckt.
     
    3. Beschleunigungsmesser nach Anspruch 1, wobei sich die Spule (112) von der Prüfmasse über mehr als 0,165 cm (65 mil) erstreckt.
     
    4. Beschleunigungsmesser nach Anspruch 1, wobei der erste und der zweite Abschnitt des Erregungsrings (102) getrennte Stücke sind und durch einen Klebstoff und/oder eine Schweißverbindung befestigt sind.
     


    Revendications

    1. Accéléromètre, comprenant :

    une masse d'épreuve ;

    une bague d'excitation (102) comprenant des premier et deuxième segments ;

    un aimant (104) monté sur le deuxième segment de la bague d'excitation ;

    une pièce polaire (106) montée au-dessus de l'aimant ; et

    une bobine (112) fixée directement à la masse d'épreuve,

    l'accéléromètre étant caractérisé en ce que :

    le premier segment de la bague d'excitation comporte une gorge annulaire ;

    la pièce polaire comporte des premier et deuxième segments, le deuxième segment de la pièce polaire étant placé en position adjacente à l'aimant, lequel aimant et laquelle pièce polaire définissent une gorge (108) entre l'aimant et le premier segment (110), la gorge (108) définie par l'aimant et la pièce polaire et la gorge dans la bague d'excitation étant conçues pour rapprocher un flux magnétique d'une surface plane de la bague d'excitation et la pièce polaire, lequel premier segment (110) de la pièce polaire présente un rayon supérieur au rayon du deuxième segment de la pièce polaire, et lequel premier segment de la pièce polaire occupe une position adjacente au premier segment de la bague d'excitation de l'autre côté d'un écartement, et

    la bobine est placée dans l'écartement entre le premier segment de la bague d'excitation et le premier segment de la pièce polaire.


     
    2. Accéléromètre selon la revendication 1, dans lequel la bobine (112) s'étend à l'écart de la masse d'épreuve de plus de 0,127 cm (50 millièmes de pouce).
     
    3. Accéléromètre selon la revendication 1, dans lequel la bobine (112) s'étend à l'écart de la masse d'épreuve de plus de 0,165 cm (65 millièmes de pouce).
     
    4. Accéléromètre selon la revendication 1, dans lequel les premier et deuxième segments de la bague d'excitation (102) constituent des pièces distinctes et sont fixés par un adhésif et/ou une soudure.
     




    Drawing















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description