(19)
(11)EP 0 204 166 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
08.03.1989 Bulletin 1989/10

(21)Application number: 86106187.7

(22)Date of filing:  06.05.1986
(51)International Patent Classification (IPC)4C23C 18/16

(54)

Apparatus and method for monitoring electroless metall plating baths

Verfahren und Vorrichtung zur Überwachung stromloser Metallisierungsbäder

Procédé et appareillage pour le contrôle des bains de métallisation par voie chimique


(84)Designated Contracting States:
DE FR GB IT

(30)Priority: 03.06.1985 US 740922

(43)Date of publication of application:
10.12.1986 Bulletin 1986/50

(73)Proprietor: International Business Machines Corporation
Armonk, N.Y. 10504 (US)

(72)Inventors:
  • Capwell, Robert John
    Vestal, N.Y. 13850 (US)
  • Rickert, Robert George
    Endwell, N.Y. 13760 (US)

(74)Representative: Oechssler, Dietrich (DE) 
Odenwald 5
D-73630 Remshalden
D-73630 Remshalden (DE)


(56)References cited: : 
US-A- 4 477 484
  
  • IBM TECHNICAL DISCLOSURE BULLETIN, vol. 25, no. 10, March 1983, pages 5036-5037, New York, US; Z.KOVAC et al.: "Electroless plating rate monitor"
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The invention relates to an apparatus and a method for determining the probable plating rate and quality of electroless metall plating baths.

[0002] Electroless plating baths are used to coat non-metallic parts or parts having small intricate shapes. Once plating is initiated, the process is thermodynamically and kinetically driven and deposits a layer of metal uniformly over the immersed parts. Electroless plating is frequently employed to fabricate copper printed circuits.

[0003] Plating with an electroless bath, such as in the formation of printed circuits, requires careful sensitization of the substrates and vigilant maintenance of the bath constituents within narrow ranges as to proportionalities and temperature. Sensitization of the areas to be plated includes treatment with a solution of a colloidal metal and then an acceleration step to remove inactive components of the colloid from the sensitized substrate. After suitable rinsing, the sensitized substrate is immersed in the electroless bath where plating is initiated autocata- lytically and builds to the desired thickness. Thereupon the substrate is removed and rinsed.

[0004] An effective and efficient plating process requires frequent monitoring to insure that the proportions of the constituents are maintained within a narrow tolerance. Although there are instruments and techniques to determine the approximate status of the baths, there occur undetected imbalances or variations in both the sensitization process or electroless bath composition that prevent the deposition of a uniform layer of metal over the entire seeded areas. Voids are typically the result.

[0005] One difficulty has been to accurately determine whether the electroless bath is in "take," that is, whether the bath will initiate and continue metal deposition on the seeded surface in a desired and normal manner. This has been done typically by removing and inspecting the immersed parts for coating quality but with the disadvantages that much time has been lost and, if the plating is defective or unsatisfactory, the work pieces must be scraped. Another method has been to measure resistance of the plating by determining the decrease in resistance of a plurality of seeded hole walls arranged in a series circuit, as in U.S. Patent 4 477 484. This method shortens the determination time but still requires prolonged immersion to effect a relatively thick, low resistance coating. Some other monitoring schemes for autocatalytic plating baths are described in U. S. Patents 3 375 178 where plating is noted to occur as long as bath pH is maintained and the difference in potential between a metal part to be plated and an inert reference electrode remains above a predetermined threshold; 4 331 699 where charge dissipation is observed served with respect to time and reaction resistance is calculated a plurality of times to project a rate of plating; 4 182 638 where a metal substrate reacts with a constituent of a coating solution and the magnitude of current flow is used to maintain constituent concentrations; and 4 125 642 where potential difference between a conductive tank and non-catalytic probe is measured as an indication of accumulated decomposition products, but not plating activity. Such schemes, however, fail to suggest a manner in which to quickly determine the efficiency of an electroless plating bath with respect to seeded non-metallic substrates.

[0006] It is accordingly a primary object of this invention to provide an improved method of rapidly determining the "take" or effectiveness of an electroless or autocatalytic chemical plating bath to deposit metal on a seeded work piece.

[0007] Another object of this invention is to provide a method of indicating "take" or effectiveness of an electroless or autocatalytic chemical plating bath by measuring the difference in electrical potential between a substrate surface seeded to induce deposition of a metal and an electrode of the metal to be plated by the bath while both substrate and electrode are immersed in the bath.

[0008] Another object of this invention is to provide a method and apparatus for rapidly indicating the probable plating ability of a copper electroless plating bath by observing the change with respect to time in electrical potential difference between a substrate surface seeded to induce copper deposition thereon and a copper electrode while the substrate and electrode are immersed in the bath.

[0009] Yet another object of this invention is to provide apparatus for determining the "take" of an electroless plating bath by measuring the difference in potential between an immersed first substrate having a non-metallic seeded surface and an immersed second substrate of the same metal as deposited by the bath.

[0010] These objects are achieved by an apparatus as defined in claim 1 and by a method as described in claim 5.

[0011] Upon initial immersion of the substrates, the non-metallic substrate is at a different potential with respect to the metal substrate. If the bath is in "take," that is, capable of and is depositing metal ions onto the seeded surface at the usual efficiency, the difference in potential will quickly be decreased within a few minutes after immersion to indicate a reversed polarity of small, but nearly negligible, difference while plating continues. The decrease in difference in potential appears to occur at the completion of a molecular monolayer on the treated surface. Time values until the change in polarity can be compared with those of former satisfactory and unsatisfactory depositions to determine the potential plating quality of the bath.

[0012] This invention has the advantage of requiring merely a few minutes to indicate the capability and probable quality of an electroless plating bath and its product. Fewer work pieces will be scraped because of plating voids and defects, and plating baths can be maintained at a higher efficiency. Voltage differences are an easily discernible property that does not require calculation, extensive training, or raise a question of subjective interpretation. Optionally, the sensed difference in potential can be used to actuate an automated indicator.

[0013] Advantageous embodiments of the inventive apparatus and the inventive method are disclosed in the subclaims.

[0014] The invention will become more apparent from the following more particular description of a preferred embodiment of the invention as illustrated in the accompanying drawing.

Fig. 1 is a schematic diagram of test coupons, partly broken away to illustrate construction, immersed in a plating bath in accordance with the principles of the invention;

Fig. 2a and 2b are wave forms of the types of change in electrical potential between the coupons of Fig. 1 that can occur with respect to time during metal deposition.



[0015] Referring to Fig. 1, there is shown apparatus for determining the effectiveness or "take" of an electroless or chemical plating bath 10 contained in an inert tank 11 and in which is suspended a pair of test substrates, indicated generally as 12 and 13. In the illustrated embodiment copper is to be plated and bath 10 typically contains constituents such as copper sulfate, sodium hydroxide, sodium cyanide, formaldehyde, a wetting agent and ethylenediamine tet- ra acetic acid, all held in a temperature range of 60° to 80°C. Copper molecules will deposit onto previously prepared surfaces of work pieces immersed therein, such as circuit panels. Because the proportions of constituents changes with use, even with replenishment, or the work piece preparation process is improper, the rate and quality of deposition is not constant nor certain for each new batch of work pieces to be plated. To avoid lost time and a costly scrape rate, the "take" or ability of the bath to deposit metal should be determined before plating is attempted. This is done by the temporary immersion of test substrates 12 and 13.

[0016] Substrate 12 simulates a small circuit panel or card by being an insulative base 14, such as cured epoxy with imbedded glass fibers or cloth, a layer 15 of copper laminated to one surface 16, and a plurality of plated through holes 17 connecting with the copper layer and extending through the substrate so as to be flush with the opposite substrate surface 18. A conductor 19 having an insulating coating is conductively secured, as by soldering, to copper layer 15. The substrate is sensitized by immersion in stannous and palladium chloride solutions to produce a "seeded" surface that has sites at which copper plating will start. The sensitizing process is preferably the same as that used for the work pieces or panels to be plated. An inert insulative coating 20, such as phenoxy, is applied over the conductor- copper surface joint and copper layer 15 to prevent contact with the bath. Coating 20 is also forced in the plated holes to a point flush with surface 18. This coating allows only sensitized surface 18 to be exposed to the electroless plating bath.

[0017] Substrate 13 is merely a copper foil or plate 21 that may be optionally laminated to a supporting substrate 22. The foil is secured to a conductor 23 having an insulative covering. Unattached ends of conductors 19 and 23 are connected to a respective terminal of a recording millivolt meter 24. A strip chart recorder is also a convenient instrument for providing a record. Taking care to avoid mutual contact or grounding, the coupons are immersed in the bath in tank 11. Continual bath agitation is desirable during both the determination of the plating characteristics and subsequent plating of work pieces to achieve a faster, more uniform deposition.

[0018] When the substrates are placed in the bath, the voltage of the seeded coupon will indicate a potential of approximately 100-150 millivolts that is negative relative to the potential of copper substrate 13 as seen at 25 on the voltage wave form in Fig. 2a. That relationship holds for approximately 3 to 7 minutes with a slight decrease in the voltage difference, as at 26. During this time, copper ions are attaching to the seed sites on surface 18. At the conclusion of this time, a monolayer of copper molecules apparently covers nearly the entire surface 18 and the potential difference decreases at a relatively fast rate, as seen at 27 on the voltage wave form. When the monolayer completes its growth, the potential difference passes beyond the zero level to an opposite polarity of approximately five millivolts. Such a phenomenon appears to be caused by a potential drop across the thin seed layer on surface 18.

[0019] Failure of a bath to "take" will be indicated by a wave form, such as shown in Fig. 2b, which indicates delayed formation of a monolayer. An absence of a definite voltage transition or abrupt decrease is noted and the change in potential is more gradual. This may be due either to the bath or seeding process. By comparing the results obtained with a history of prior wave forms and corresponding plating quality, accurate conclusions can readily be drawn in approximately five to ten minutes. The time from initial immersion of the substrates until the change in polarity can be easily indicated by also connecting the substrate leads to a a voltage comparator circuit whose changing output is used to turn on and off a timer to indicate the elapsed time. When initially immersed, the potential difference is used as a start signal and, when relative polarity changes, the signal serves to stop the timer and actuate an alarm. With this arrangement, automatic timing is obtained and continual operator observance is not required.

[0020] Seeded substrates 12 can be made by various processes. They may be made by cutting large panels into several small pieces. Copper layer 15 can be plated up or laminated as a foil, but it is desirable that a plurality of plated through-holes be conductively connected with layer 15 to provide a corresponding plurality of paths to seeded surface 18. Surface 18 is also preferably the only exposed portion of substrate 12 that will initiate plating. Substrate seeding should be done in the same manner as the work product to assure test validity.

[0021] The disclosed technique readily accommodates variations in bath activity due to rejuvenation or use because the elapsed time from initialimmersion of the substrates until the rapid shift in potential is not critical within a range of several minutes. Probable bath performance is indicated principally by the occurrence of the rapid potential shift. The time within which the shift should occur will be determined by a history of wave forms and their corresponding plating qualities. Test substrates as disclosed may be placed in the electroless bath at the same time work pieces are immersed, if desired.


Claims

1. Apparatus for use in determining plating characteristics of an electroless metal plating bath (10) comprising:

a tank (11) containing the electroless plating bath (10);

a first substrate (13) having a surface of metal the same as the metal to be plated by said bath (10) and immersible in said bath (10);

a second substrate (12) having a surface seeded to initiate autocatalytic deposition of metal thereon from said bath (10) when immersed therein; and

means (24) for measuring as a function of time the difference in electrical potential between said metal surface of said first substrate (13) and said seeded surface (18) of said second substrate (12) when said first and second substrates are concurrently immersed in said bath (10).


 
2. Apparatus according to claim 1, wherein a plurality of conductors extend through said second substrate (12) to connect with said seeded surface (18).
 
3. Apparatus according to claim 1 or 2, wherein said bath (10) in an electroless copper plating bath and said surface of said first substrate (13) is copper, and said seeded surface (18) of said second substrate (12) has been treated to initiate autocatalytic copper plating thereon by said bath (10).
 
4. Apparatus according to any one of claims 1 to 3, wherein said second substrate (12) is identical in surface seeding treatment to work pieces to be plated in said bath (10).
 
5. Method of determining plating characteristics of an electroless metal plating bath (10) comprising the steps of:

placing in said bath a first substrate (13) having a surface of metal the same as the metal to be plated by said bath (10);

placing in said bath (10) with said first substrate (13) a said second substrate (12) having a surface (18) seeded to initiate autocatalytic deposition of metal from said bath (10) thereon; and measuring the difference in electrical potential between said surface of metal of said first substrate (13) and said seeded surface (18) of said second substrate (12) as a function of immersion time during plating of said bath (10).


 
6. Method according to claim 5, wherein said bath (10) is an electroless copper plating bath and said surface of said first substrate (13) is copper.
 
7. Method according to claim 5 or 6, wherein said surface (18) of said second substrate (12) has been seeded in a bath of stannous and palladium chlorides.
 
8. Method according to claims 6 or 7, wherein the surface (18) of said second substrate (12) has been seeded in a process to initiate deposition of copper when placed in an electroless copper plating bath.
 
9. Method according to any one of claims 5 to 8 further including the step of terminating said measurement step when the polarity of said potential difference changes from the initially indicated polarity.
 
10. Method according to any one of claims 5 to 9 further including the step of comparing said potential difference values versus time with known values.
 


Ansprüche

1. Anordnung für die Bestimmung der Plattiereigenschaften eines Bades (10) zur stromlosen Metallplattierung, folgendes enthaltend:

einen Tank (11) mit dem Bad (10) zur stromlosen Metallplattierung;

ein erstes Substrat (13), dessen Oberfläche aus demselben Metall ist wie das, welches mittels des Bades (10) aufplattiert werden soll, und das in das Bad (10) eingetaucht werden kann;

ein zweites Substrat (12), dessen Oberfläche bekeimt ist, um seine autokatalytische Metallbeaufschlagung durch das Bad (10) bei seinem Eintauchen in dasselbe einzuleiten; und

Mittel (24), um die Differenz des elektrischen Potentials zwischen der Metalloberfläche des ersten Substrats (13) und der bekeimten Oberfläche (18) des zweiten Substrats (12) als eine Funktion der Zeit zu messen, wenn das erste und das zweite Substrat gleichzeitig in das Bad (10) getaucht werden.


 
1. Anordnung nach Anspruch 1, bei der sich mehrere Leiter durch das zweite Substrat (12) erstrecken, um die Verbindung mit der bekeimten Oberfläche herzustellen.
 
3. Anordnung nach Anspruch 1 oder 2, bei der das Bad (10) ein Bad zur stromlosen Kupferplattierung und die Oberfläche des ersten Substrats (13) aus Kupfer ist, und bei der die bekeimte Oberfläche (18) des zweiten Substrats so behandelt wurde, daß ein autokatalytischer Kupferplattierungsvorgang durch das Bad (10) darauf ausgelöst wird.
 
4. Anordnung nach einem der Ansprüche 1 bis 3, bei der das zweite Substrat (12) bezüglich der Oberflächenbekeimung mit in diesem Bad (10) zu plattierenden Werkstücken identisch ist.
 
5. Verfahren zum Bestimmen der Plattierungseigenschaften eines Bades (10) zur stromlosen Metallplattierung, folgende Schritte umfassend:

Eintauchen eines ersten Substrats (13) in das Bad, dessen Oberflächenmetall dasselbe ist wie das, das mittels des Bades (10) plattiert werden soll;

Eintauchen des zweiten Substrats (12) in das Bad (10), in dem sich das erste Substrat (13) befindet, wobei das zweite Substrat eine Oberfläche (18) hat, welche bekeimt ist, um eine autokatalytische Metallbeschichtung durch das Bad (10) darauf einzuleiten;

während des Plattierens durch das Bad (10) Messen der Differenz des elektrischen Potentials zwischen der Metalloberfläche des ersten Substrats (13) und der bekeimten Oberfläche (18) des zweiten Substrats (12) als eine Funktion der Eintauchzeit.


 
6. Verfahren nach Anspruch 5, bei dem das Bad (10) ein Bad zur stromlosen Kupferplattierung und die Oberfläche des ersten Substrats (13) aus Kupfer ist.
 
7. Verfahren nach Anspruch 5 oder 6, bei dem die Oberfläche (18) des zweiten Substrats (12) in einem Zinndichlorid und Palladiumchlorid enthaltenden Bad bekeimt wurde.
 
8. Verfahren nach Anspruch 6 oder 7, bei dem die Oberfläche (18) des zweiten Substrats (12) bekeimt wurde, um bei seinem Eintauchen in ein Bad zur stromlosen Kupferplattierung die Beschichtung mit Kupfer einzuleiten.
 
9. Verfahren nach einem der Ansprüche 5 bis 8, bei welchem der Messvorgang abgeschlossen wird, wenn sich die Polarität der Potentialdifferenz von der ursprünglich angezeigten Polarität unterscheidet.
 
10. Verfahren nach einem der Ansprüche 5 bis 9, bei welchem die Werte der Potentialdifferenz gegen die Zeit mit bekannten Werten verglichen werden.
 


Revendications

1. Appareillage utilisable pour la détermination des caractéristiques de métallisation d'un bain de métallisation chimique (10) comprenant:

une cuve (11) contenant le bain de métallisation chimique (10);

un premier substrat (13) comportant une surface formée d'un métal identique au métal à déposer par ledit bain (10) et pouvant être immergé dans ledit bain (10);

un second substrat (12) comportant une surface ensemencée pour amorcer un dépôt autocatalytique de métal sur elle en provenance dudit bain (10) lors d'une immersion dans celui-ci; et

un moyen (24) pour mesurer en fonction du temps la différence de potentiel électrique entre ladite surface métallique dudit premier substrat (13) et ladite surface ensemencée (18) dudit second substrat (12) quand lesdits premier et second substrats sont simultanément immergés dans ledit bain (10).


 
2. Appareillage selon la revendication 1, dans lequel une pluralité de conducteurs s'étendent au travers dudit second substrat (12) pour une liaison avec ladite surface ensemencée (18).
 
3. Appareillage selon une des revendications 1 ou 2, dans lequel ledit bain (10) est un bain de métallisation chimique de cuivre et ladite surface dudit premier substrat (13) est formée de cuivre, et en ce que ladite surface ensemencée (18) dudit second substrat (12) a été traitée pour amorcer une métallisation autocatalytique de cuivre sur elle par ledit bain (10).
 
4. Appareillage selon une quelconque des revendications 1 à 3, dans lequel ledit second substrat (12) subit un traitement d'ensemencement de surface qui est identique à celui des pièces à métalliser dans ledit bain (10).
 
5. Procédé de détermination de caractéristiques de métallisation d'un bain de métallisation chimique (10) comprenant les étapes consistant à:

placer dans ledit bain un premier substrat (13) comportant une surface formée d'un métal identique au métal à métalliser par ledit bain (10);

placer dans ledit bain (10), avec ledit premier substrat (13), un second substrat (12) comportant une surface (18) ensemencée pour amorcer sur elle un dépôt autocatalytique du métal provenant dudit bain (10); et

mesurer la différence de potentiel électrique entre ladite surface métallique dudit premier substrat (13) et ladite surface ensemencée (18) dudit second substrat (12) en fonction du temps d'immersion pendant la métallisation dudit bain (10).


 
6. Procédé selon la revendication 5, dans lequel ledit bain (10) est un bain de métallisation chimique de cuivre et ladite surface dudit premier substrat (13) est en cuivre.
 
7. Procédé selon la revendication 5 ou 6, dans lequel ladite surface (18) dudit second substrat (12) a été ensemencée dans un bain de chlorures d'étain et de palladium.
 
8. Procédé selon les revendications 6 ou 7, dans lequel la surface (18) dudit second substrat (12) a été ensemencée dans un processus d'amorçage d'un dépôt ce cuivre quand il est placé dans un bain de métallisation chimique de cuivre.
 
9. Procédé selon une quelconque des revendications 5 à 8, comprenant en outre l'étape de terminaison de ladite étape de mesure quand la polarité de ladite différence de potentiel change par rapport à la polarité initialement indiquée.
 
10. Procédé selon une quelconque des revendications 5 à 9, comprenant en outre l'étape de comparaison desdites valeurs de différence de potentiel en fonction du temps avec des valeurs connues.
 




Drawing