(19)
(11)EP 1 798 567 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
21.03.2018 Bulletin 2018/12

(21)Application number: 06124183.2

(22)Date of filing:  16.11.2006
(51)Int. Cl.: 
G01S 7/40  (2006.01)
G01S 13/88  (2006.01)
G01S 7/35  (2006.01)

(54)

Systems and methods for self-calibrating a radar altimeter

Systeme und Verfahren zur Selbstkalibrierung eines Radar-Höhenmessers

Systèmes et procédés d'autocalibrage d'un altimètre radar


(84)Designated Contracting States:
DE FR GB IT

(30)Priority: 19.12.2005 US 306183

(43)Date of publication of application:
20.06.2007 Bulletin 2007/25

(73)Proprietor: HONEYWELL INC.
Morristown NJ 07960 (US)

(72)Inventor:
  • Vacanti, David C.
    Renton, WA 98058 (US)

(74)Representative: Houghton, Mark Phillip et al
Patent Outsourcing Limited 1 King Street
Bakewell, Derbyshire DE45 1DZ
Bakewell, Derbyshire DE45 1DZ (GB)


(56)References cited: : 
US-A- 3 427 615
US-A- 4 945 360
US-A- 6 072 426
US-A1- 2005 003 785
US-B1- 6 384 770
US-A- 4 806 935
US-A- 5 160 933
US-A1- 2004 135 703
US-B1- 6 255 984
US-B1- 6 437 730
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] Frequency Modulated/Continuous Wave (FM/CW) Radar Altimeters need ways in which to verify proper operation and accuracy of data supplied to aircraft flight controls. In the current radar altimeters, self-calibration is performed in an open loop manner using Bulk Acoustic Wave (BAW) devices. The present open loop design requires hand tuning of a Voltage Control Oscillator (VCO) based on an analysis of the outputted signal as compared to an expected signal. Components of the open loop system, such as the BAW are relatively expensive and fail to allow detection of non-linearities in tuning, absolute frequency errors, frequency drift versus temperature, and receiver amplitude/phase errors.

    [0002] US6437730AB discloses a system for checking an FM/CW type radio altimeter in which monitoring and checking of the quality of separate transmission and reception antenna installations and associated connecting cables is possible. US3427615 discloses a Doppler radar altimeter which uses a simulated signal for cancelling internal phase errors. US5160933 discloses simulating the return of a target at different altitudes for self-calibrating a pulse radar altimeter. Therefore, there exists a need to replace expensive BAW devices and to implement a calibration system that more effectively corrects inaccuracies.

    [0003] In a first aspect, the invention consists in a method for determining calibration factors for a radar system, the method comprising the steps of:
    1. a) generating a simulated return signal based on one or more range values;
    2. b) generating a transmission radar signal; and
    3. c) determining one or more calibration factors based on the simulated return signal, the transmission radar signal, and ideal return signal characteristics.


    [0004] In a second aspect, the invention consists in a radar system for performing self calibration, the system comprising:

    a first component configured to generate a simulated return signal based on one or more range values;

    a transmitter configured to generate a transmission radar signal;

    a receiver configured to process the simulated return signal based on the transmission radar signal; and

    a second component configured to determine one or more calibration factors based on the processed simulated return signal and ideal return signal characteristics.



    [0005] Preferably, the transmission radar signal is a fixed frequency signal and the first component includes a programmable frequency divider that creates at least one sideband of a known signal.

    [0006] Preferably, a third component determines if the radar system is in at least one of a calibration mode or a normal mode of operation. If the radar system is determined to be in a normal mode of operation, a fourth component applies the determined calibration factors to actual radar return signals.

    [0007] The preferred and alternative embodiments of the present invention are described in detail below with reference to the following drawings.

    FIGURES 1-3 illustrate block diagrams of system components formed in accordance with embodiments of the present invention;

    FIGURE 4 illustrates a flow diagram of a process performed by the system components shown in FIGURES 1-3 in accordance with an embodiment of the present invention;

    FIGURE 5 illustrates a graph of an example signal processed by the receiver as compared to an ideally recovered signal; and

    FIGURE 6 illustrates example received signal corrections performed according to an embodiment of the present invention.



    [0008] FIGURES 1 and 2 illustrate an example of a self-calibrating, radar altimeter 20 used in an aircraft 18 and formed in accordance with an embodiment of the present invention. The radar altimeter 20 includes a transmitter 24, a receiver 26, and a signal simulator 34. If the radar altimeter 20 is a single antenna radar altimeter, then the altimeter 20 includes a signal circulator 30 and a single antenna 32. Dual antenna radar systems may be used.

    [0009] During normal operation of the radar altimeter 20, the transmitter 24 generates a radar signal that is radiated by the antenna 32. The antenna 32 then receives a delayed response of the transmitted signal and sends it to the receiver 26 via the circulator 30. The receiver 26 processes the delayed response signal and then delivers it to a signal processor 36 and then to other aircraft systems 38. This normal mode of operation occurs when the radar altimeter 20 is activated within a pre-defined distance above the ground. When the aircraft 18 is outside of threshold limits for the normal mode of operation for the radar altimeter 20, the radar altimeter 20 is placed in a calibration mode. The signal processor 36 determines the altitude above the ground and determines the mode of operation in addition to monitoring status signals from the aircraft, such as "Landing Gear on Ground" and "Barometric Altitude".

    [0010] In the calibration mode of operation, the signal simulator 34 generates response signal and sends it to the receiver 26 via a coupler 78 and the circulator 30. The transmitter 24 generates a fixed frequency signal that is compared to the signal generated by the signal simulator 34 in the receiver mixer 100 (FIGURE 3). The signal processor 36 generates calibration factors if the signal outputted by a Fast Fourier Transform (FFT) 108 (FIGURE 3) differs from an ideal signal level. Then, during normal operation of the radar altimeter 20, the determined calibration factors stored in signal processor memory are applied by the signal processor 36 to the signals produced by the FFT 108.

    [0011] FIGURE 2 illustrates components of the transmitter 24 and signal simulator 34 for performing the signal generations during the calibration mode of operation. When an external controller, such as a Programmable Logic Device (PLD) 64, is commanded into a calibration mode of operation, a signal is sent to a Direct Digital Synthesizer (DDS) 40 that is included in the transmitter 24. In response, the DDS 40 generates a fixed frequency signal that is mixed with a clock signal from a clock 42 at a mixer 44. The sum of the clock signal and the DDS signal forms the reference frequency 46. The reference signal causes the digital phase lock loop 48 to generate the required microwave output signal from the transmitter 24. The output of the digital phase lock loop 48 is sent through a Band Pass Filter (BPF) 50 and outputted from the transmitter 24 to the circulator 30. The clock signal is also sent to the signal simulator 34. The signal simulator 34 divides the clock signal by a first frequency divider 54 and passes the divided signal through a first switch 56 if the PLD 64 determines the system 20 is in a calibration mode of operation. If the system 20 is not in a calibration mode of operation, the receive signal is just sent to a 50 ohm resistive load termination 58. If the switch 56 is activated, the divided clock signal is further divided at a second frequency divider 60 and the results are passed through a programmable frequency divider 62 that is controlled by the PLD 64. The output of the programmable frequency divider 62 is a signal that includes side bands across a frequency range that correspond to expected frequencies in the receiver during normal operation. The output of the programmable frequency divider 62 is used to modulate an attenuated sampling (see coupling device) of the output of the transmitter 24 at a first attenuator 68. A second switch 70 controlled by the PLD 64 allows for transmitter signal sampling. If the switch 70 is in the off position, the sampled transmitter signal is terminated at a 50 ohm resistive load termination 72 - other resistive load terminations may be used. The modulation is performed at a modulator 66 and is attenuated at a second attenuator 74. The modulated signal is sent to the circulator 30 via the coupler 78 to be received at the receiver 26 after passing through a Band Pass Filter (BPF) 76. The receiver 26 also receives the transmission signal outputted by the transmitter 24 that acts as the receiver reference signal. The programmable frequency divider 62 generates one desired frequency at a time that corresponds to one expected frequency in the receiver 26 during operation. By sequentially changing the commanded frequency division performed by the frequency divider 62, the simulator can generate the entire expected frequency range of the receiver 26, thereby permitting the amplitude calibration of the receiver 26 across the entire operating band.

    [0012] FIGURE 3 illustrates an example of components included within the receiver 26. The receiver 26 includes a double balance mixer 100 that receives the output of the BPF 76. The mixer 100 also receives a sample of the transmission signal as outputted from the transmitter 24 and mixes the two signals to produce an Intermediate Frequency signal (IF). IF = RF Frequency (Radio Frequency delayed received signal from BPT 76) - LO Frequency (Local Oscillator sampled transmitter signal.

    [0013] The output of the mixer 100 is sent to a Low Noise Amplifier (LNA) 102. A low noise amplifier provides gain while contributing a very small amount of thermal noise to the received signal, usually less than 2dB above the minimum theoretical noise power. The output of the LNA 102 is sent to a High Pass Filter (HPF) 104; that is designed to provide a 6 dB per frequency octave transfer function. The HPF output is sent to an analog to digital (A/D) converter 106. The digital output of the A/D converter 106 is sent through a Fast Fourier Transform (FFT) 108 to produce a digital version in the frequency domain. The output of the FFT 108 includes real (Re) and imaginary (Im) parts of the frequency that are used to calculate amplitude or phase. For example, Amp = Re2 + Im2. The results of the amplitude determination are compared to ideal results for the amplitude that should be received by the receiver 26. This is described in more detail by example in FIGURE 5 below.

    [0014] FIGURE 4 illustrates a flow diagram of a process 180 as performed by the radar system 20 shown above in FIGURES 1-3. First, at a block 182, the self-calibration mode is initiated. Next, at a block 184, a fix frequency radar signal is generated. This fixed frequency radar signal is generated by the transmitter 24. At a block 188, a simulated return signal is generated. The simulated return signal is generated by the simulator 34. At a block 190, an amplitude calibration factor is determined based on the generated fixed frequency radar signal and the simulated return signal. The step performed at a block 190 is performed by the signal processor 36. At a block 192, the determined amplitude calibration factor is stored for later use during the normal mode of operation by the signal processor 36. At a decision block 194, the process 180 determines if all of the ranges (simulated return signal frequencies) have been analyzed. If not all of the ranges have been analyzed, then the process 180 goes to the block 196 where other simulated return signals are generated in order to simulate other ranges. If at the decision block 194 all of the ranges have been analyzed, then at a block 200, the calibration factors are applied to actual receive signals during the normal mode of operation.

    [0015] The following is an example of operation of the system components shown above in FIGURES 1-3. In this example, the DDS 40 is instructed to generate a fixed frequency signal between 83 to 104 MHz, preferably 93.777 MHz. The clock signal is 384 MHz and when mixed with the output of the DDS 40 at the mixer 44, a 477.77 MHz signal is generated if the preferred DDS output is used. A 477.77 MHz signal is sent to the digital phase lock loop 48. The digital phase lock loop 48 multiplies the reference 477.77 MHz signal by a fixed factor, (in this case 9) to produce a 4.300 GHz signal.

    [0016] In the signal simulator 34, the first frequency divider 54 steps the clock signal of 384 MHz down to 96 MHz. The second frequency divider 60 divides the signal by 128 and thus outputs a 0.75 MHz signal. The programmable frequency divider 60 outputs side bands at 11 KHz steps depending upon an instruction signal received from the PLD 64. The output of the programmable frequency divider 62 modulates an attenuated 4.3 GHz signal outputted by the transmitter 24 attenuated at the attenuator 74 in order to produce a 4.3 GHz signal having side bands at multiples of 11 KHz offsets as dictated by the output of the programmable frequency divider 62.

    [0017] When the mixer 100 of the receiver 26 subtracts the unmodulated sample signal from the transmitter 24 from the modulated simulator signal injected at the coupler 78 (via the circulator 30 and the BPF 76), only the original sideband generated by the programmable divider 62 remains. This desired sideband lies within the passband of the LNA 102 and the HPF 104 and is processed by the FFT 108.

    [0018] Now referring to FIGURE 5, an ideal amplitude response signal 240 is compared to an amplitude curve generated from the FFT at side band octaves based on an initial first octave of 11 KHz. The rise in slope of the ideal amplitude curve 240 is six decibels between octaves. An example of the output of the FFT 108 is the actual signal 244. The calibration factor is determined by comparing the actual amplitude curve 244 to the ideal amplitude curve 240 and taking the difference of the two in order to force the actual amplitude curve 244 to be linear like the curve 240. So by way of this example, the correction factor for the first octave 1F would be determined as follows. The amplitude of 1F is seen to be approximately -2dB too low. Thus, applying that calibration factor of - +2dB will amplify the response of 1F such that it just matches the ideal curve 240. The same would occur for the other octave positions in order to determine the calibration factor. Once the calibration factor is determined for each of the octaves, then the calibration factor is applied to an actual signal during normal radar altimeter operation.

    [0019] This is shown by example in FIGURE 6C. FIGURE 6A illustrates the FFT results 260 for an actual radar signal. FIGURE 6B illustrates calibration factors 262 that were previously determined for the receiver 26 and FIGURE 6C shows the corrected results 264 when combining the calibration factors to the actual signal.

    [0020] Calibration factors for phase may also be generated in a similar manner as to that of amplitude except that the following equation applies: Phase = ATAN (Re ÷ Im).


    Claims

    1. A method for self-calibrating a radar system (20), the method comprising the steps of:

    providing a radar system comprising a Frequency Modulated Continuous Wave (FMCW) radar altimeter system that comprises a receiver (26) for processing a simulated return signal based on a transmission radar signal, the receiver comprising:

    a mixer (100) configured to receive the simulated return signal and the transmission radar signal;

    a low noise amplifier (102) coupled to an output of the mixer;

    a high pass filter (104) coupled to an output of the low noise amplifier;

    an analog to digital converter (106) coupled to an output of the high pass filter; and

    a fast Fourier transform unit (108) coupled to an output of the analog to digital converter; and

    generating calibration factors for the radar system by a method comprising:

    a) generating (188) the simulated return signal based on one or more range values;

    b) generating (184) the transmission radar signal; and

    c) determining (190) one or more calibration factors (262) based on the simulated return signal, the transmission radar signal, and ideal return signal (240) characteristics.


     
    2. The method of Claim 1, wherein the transmission radar signal is a fixed frequency signal and generating (188) the simulated return signal includes programmably frequency dividing a known signal and modulating the transmission radar signal based on the divided known signal.
     
    3. The method of Claim 1, wherein the one or more calibration factors (262) include at least one amplitude calibration factor.
     
    4. The method of Claim 1, further comprising:

    determining if the radar system is in at least one of a calibration mode or a normal mode of operation; and

    performing steps (a)-(c) if the radar system (20) is determined to be in the calibration mode of operation.


     
    5. The method of Claim 4, further comprising applying (200) the determined calibration factors (262) to actual radar return signals (244), if the radar system is determined to be in a normal mode of operation.
     
    6. A radar system (20) for performing self calibration, the system comprising:

    a first component (34) configured to generate a simulated return signal based on one or more range values;

    a transmitter (24) configured to generate a transmission radar signal;

    a receiver (26) configured to process the simulated return signal based on the transmission radar signal, the receiver comprising:

    a mixer (100) configured to receive the simulated return signal and the transmission radar signal;

    a low noise amplifier (102) coupled to an output of the mixer;

    a high pass filter (104) coupled to an output of the low noise amplifier;

    an analog to digital converter (106) coupled to an output of the high pass filter; and

    a fast Fourier transform unit (108) coupled to an output of the analog to digital converter; and

    a second component (36) configured to determine one or more calibration factors (262) based on the processed simulated return signal and ideal return signal (240) characteristics;

    wherein the radar system comprises a Frequency Modulated Continuous Wave (FMCW) radar altimeter system.


     
    7. The system of Claim 6, wherein the transmission radar signal is a fixed frequency signal, the first component (34) includes a programmable frequency divider (62) configured to create at least one sideband of a known signal and the first component is further configured to modulate the transmission radar signal based on the created at least one sideband of the known signal.
     
    8. The system of Claim 6, wherein the one or more calibration factors (262) include at least one amplitude calibration factor.
     
    9. The system of Claim 6, wherein:

    the second component (36) is further configured to determine if the radar system is in at least one of a calibration mode or a normal mode of operation.


     
    10. The system of Claim 9, wherein:

    the second component (36) is further configured to apply the determined one or more calibration factors (262) to actual radar return signals (244), if the radar system is determined to be in a normal mode of operation.


     


    Ansprüche

    1. Verfahren zur Selbstkalibrierung eines Radarsystems (20), wobei das Verfahren die folgenden Schritte umfasst:

    Bereitstellen eines Radarsystems, das ein frequenzmoduliertes Dauerstrich(Frequency Modulated Continuous Wave, FMCW)-Radarhöhenmesssystem umfasst, das einen Empfänger (26) zum Verarbeiten eines simulierten Rücksignals auf Basis eines Radarübertragungssignals umfasst, wobei der Empfänger Folgendes umfasst:

    einen Mischer (100), der dazu ausgelegt ist, das simulierte Rücksignal und das Radarübertragungssignal zu empfangen;

    einen rauscharmen Verstärker (102), der an einen Ausgang des Mischers gekoppelt ist;

    einen Hochpassfilter (104), der an einen Ausgang des rauscharmen Verstärkers gekoppelt ist;

    einen Analog-Digital-Wandler (106), der an einen Ausgang des Hochpassfilters gekoppelt ist; und

    eine schnelle Fourier-Transformationseinheit (108), die an einen Ausgang des Analog-Digital-Wandlers gekoppelt ist; und

    Erzeugen von Kalibrierfaktoren für das Radarsystem durch ein Verfahren, das Folgendes umfasst:

    a) Erzeugen (188) des simulierten Rücksignals auf Basis eines oder mehrerer Bereichswerte;

    b) Erzeugen (184) des Radarübertragungssignals und

    c) Bestimmen (190) eines oder mehrerer Kalibrierfaktoren (262) auf Basis des simulierten Rücksignals, des Radarübertragungssignals und der idealen Eigenschaften des Rücksignals (240).


     
    2. Verfahren nach Anspruch 1, wobei das Radarübertragungssignal ein Signal fester Frequenz ist und das Erzeugen (188) des simulierten Rücksignals eine programmierbare Frequenzteilung eines bekannten Signals und eine Modulation des Radarübertragungssignals auf Basis des geteilten bekannten Signals beinhaltet.
     
    3. Verfahren nach Anspruch 1, wobei der eine oder die mehreren Kalibrierfaktoren (262) mindestens einen Amplitudenkalibrierfaktor beinhalten.
     
    4. Verfahren nach Anspruch 1, das ferner Folgendes umfasst:

    Bestimmen, ob das Radarsystem sich in mindestens einem eines Kalibrierbetriebsmodus oder eines normalen Betriebsmodus befindet; und

    Durchführen der Schritte (a) - (c), wenn bestimmt wird, dass das Radarsystem (20) sich im Kalibrierbetriebsmodus befindet.


     
    5. Verfahren nach Anspruch 4, das ferner das Anwenden (200) der bestimmten Kalibrierfaktoren (262) auf tatsächliche Radarrücksignale (244) umfasst, wenn bestimmt wird, dass das Radarsystem sich in einem normalen Betriebsmodus befindet.
     
    6. Radarsystem (20) zum Durchführen einer Selbstkalibrierung, wobei das System Folgendes umfasst:

    eine erste Komponente (34), die dazu ausgelegt ist, ein simuliertes Rücksignal auf Basis eines oder mehrerer Bereichswerte zu erzeugen;

    einen Sender (24), der dazu ausgelegt ist, ein Radarübertragungssignal zu erzeugen;

    einen Empfänger (26), der dazu ausgelegt ist, das simulierte Rücksignal auf Basis des Radarübertragungssignals zu verarbeiten, wobei der Empfänger Folgendes umfasst:

    einen Mischer (100), der dazu ausgelegt ist, das simulierte Rücksignal und das Radarübertragungssignal zu empfangen;

    einen rauscharmen Verstärker (102), der an einen Ausgang des Mischers gekoppelt ist;

    einen Hochpassfilter (104), der an einen Ausgang des rauscharmen Verstärkers gekoppelt ist;

    einen Analog-Digital-Wandler (106), der an einen Ausgang des Hochpassfilters gekoppelt ist; und

    eine schnelle Fourier-Transformationseinheit (108), die an einen Ausgang des Analog-Digital-Wandlers gekoppelt ist; und

    eine zweite Komponente (36), die dazu ausgelegt ist, auf Basis des verarbeiteten simulierten Rücksignals und von idealen Eigenschaften des Rücksignals (240) einen oder mehrere Kalibrierfaktoren (262) zu bestimmen;

    wobei das Radarsystem ein frequenzmoduliertes Dauerstrich(Frequency Modulated Continuous Wave, FMCW)-Radarhöhenmesssystem umfasst.


     
    7. System nach Anspruch 6, wobei das Radarübertragungssignal ein Signal fester Frequenz ist, die erste Komponente (34) einen programmierbaren Frequenzteiler (62) beinhaltet, der dazu ausgelegt ist, mindestens ein Seitenband eines bekannten Signals zu erstellen, und die erste Komponente ferner dazu ausgelegt ist, das Radarübertragungssignal auf Basis des erstellten mindestens einen Seitenbands des bekannten Signals zu modulieren.
     
    8. System nach Anspruch 6, wobei der eine oder die mehreren Kalibrierfaktoren (262) mindestens einen Amplitudenkalibrierfaktor beinhalten.
     
    9. System nach Anspruch 6, wobei:

    die zweite Komponente (36) ferner dazu ausgelegt ist zu bestimmen, ob sich das Radarsystem in mindestens einem eines Kalibrierbetriebsmodus oder eines normalen Betriebsmodus befindet.


     
    10. System nach Anspruch 9, wobei:

    die zweite Komponente (36) ferner dazu ausgelegt ist, den bestimmten einen oder die bestimmten mehreren Kalibrierfaktoren (262) auf tatsächliche Radarrücksignale (244) anzuwenden, wenn bestimmt wird, dass das Radarsystem sich in einem normalen Betriebsmodus befindet.


     


    Revendications

    1. Procédé permettant d'auto-étalonner un système radar (20), le procédé comprenant les étapes suivantes :

    l'utilisation d'un système radar comprenant un système d'altimètre radar à onde entretenue modulée en fréquence (FMCW) qui comprend un récepteur (26) destiné à traiter un signal de retour simulé fondé sur un signal radar de transmission, le récepteur comprenant :

    un mélangeur (100) configuré pour recevoir le signal de retour simulé et le signal radar de transmission,

    un amplificateur à faible bruit (102) couplé à une sortie du mélangeur,

    un filtre passe haut (104) couplé à une sortie de l'amplificateur à faible bruit,

    un convertisseur analogique vers numérique (106) couplé à une sortie du filtre passe haut, et une unité de transformation de Fourier rapide (108) couplée à une sortie du convertisseur analogique vers numérique, et

    la génération de facteurs d'étalonnage pour le système radar grâce à un procédé comprenant :

    a) la génération (188) du signal de retour simulé sur la base d'une ou plusieurs valeurs de plages,

    b) la génération (184) du signal radar de transmission, et

    c) la détermination (190) d'un ou plusieurs facteurs d'étalonnage (262) sur la base du signal de retour simulé, du signal radar de transmission et de caractéristiques d'un signal de retour idéal (240).


     
    2. Procédé selon la revendication 1, dans lequel le signal radar de transmission est un signal de fréquence fixe, et la génération (188) du signal de retour simulé inclut la division par fréquence programmable d'un signal connu ainsi que la modulation du signal de radar de transmission sur la base du signal connu divisé.
     
    3. Procédé selon la revendication 1, dans lequel le ou les facteurs d'étalonnage (262) incluent au moins un facteur d'étalonnage d'amplitude.
     
    4. Procédé selon la revendication 1, comprenant en outre :

    la détermination de ce que le système radar se trouve dans l'un d'un mode d'étalonnage ou d'un mode normal de fonctionnement, et

    l'exécution des étapes (a) à (c) s'il est déterminé que le système radar (20) se trouve dans le mode de fonctionnement d'étalonnage.


     
    5. Procédé selon la revendication 4, comprenant en outre l'application (200) des facteurs d'étalonnage (262) déterminés à des signaux réels de retour radar (244) s'il est déterminé que le système radar se trouve dans un mode normal de fonctionnement.
     
    6. Système radar (20) destiné à effectuer un auto-étalonnage, le système comprenant :

    un premier composant (34) configuré pour générer un signal de retour simulé fondé sur une ou plusieurs valeurs de plages,

    un émetteur (24) configuré pour générer un signal radar de transmission,

    un récepteur (26) configuré pour traiter le signal de retour simulé sur la base du signal radar de transmission, le récepteur comprenant :

    un mélangeur (100) configuré pour recevoir le signal de retour simulé et le signal radar de transmission,

    un amplificateur à faible bruit (102) couplé à une sortie du mélangeur,

    un filtre passe haut (104) couplé à une sortie de l'amplificateur à faible bruit,

    un convertisseur analogique vers numérique (106) couplé à une sortie du filtre passe haut, et une unité de transformation de Fourier rapide (108) couplée à une sortie du convertisseur analogique vers numérique, et

    un second composant (36) configuré pour déterminer un ou plusieurs facteurs d'étalonnage (262) sur la base du signal de retour simulé traité et des caractéristiques d'un signal de retour idéal (240),

    dans lequel le système radar comprend un système d'altimètre radar à onde entretenue modulée en fréquence (FMCW).


     
    7. Système selon la revendication 6, dans lequel le signal radar de transmission est un signal de fréquence fixe, le premier composant (34) inclut un diviseur de fréquence programmable (62) configuré pour créer au moins une bande latérale d'un signal connu, et le premier composant est en outre configuré pour moduler le signal radar de transmission sur la base de la ou des bandes latérales créées du signal connu.
     
    8. Système selon la revendication 6, dans lequel le ou les facteurs d'étalonnage (262) incluent au moins un facteur d'étalonnage d'amplitude.
     
    9. Système selon la revendication 6, dans lequel :

    le second composant (36) est en outre configuré pour déterminer si le système radar se trouve dans au moins l'un d'un mode d'étalonnage ou d'un mode normal de fonctionnement.


     
    10. Système selon la revendication 9, dans lequel :

    le second composant (36) est en outre configuré pour appliquer le ou les facteurs d'étalonnage (262) déterminés à des signaux réels de retour radar (244) s'il est déterminé que le système radar se trouve dans un mode normal de fonctionnement.


     




    Drawing





















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description