(19)
(11)EP 1 387 732 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.05.2011 Bulletin 2011/19

(21)Application number: 02721359.4

(22)Date of filing:  08.03.2002
(51)International Patent Classification (IPC): 
B23K 9/10(2006.01)
(86)International application number:
PCT/US2002/007432
(87)International publication number:
WO 2002/083351 (24.10.2002 Gazette  2002/43)

(54)

ELECTRIC ARC WELDING SYSTEM

LICHTBOGENSCHWEISSSYSTEM

SYSTEME DE SOUDAGE A L'ARC ELECTRIQUE


(84)Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

(30)Priority: 17.04.2001 US 835972

(43)Date of publication of application:
11.02.2004 Bulletin 2004/07

(73)Proprietor: Lincoln Global, Inc.
Monterey Park, California 91754 (US)

(72)Inventors:
  • Myers, Russel K
    Hudson, OH 44236 (US)
  • Stava, Elliott K
    Sagamore Hills, OH 44067 (US)

(74)Representative: GROSSE SCHUMACHER KNAUER VON HIRSCHHAUSEN 
Patent- und Rechtsanwälte Frühlingstrasse 43A
45133 Essen
45133 Essen (DE)


(56)References cited: : 
EP-A- 0 585 068
US-A- 3 300 683
US-A- 4 503 316
US-B1- 6 177 645
US-B1- 6 291 798
EP-A- 1 086 773
US-A- 3 637 973
US-A- 6 111 216
US-B1- 6 207 929
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to an electric are welder according to the preamble of claim 1 and 13 (see, for example, US 6 177 645 B) and thus to the art of electric arc welding and more particularly to an electric arc welding system for combining power supplies to operate tandem electrodes.

    BACKGROUND ART



    [0002] The present invention is directed to an electric arc welding system utilizing high capacity alternating circuit power supplies for driving two or more tandem electrodes of the type used in seam welding of large metal blanks. Although the invention can be used with any standard AC power supply, with switches for changing the output polarity, it is preferred that the power supplies use the switching concept disclosed in Stava 6,111,216 wherein the power supply is an inverter having two large output polarity switches with the arc current being reduced before the switches reverse the polarity. Consequently, the term "switching point" is a complex procedure whereby the power supply is first turned off awaiting a current less than a preselected value, such as 100 amperes. Upon reaching the 100 ampere threshold, the output switches of the power supply are reversed to reverse the polarity from the D.C. output link of the inverter. Thus, the "switching point" is an off output command, known as a "kill" command, to the power supply inverter followed by a switching command to reverse the output polarity. The kill output can be a drop to a decreased current level. This procedure is duplicated at each successive polarity reversal so the AC power supply reverses polarity only at a low current. In this manner, snubbing circuits for the output polarity controlling switches are reduced in size or eliminated. Since this switching concept is preferred to define the switching points as used in the present invention, Stava 6,111,216 is referred to as background art. The concept of an AC current for tandem electrodes is well known in the art. Prior Application Serial No. 09/336,804 filed June 12, 1999 discloses a system whereby tandem electrodes are each powered by a separate inverter type power supply. The frequency is varied to reduce the interference between alternating current in the adjacent tandem electrodes. Indeed, this application relates to single power sources for driving either a DC powered electrode followed by an AC electrode or two or more AC driven electrodes. In each instance, a separate inverter type power supply is used for each electrode and, in the alternating current high capacity power supplies, the switching point concept of Stava 6,111,216 is employed. This system for separately driving each of the tandem electrodes by a separate high capacity power supply is background information to the present invention and is referred to herein as such background. In a like manner, United States application 09/406,406 filed September 27, 1999 discloses a further arc welding system wherein each electrode in a tandem welding operation is driven by two or more independent power supplies connected in parallel with a single electrode arc. The system involves a single set of switches having two or more accurately balanced power supplies forming the input to the polarity reversing switch network operated in accordance with Stava 6,111,216. Each of the power supplies is driven by a single command signal and, therefore, shares the identical current value combined and directed through the polarity reversing switches. This type system requires large polarity reversing switches since all of the current to the electrode is passed through a single set of switches. This application does show a master and slave combination of power supplies for a single electrode and discloses general background information to which the invention is directed. For that reason, this application is also referenced herein.

    BACKGROUND OF INVENTION



    [0003] Welding applications, such as pipe welding, often require high currents and use several arcs created by tandem electrodes. Such welding systems are quite prone to certain inconsistencies caused by arc disturbances due to magnetic interaction between two adjacent tandem electrodes. A system for correcting the disadvantages caused by adjacent AC driven tandem electrodes is disclosed in prior application Serial No. 09/336,804 filed June 21, 1999 by assignee of this invention. In that prior application, each of the AC driven electrodes has its own inverter based power supply. The output frequency of each power supply is varied so as to prevent magnetic interference between adjacent electrodes. This system requires a separate powder supply for each electrode. As the current demand for a given electrode exceeds the current rating of the inverter based power supply, a new power supply must be designed, engineered and manufactured. Thus, such system for operating tandem welding electrodes require high capacity or high rated power supplies to obtain high current as required for pipe welding. To decrease the need for special high current rated power supplies for tandem operated electrodes, assignee developed the system disclosed in application Serial No. 09/406,406 wherein each AC electrode is driven by two or more inverter power supplies connected in parallel. These parallel power supplies have their output current combined at the input side of a polarity switching network. Thus, as higher currents are required for a given electrode, two or moro parallel power supplies are used. In this system, each of the power supplies are operated in unison and share equally the output current. Thus, the current required by changes in the welding conditions can be provided only by the over current rating of a single unit. A current balanced system did allow for the combination of several smaller power supplies; however, the power supplies had to be connected in parallel on the input side of the polarity reverting switching network. As such, large switches were required for each electrode. Consequently, such system overcame the disadvantage of requiring special power supplies for each electrode in a tandem welding operation of the type used in pipe welding; but, there is still the disadvantage that the switches must be quite large and the input, paralleled power supplies must be accurately matched by being driven from a single current command signal. This prior application does utilize the concept of a synchronizing signal for each welding cell directing current to each tandem electrode. However, the system still required large switches. This type of system was available for operation in an ethernet network interconnecting the welding cells. In ethernet interconnections, the timing cannot be accurately controlled. In the system described, the switch timing for a given electrode need only be shifted on a time basis, but need not be accurately identified for a specific time. Thus, the described system requiring balancing the current and a single switch network has been the manner of obtaining high capacity current for use in tandem arc welding operations when using an ethernet network or an internet and ethernet control system. There is a desire to control welders by an ethernet network, with or without an internet link. Due to timing limitation, these network dictated use of tandem electrode systems of the type using only general synchronizing techniques.

    [0004] US-B1-6 177 645 discloses a single phase power supply module for electric arc welders, wherein several modules can be connected in series or to switch networks to construct several welders.

    [0005] EP-A-1 086 773 discloses an electric arc welder with two power supplies that are connected in parallel and wherein the welding currents are combined before polarity switching.

    [0006] US-A-3 637 973 discloses an electric arc welder with two electric sources connected in parallel circuit relationship.

    [0007] US-A-3 300 683 discloses a welding apparatus with parallel power supplies.

    THE INVENTION



    [0008] It is advantageous in high current systems for arc welding to drive one electrode with several paralleled inverter type power supplies while accommodating network control. The disadvantage has been that such systems required the current to be accurately balance and required a single high capacity output switching network. Such systems could be controlled by a network; however, the parameter to each paralleled power supply could not be varied. Each of the cells could only be offset from each other by a synchronizing signal. Such systems were not suitable for central control by the internet and/or local area network control because an elaborate network to merely provide offset between cells was not advantageous.

    [0009] The present invention defines an electric welder according to, respectively, claims 1 and 13.

    [0010] The present invention utilizes the concept of a single AC arc welding cell for each electrode wherein the cell itself includes one or more paralleled power supplies each of which has its own switching network. The output of the switching network is then combined to drive the electrode. This allows the use of relatively small switches for polarity reversing of the individual power supplies paralleled in the system. In addition, relatively small power supplies can be paralleled to build a high current input to each of several electrodes used in a tandem welding operation. The use of several independently controlled power supplies paralleled after the polarity switch network for driving a single electrode allows advantageous use of a network, such as the internet or ethernet.

    [0011] In accordance with the invention, smaller power supplies in each system are connected in parallel to power a single electrode. By coordinating switching points of each paralleled power supply with a high accuracy interface, the AC output current is the sum of currents from the paralleled power supplies without combination before the polarity switches. By using this concept, the ethernet network, with or without an internet link, can control the weld parameters of each paralleled power supply of the welding system. The timing of the switch points is accurately controlled by the novel interface, whereas the weld parameters directed to the controller for each power supply can be provided by an ethernet network which has no accurate time basis. Thus, an internet link can be used to direct parameters to the individual power supply controllers of the welding system for driving a single electrode. There is no need for a time based accuracy of these weld parameters coded for each power supply. In the preferred implementation, the switch point is a "kill" command awaiting detection of a current drop below a minimum threshold, such as 100 amperes. When each power supply has a switch command, then they switch. The switch points between parallel power supplies, whether instantaneous or a sequence involving a "kill" command with a wait delay, are coordinated accurately by an interface card having an accuracy of less than 10 µs and preferably in the range of 1-5 µs. This timing accuracy coordinates and matches the switching operation in the paralleled power supplies to coordinate the AC output current.

    [0012] By using the internet or ethernet local area network, the set of weld parameters for each power supply is available on a less accurate information network, to which the controllers for the paralleled power supplies are interconnected with a high accuracy digital interface card. Thus, the switching of the individual, paralleled power supplies of the system is coordinated. This is an advantage allowing use of the internet and local area network control of a welding system. The information network includes synchronizing signals for initiating several arc welding systems connected to several electrodes in a tandem welding operation in a selected phase relationship. Each of the welding systems of an electrode has individual switch points accurately controlled while the systems are shifted or delayed to prevent magnetic interference between different electrodes. This allows driving of several AC electrodes using a common information network. The invention is especially useful for paralleled power supplies to power a given electrode with AC current. The switch points are coordinated by an accurate interface and the weld parameter for each paralleled power supply is provided by the general information network. This network can also operate a DC electrode which does not require the interconnected switching points used in the present invention.

    [0013] Further embodiments of the present invention are defined in dependent claims.

    [0014] The primary object of the present invention is the provision of an arc welding cell or system including two parallel power supplies for driving a single electrode, wherein the power supplies are interconnected for coordinating the switching points or commands, but are independently controlled by an external network providing non-time sensitive parameters.

    [0015] Another object of the present invention is the provision of the arc welding cell or system, as defined above, which cell or system can be used for driving two or more tandem mounted electrodes with offset phase relationship to prevent or reduce electrode interference.

    [0016] Still a further object of the present invention is the provision of an arc welding cell or system, as defined above, which cell or system utilizes a series of smaller power supplies that are combinable to create a high capacity welding power supply for a single electrode. In this manner, several small power supplies can be combined to produce larger power supplies as greater current demands are experienced.

    [0017] Still another object of the present invention is the provision of an arc welding cell or system, as defined above, which cell or system allows control of one power supply in the cell by parameters different from any other power supply. In this manner, one power supply can be maintained at a higher level while the other power supplies have a greater range for responding to larger current demands.

    [0018] Another object of the present invention is the provision of an electric arc system including paralleled power supplies driving a single electrode with AC current, where there is matching of the polarity reversing switches to provide current added together at the electrode.

    [0019] These and other objects and advantages will become apparent from the following description taken together with the accompanying drawings.

    BRIEF DESCRIPTION OF DRAWINGS



    [0020] 

    FIGURE 1 is a block diagram of the preferred embodiment of the present invention;

    FIGURE 2 is a wiring diagram of two paralleled power supplies, each of which include a switching output which power supplies are used in practicing the invention;

    FIGURE 3 is a pictorial view showing three tandem operated electrodes each of which is driven by a welding system of the present invention with the offset synchronizing signals from the information network shown in the graph of FIGURE 3A and using the general schematic diagram of FIGURE 3B;

    FIGURE 4 is a block diagram showing in more detail the preferred embodiment of the present invention to operate two separate welding systems or cells from a single central control;

    FIGURE 5 is a schematic layout of the invention used to drive several tandem electrodes as shown in the pictorial view of FIGURE 5A;

    FIGURE 6 is a schematic layout of the invention used for driving two tandem electrodes as shown pictorially in FIGURE 6A;

    FIGURE 7 is a pictorial view showing two tandem mounted electrodes operated by offset switching operation shown in the graphs of FIGURE 7A using the switch point concept of Stava 6,111,216; and,

    FIGURE 8 is a schematic layout of the software program to cause switching of the paralleled power supplies as soon as the coordinated switch commands have been processed and the next coincident signal has been created.


    PREFERRED EMBODIMENT



    [0021] Referring now to the drawings wherein the showings are for the purpose of illustrating a preferred embodiment of the invention only and not for the purpose of limiting same, in FIGURE 1 there is a single electric arc welding system S in the form of a single cell to create an alternating current as an arc at weld station WS. This system or cell includes a first master welder A with output leads 10, 12 in series with electrode E and workpiece W in the form of a pipe seam joint or other welding operation. Hall effect current transducer 14 provides a voltage in line 16 proportional to the current of welder A. Less time critical data, such as welding parameters, are generated at a remote central control 18. In a like manner, a slave following welder B includes leads 20, 22 connected in parallel with leads 10, 12 to direct an additional AC current to the weld station WS. Hall effect current transducer 24 creates a voltage in line 26 representing current levels in welder B during the welding operation. Even though a single slave or follower welder B is shown, any number of additional welders can be connected in parallel with master welder A to produce an alternating current across electrode E and workpiece W. A novel feature is the combining of AC current at the weld station instead of prior to a polarity switching network. Each welder would include a controller and inverter based power supply illustrated as a combined master controller and power supply 30 and a slave controller and power supply 32. In accordance with the invention, controllers 30, 32 receive parameter data and synchronization data from a relatively low level logic network. The parameter information or data is power supply specific whereby each of the power supplies is provided with the desired parameters such as current, voltage and/or wire feed speed. A low level digital network can provide the parameter information; however, the advantage of the invention relates to the ability to parallel several controller and power supply units having AC output currents in a manner that the switching of the AC current for polarity reversal occurs at the same time. The "same" time indicates a time difference of less than 10 µs and preferably in the general range of 1-5 µs. To accomplish precise coordination of the AC output from power supply 30 and power supply 32, the switching points and polarity information can not be provided from a general logic network wherein the timing is less precise. Thus, in accordance with the invention, the individual AC power supplies are coordinated by high speed, highly accurate DC logic interface referred to as "gateways." As shown in FIGURE 1, power supplies 30, 32 are provided with the necessary operating parameters indicated by the bi-directional leads 42m, 42s, respectively. This non-time sensitive information is provided by a digital network shown in FIGURE 1 and to be described later. Master power supply 30 receives a synchronizing signal as indicated by unidirectional line 40 to time the controllers operation of its AC output current. The polarity of the AC current for power supply 30 is outputted as indicated by line 46. The actual switching command for the AC current of master power supply 30 is outputted on line 44. The switch command tells power supply S, in the form of an inverter, to "kill," which is a drastic reduction of current. In an alternative, this is actually a switch signal to reverse polarity. The "switching points" or command on line 44 preferably is a "kill" and current reversal commands utilizing the "switching points" as set forth in Stava 6,111,216. Thus, timed switching points or commands are outputted from power supply 30 by line 44. These switching points or commands may involve a power supply "kill" followed by a switch ready signal at a low current or merely a current reversal point. The switch "ready" is used when the "kill" concept is implemented because neither inverters are to actually reverse until they are below the set current. The polarity of the switches of controller 30 controls the logic on line 46. Slave power supply 32 receives the switching point or command logic on line 44b and the polarity logic on line 46b. These two logic signals are interconnected between the master power supply and the slave power supply through the highly accurate logic interface shown as gateway 50, the transmitting gateway, and gateway 52, the receiving gateway. These gateways are network interface cards for each of the power supplies so that the logic on lines 44b, 46b are timed closely to the logic on lines 44, 46, respectively. In practice, network interface cards or gateways 50, 52 control this logic to within 10 µs and preferably within 1-5 µs. The invention involves a low accuracy network controlling the individual power supplies for data from central control 18 through lines 42m, 42s, illustrated as provided by the gateways or interface cards. These lines contain data from remote areas (such as central control 18) which are not time sensitive and do not use the accuracy characteristics of the gateways. The highly accurate data for timing the switch reversal uses interconnecting logic signals through network interface cards 50, 52. The system in FIGURE 1 is a single cell for a single AC arc.

    [0022] The invention is primarily applicable for tandem electrodes wherein two or more AC arcs are created to fill the large gap found in pipe welding. Thus, the master power supply 30 receives a synchronization signal which determines the timing or phase operation of the system S for a single electrode, i.e. ARC 1.

    [0023] System S is used with other identical systems to generate ARCs 2, 3, and 4. This concept is schematically illustrated in FIGURES 5 and 6. The synchronizing or phase setting signals are shown in FIGURE 1 with only one of the tandem electrodes. An information network N comprising a central control computer and/or web server 60 provides digital information or data relating to specific power supplies in several systems or cells controlling different electrodes in a tandem operation. Internet information is directed to a local area network in the form of an ethernet network 70 having local interconnecting lines 70a, 70b, 70c. Similar interconnecting lines are directed to each power supply used in the four cells creating ARCs 1, 2, 3 and 4 of a tandem welding operation. The description of system or cell S applies to each of the arcs at the other electrodes. If AC current is employed, a master power supply is used. In some instances, merely a master power supply is used with a cell specific synchronizing signal. A single arc welding installation will not require synchronizing signals. If higher currents are required, the systems or cells include a master and slave power supply combination as described with respect to system S of FIGURE 1. In some instances, a DC arc is preferred, such as the leading electrode in a tandem electrode welding operation. A DC power supply need not be synchronized, nor is there a need for accurate interconnection of the polarity logic and switching points or commands. Some DC powered electrodes may be switched between positive and negative, but not at the frequency of an AC driven electrode. Irrespective of the make-up of the arcs, ethernet or local area network 70 includes the parameter information identified in a coded fashion designated for specific power supplies of the various systems used in the tandem welding operation. This network also employs synchronizing signals for the several cells or systems whereby the systems can be offset in a time relationship. These synchronizing signals are decoded and received by a master power supply as indicated by line 40 in FIGURE 1. In this manner, the AC arcs are offset on a time basis. These synchronizing signals are not required to be as accurate as the switching points through network interface cards or gateways 50, 52. Synchronizing signals on the data network are received by a network interface in the form of a variable pulse generator 80. The generator creates offset synchronizing signals in lines 84, 86 and 88. These synchronizing signals dictate the phase of the individual alternating current cells for separate electrodes in the tandem operation. Synchronizing signals can be generated by interface 80 or actually received by the generator through the network 70. In practice, network 70 merely activates generator 80 to create the delay pattern for the many synchronizing signals. Also, generator 80 can vary the frequency of the individual cells by frequency of the synchronizing pulses if that feature is desired in the tandem welding operation.

    [0024] A variety of controllers and power supplies could be used for practicing the invention as described in FIGURE 1; however, preferred implementation of the invention is set forth in FIGURE 2 wherein power supply PSA is combined with controller and power supply 30 and power supply PSB is combined with controller and power supply 32. These two units are essentially the same in structure and are labeled with the same numbers when appropriate. Description of power supply PSA applies equally to power supply PSB. Inverter 100 has an input rectifier 102 for receiving three phase line current L1, L2, and L3. Output transformer 110 is connected through an output rectifier 112 to tapped inductor 120 for driving opposite polarity switches Q1, Q2. Controller 140a of power supply PSA and controller 140b of PSB are essentially the same, except controller 140a outputs timing information to controller 140b. Switching points or lines 142, 144 control the conductive condition of polarity switches Q1, Q2 for reversing polarity at the time indicated by the logic on lines 142, 144, as explained in more detail in Stava 6,111,216 incorporated by reference herein. The control is digital with a logic processor; thus, A/D converter 150 converts the current information on feedback line 16 or line 26 to controlling digital values for the level of output from error amplifier 152 which is illustrated as an analog error amplifier. In practice, this is a digital system and there is no further analog signal in the control architecture. As illustrated, however, amplifier has a first input 152a from converter 150 and a second input 152b from controller 140a or 140b. The current command signal on line 152b includes the wave shape required for the AC current across the arc at weld station WS. The output from amplifier 152 is converted to an analog voltage signal by converter 160 to drive pulse width modulator 162 at a frequency controlled by oscillator 164, which is a timer program in the processor software. This frequency is greater than 18 kHz. The total architecture of this system is digitized in the preferred embodiment of the present invention and does not include reconversion back into analog signal. This representation is schematic for illustrative purposes and is not intended to be limiting of the type of power supply used in practicing the present invention. Other power supplies could be employed.

    [0025] Implementation of the present invention is by driving separate electrodes in a tandem welding process with AC current creating the welding arc at the individual electrodes. Such a tandem arrangement is illustrated in FIGURES 3, 3A, and 3B wherein workpiece W is in the form of spaced edges of plates 200, 202 to define a longitudinal gap 204. Electrodes 210, 212 and 214 are melted by AC arcs to deposit beads 210a, 212a and 214a, respectively. Each of the arcs, 1, 2 and 3 has a different phase relationship from information received through network N as shown in FIGURE 1. Specific digital synchronizing signals 220, 222 and 224 are offset by distances X and Y shown in FIGURE 3A, and have frequencies x, y, and z. These frequencies may be the same or different. These electrode or cell specific synchronizing signals are communicated to the various cells from central control 60 through internet 62 to the phase generator 80, as shown in FIGURE 1. The individual synchronizing pulses are directed through lines 82, 84 and 86 for controlling the timing and/or frequency of the individual welding cells for the electrodes 210, 212 and 214. In practice, the leading electrode may involve use a DC arc, which need not be synchronized. Further, the synchronizing signals 220, 222 and 224 can be in phase. Each synchronizing signal sets the timing of the individual welding systems or cells as shown in FIGURE 1.

    [0026] FIGURE 4 shows a general layout illustrating the present invention when used for two cells S', S" or two arc formed by electrodes E1 and workpiece W1 and electrode E2 and workpiece W2. In practice, the workpieces are both identical and only the electrodes are separate; however, they do define separate arcs in the welding process. To use the present invention for the two arcs as shown in FIGURE 4, network 300 includes a central control 302 to which is loaded power supply specific parameters as indicated by interface block 304. These parameters are stored as indicated by block 306 for interrogation by network 300 whenever desired. The network server is connected through internet 310 to the local area network 312 from which weld parameters are loaded into the individual control and power supply combinations M1, S1, M2, and S2 through interconnections illustrated as lines 320-326. In a like manner, the synchronizing signals for the individual systems S', S" are available on network 312 and are communicated as illustrated as line 330 with the pulse generator or clock 340. The output of the generator is represented as synchronizing data lines 332, 334 for individually controlling the delay or synchronization of systems S', S". This dictates the time relationship between the two arcs of the dual electrode system shown in FIGURE 4. Cell S' includes master power supply M1 connected in parallel with slave power supply S1. In a like manner, system S" includes master M2 connected in parallel with the output of slave power supply S2. Network interface cards 342, 344 communicate the timing from the master to the slave and directs the polarity logic as indicated with respect to the disclosure shown in FIGURE 1. In this manner, two separate electrodes used in tandem are driven separately with the parameters and synchronizing signals being directed through a network which can include an internet link. Actual implementation of a timing block control is located inside the master control board. The interface card S', S" translates and isolates the signals between the master control and the slave control.

    [0027] The invention can be expanded to include any number of electrodes. Three electrodes 350, 352 and 354 are shown in FIGURES 5 and 5A. Network 360 as previously described communicates with system S shown in FIGURE 1 together with two additional systems 370, 372. Network 360 controls the logic to and through gateways 50 and 52 shown in FIGURE 1 together with similar gateways 380 and 382 for systems 370, 372, respectively. This embodiment of the invention illustrates two power supplies PSA and PSB for providing synchronized and timed AC current through one electrode 356. Electrode 352 is connected with network 360 by gateway 380 so power supply PSC uses only a single master to produce an AC current for electrode 352. Electrode 354 is driven by power supply PSD which is a DC power supply without output polarity switches and is driven through gateway 382 by network 360. Other arrangements are used to construct architecture of different tandem electrodes process. For instance, two electrodes 400, 402 are shown in the layout of FIGURES 6 and 6A. Four separate power supplies PSA1, PSB1, PSC1, and PSD1 are connected in parallel to produce an AC current across electrode 402. Power supply PSE is a DC power supply without output polarity switches. All of the power supplies are provided with individual gateways or network interface cards 410, 412, 414, 416 and 418, respectively. Each of the gateways receives parameters for the individual power supplies. Gateways 410-416 are interconnected to assure that the timing and polarity of the switches in the first four power supplies are correlated accurately. Although gateways 414, 416 are indicated to be driven in series with gateway 412, in practice, they are driven directly from the output of gateway 410 in parallel fashion. This prevents the stacking of timing differences in the individual gateways.

    [0028] As indicated, the switching points of the master and slave power supplies are really a switching sequence wherein the inverter is first turned off and then the switches are reversed to change the polarity after the power supply reaches a low current. When the inverter is turned off, the current is reduced: Then reversal of polarity is effected. This concept is shown in Stava 6,111,216. This patented switching technique is disclosed in FIGURES 7 and 7A, wherein two electrodes 420, 422 having AC current curves schematically illustrated as curve 424 and curve 426. In curve 424, the power supply is turned off at point 430. The current decays to a low current level 432 at which time there is a reversal to a negative polarity. This negative current level is maintained until the desired parameter has been reached. The power supply is then turned off at point 434 and the negative current pulse decays to switch point 436 at which time the switches reverse to a positive polarity. With a master and one or more slave power supplies, it is necessary to coordinate the kill points 430, 434, as well as the switch points or times 432, 436. For simplicity, this polarity reversal sequence is referred to as the "switching time." Curve 426 is offset by the distance e and is provided by one or more power supplies connected in series. This curve has power supply kill point 440 and kill point 444. The switching points 442, 446 correspond with the current reversal switching points 432, 436. Even though the technique set forth in FIGURE 7A is preferred, a direct current reversal at the switching points is also used with the present invention. In that instance, the switches must be larger and require a snubber network or a larger snubber network in parallel with the switches.

    [0029] As indicated, when the master controller is to switch, a switch command is issued to the master controller. This causes a "kill" signal to be received by the master so a kill signal and polarity logic is rapidly transmitted to the controller of one or more slave power supplies connected in parallel with a single electrode. If standard AC power supplies are used with large snubbers in parallel with the polarity switches, the slave controller or controllers are immediately switched within 1-10 µs after the master power supply receives the switch command. This is the advantage of the high accuracy interface cards or gateways. In practice, the actual switching for current reversal of the paralleled power supplies is not to occur until the output current is below a given value, i.e. about 100 amperes. This allows use of smaller switches.

    [0030] The implementation of the invention using this delayed switching technique requires the actual switch only after all power supplies are below the given low current level. The delay process is accomplished in the software of the digital processor and is illustrated by the schematic layout of FIGURE 8. When the controller of master power supply 500 receives a command signal as represented by line 502, the power supply starts the switching sequence. The master outputs a logic on line 504 to provide the desired polarity for switching of the slaves to correspond with polarity switching of the master. In the commanded switch sequence, the inverter of master power supply 500 is turned off or down so current to electrode E is decreased as read by hall effect transducer 510. The switch command in line 502 causes an immediate "kill" signal as represented by line 512 to the controllers of paralleled slave power supplies 520, 522 providing current to junction 530 as measured by hall effect transducers 532, 534. All power supplies are in the switch sequence with inverters turned off or down. Software comparator circuits 550, 552, 554 compare the decreased current to a given low current referenced by the voltage on line 556. As each power supply decreases below the given value, a signal appears in lines 560, 562, and 564 to the input of a sample and hold circuits 570, 572, and 574, respectively. The circuits are outputted by a strobe signal in line 580 from each of the power supplies. When a set logic is stored in a circuit 570, 572, and 574, a YES logic appears on lines READY1, READY2, and READY3 at the time of the strobe signal, This signal is generated in the power supplies and has a period of 25 µs; however, other high speed strobes could be used. The signals are directed to controller C of the master power supply, shown in dashed lines in FIGURE 8. A software ANDing function represented by AND gate 580 has a YES logic output on line 582 when all power supplies are ready to switch polarity. This output condition is directed to clock enable terminal ECLK of software flip flop 600 having its D terminal provided with the desired logic of the polarity to be switched as appearing on line 504, An oscillator or timer operated at about 1 MHz clocks flip flop by a signal on line 602 to terminal CK. This transfers the polarity command logic on line 504 to a Q terminal 604 to provide this logic in line 610 to switch slaves 520, 522 at the same time the identical logic on line 612 switches master power supply 500. After switching the polarity logic on line 504 shifts to the opposite polarity while master power supply awaits the next switch command based upon the switching frequency. Other circuits can be used to effect the delay in the switching sequence; however, the illustration in FIGURE 8 is the present scheme.

    [0031] The interface timing is disclosed as less·than 10 µs. This value is to be substantially more accurate than the ethernet accuracy. Thugs, it can be as high as about 100 µs and still provide an advantage. But, coordinated switching is facilitated with an accuracy of less than about 10 µs with a READY strobe at 25 µs. Each power supply is ready to switch polarity before the switch command is generated. One can reduce before the ready current and then come back up while the other is reducing to the ready current. The key, is accurate control and switching at low current. In addition, the power supplies could be back-to-back reverse polarity choppers with the positive state of the reverse polarity chopper switch by the accurate interface. A back-to-back AC chopper power supply is shown in prior United States Application Serial No. 09/575,264, filed May 22, 2000.


    Claims

    1. An electric welder comprising a first power source (30) with a first output, creating a first AC output across an electrode (E) and a workpiece (W) and a second power source (32) with a second output creating a second AC output across the electrode (E) and workpiece (W), wherein the welder is an electric arc welding system (S) for creating an AC welding arc between said electrode (E) and workpiece (W), said system (S) further comprising a first controller (140a) for the first power source (30), which is a first power supply (PSA), to cause said first power supply (PSA) to create the first AC output, which is an AC current, between said electrode (E) and workpiece (W) by generating a switch signal with polarity reversing switching points in general timed relationship with respect to a given system specific synchronizing signal to said first controller (140a), said first controller (140a) operated at first welding parameters in response to first power supply (PSA) specific parameter signals to said first controller (140a), characterized by at least one slave controller (140b) for operating the second power source (32), which is a slave power supply (PSB), to create the second AC output, which is an AC current, between said electrode (E) and workpiece (W) by reversing polarity of said AC currents at switching points, said slave controller (140b) operated at second welding parameters in response to second power supply (PSB) specific parameter signals to said slave controller (140b), an information network connected to said first controller (140a) and said slave controller (140b) and containing digital first and second power supply (PSA, PSB) specific parameter information signals for said first controller (140a) and said slave controller (140b) and said given system specific synchronizing signal, wherein the information network is a low accuracy network, and a digital interface connecting said first controller (140a) with said slave controller (140b) to control said switching points of said second power supply (PSB) by said switch signal from said first controller(140a), wherein the digital interface is a high accuracy network cards.
     
    2. The electric arc welder system as defined in claim 1, wherein said power supplies (PSA, PSB) switch polarity in unison after said switch signal.
     
    3. The electric arc welding system as defined in claim 1 to 2, wherein said information network includes an internet link (62) and an ethernet (70) communicated with said link (62).
     
    4. The electric arc welding system as defined in anyone of claims 1 to 3, wherein said information network contains a second given system specific synchronizing signal offset in time from said first mentioned given signal and at least a third power supply specific parameter signal.
     
    5. The electric arc welding system as defined in anyone of claims 1 to 4, wherein said digital interface has a timing accuracy of less than about 10µs.
     
    6. The electric arc welding system as defined in claim 5, wherein said accuracy is about 1-5µs.
     
    7. The electric arc welding system as defined in anyone of claims 1 to 5, including a software circuit to switch said polarity only after a "ready" signal has been created by each of said power supplies (PSA, PSB).
     
    8. The electric arc welding system as defined in anyone of claims 1 to 7, wherein said AC power include inverters (100).
     
    9. The electric arc welding system as defined in anyone of claims 1 to 8, wherein said AC power supplies include back-to-back choppers.
     
    10. The electric welder according to claim 1 further comprising the first power source (30) having a first output polarity changing switch network which creates the first AC output with first output leads (10, 12) connected across said electrode (E) and workpiece (W) and the second power source (32) having a second output polarity changing switch network which creates the second AC output with second output leads (20, 22) connected across said electrode (E) and workpiece (W) in parallel with said first leads (10, 12) whereby the current from said power sources (30, 32) is added.
     
    11. The electric arc welder as defined in claim 10, wherein each of said AC outputs has a waveform created by a number of current pulses occurring at a frequency of at least 18 kHz with the magnitude of each pulse controlled by a wave shaper.
     
    12. The electric arc welder as defined in claim 10 or 11, wherein said workpiece (W) is a open root joint.
     
    13. An electric welder comprising a first power source (30) with a first output, creating a first AC output across an electrode (E) and a workpiece (W) and a second power source (32) with a second output creating a second AC output across the electrode (E) and workpiece (W), wherein the welder is an electric arc welding system (S) for creating a first AC welding arc between said electrode, which is a first weld electrode (E1), and said workpiece (W1, W2) and a second AC welding arc between a second weld electrode (E2) and said workpiece (W1, W2) as said first and second electrodes (E1, E2) move along said workpiece (W1, W2), said system (S) comprising a first cell (S') with least the first and second power sources (30, 32), which are two power supplies (M1, S1), connected to said first arc and operated at a first synchronized time determined by a first synchronized signal with first weld parameters and a high accuracy interconnection interface (344) between said power supplies (M1, S1) of said first cell (S1) to correlate polarity switching of said power supplies of said first cell (S1), characterized by a second cell (S") with first and second power sources (30, 32), which are two power supplies (M2, S2), connected to said second arc and operated at a second synchronized time determined by a second synchronize signal offset from said first synchronize signal with second weld parameters and a high accuracy interconnection interface card (342) between said power supplies (M2, S2) of said second cell (S") to correlate polarity switching of said power supplies (M2, S2) of said second cell (S") and a low accuracy parameter information network connected to said first and second cells (S', S") and containing digital signals including said first and second weld parameters and digitized first and second synchronize signals.
     
    14. The electric arc welding system as defined in claim 13, wherein said information network includes an internet link and an Ethernet communicated with said link.
     
    15. The electric arc system as defined in claim 13 or 14, wherein said first and second parameters are selected from the class consisting of current, voltage and wire feed speed.
     
    16. The electric arc welding system as defined in anyone of claims 13 to 15, including a software circuit to switch said polarity only after a "ready" signal has been created by each of said power supplies.
     


    Ansprüche

    1. Elektrisches Schweißgerät, umfassend eine erste Stromquelle (30) mit einer ersten Ausgangsleistung, die eine erste Wechselstromausgangsleistung über eine Elektrode (E) und ein Werkstück (W) erzeugt, und eine zweite Stromquelle (32) mit einer zweiten Ausgangsleistung, die eine zweite Wechselstromausgangsleistung über die Elektrode (E) und das Werkstück (W) erzeugt, wobei es sich beim Schweißgerät um ein Lichtbogenschweißsystem (S) zur Erzeugung eines Wechselstrom-Schweißlichtbogens zwischen der Elektrode (E) und dem Werkstück (W) handelt, wobei das System (S) ferner eine erste Steuerung (140a) für die erste Stromquelle (30), die eine erste Stromversorgung (PSA) ist, umfasst, um zu bewirken, dass die erste Stromversorgung (PSA) die erste Wechselstromausgangsleistung, die ein Wechselstrom ist, zwischen der Elektrode (E) und dem Werkstück (W) erzeugt, indem sie ein Umschaltsignal mit polaritätsumkehrenden Umschaltpunkten in einer allgemeinen zeitgesteuerten Beziehung in Bezug auf ein gegebenes systemspezifisches Synchronisationssignal an die erste Steuerung (140a) erzeugt, wobei die erste Steuerung (140a) als Reaktion auf für die erste Stromversorgung (PSA) spezifische Parametersignale an die erste Steuerung (140a) mit ersten Schweißparametern betrieben wird, gekennzeichnet durch zumindest eine untergeordnete Steuerung (140b), um die zweite Stromquelle (32), die eine untergeordnete Stromquelle (PSB) ist, so zu betreiben, dass sie die zweite Wechselstromausgangsleistung, die ein Wechselstrom ist, zwischen der Elektrode (E) und dem Werkstück (W) erzeugt, indem die Polarität der Wechselströme an Umschaltpunkten umgekehrt wird, wobei die untergeordnete Steuerung (140b) als Reaktion auf für die zweite Stromversorgung (PSB) spezifische Parametersignale an die untergeordnete Steuerung (140b) mit zweiten Schweißparametern betrieben wird, wobei ein Informationsnetzwerk an die erste Steuerung (140a) und an die untergeordnete Steuerung (140b) angeschlossen ist und digitale für die erste und die zweite Stromversorgung (PSA, PSB) spezifische Parameterinformationssignale für die erste Steuerung (140a) und die untergeordnete Steuerung (140b) und das gegebene systemspezifische Synchronisationssignal enthält, wobei das Informationsnetzwerk ein Netzwerk mit niedriger Genauigkeit ist, und wobei eine digitale Schnittstelle die erste Steuerung (140a) mit der untergeordneten Steuerung (140b) verbindet, um die Umschaltpunkte der zweiten Stromversorgung (PSB) durch das Umschaltsignal von der ersten Steuerung (140a) zu steuern, wobei die digitale Schnittstelle eine Netzwerkkarte mit hoher Genauigkeit ist.
     
    2. Lichtbogenschweißsystem nach Anspruch 1, wobei die Stromversorgungen (PSA, PSB) die Polarität nach dem Umschaltsignal im Gleichklang umschalten.
     
    3. Lichtbogenschweißsystem nach Anspruch 1 bis 2, wobei das Informationsnetzwerk einen Internetanschluss (62) und ein Ethernet (70), das mit diesem Anschluss (62) in Verbindung steht, beinhaltet.
     
    4. Lichtbogenschweißsystem nach einem der Ansprüche 1 bis 3, wobei das Informationsnetzwerk ein zweites gegebenes systemspezifisches Synchronisationssignal, das zeitlich vom ersten genannten gegebenen Signal versetzt ist, und zumindest ein drittes stromversorgungsspezifisches Parametersignal enthält.
     
    5. Lichtbogenschweißsystem nach einem der Ansprüche 1 bis 4, wobei die digitale Schnittstelle eine Zeitsteuerungsgenauigkeit von weniger als etwa 10 µs aufweist.
     
    6. Lichtbogenschweißsystem nach Anspruch 5, wobei die Genauigkeit etwa 1 bis 5 µs beträgt.
     
    7. Lichtbogenschweißsystem nach einem der Ansprüche 1 bis 5, enthaltend eine Softwareschaltung, um die Polarität erst umzuschalten, nachdem von jeder der Stromversorgungen (PSA, PSB) ein "Bereit"-Signal erzeugt wurde.
     
    8. Lichtbogenschweißsystem nach einem der Ansprüche 1 bis 7, wobei die Wechselstromversorgungen Inverter (100) enthalten.
     
    9. Lichtbogenschweißsystem nach einem der Ansprüche 1 bis 8, wobei die Wechselstromversorgungen antiparallel geschaltete Zerhacker enthalten.
     
    10. Elektrisches Schweißgerät nach Anspruch 1, ferner umfassend, dass die erste Stromquelle (30) ein die Polarität der ersten Ausgangsleistung veränderndes Umschaltnetzwerk, das die erste Wechselstromleistung erzeugt, mit ersten Ausgangsleitungen (10, 12), die über die Elektrode (E) und das Werkstück (W) verbunden sind, aufweist, und die zweite Stromquelle (32) ein die Polarität der zweiten Ausgangsleistung veränderndes Umschaltnetzwerk, das die zweite Wechselstromleistung erzeugt, mit zweiten Ausgangsleitungen (20, 22), die parallel mit den ersten Leitungen (10, 12) über die Elektrode (E) und das Werkstück (W) verbunden sind, aufweist, wodurch der Strom von den Stromquellen (30, 32) addiert wird.
     
    11. Lichtbogenschweißgerät nach Anspruch 10, wobei jede der Wechselstromausgangsleistungen eine Wellenform aufweist, die durch eine Anzahl von Stromimpulsen erzeugt wird, welche mit einer Frequenz von zumindest 18 kHz auftreten, wobei die Größe jedes Impulses durch einen Wellenformer gesteuert wird.
     
    12. Lichtbogenschweißgerät nach Anspruch 10 oder 11, wobei das Werkstück (W) eine Fuge mit offener Schweißwurzel ist.
     
    13. Elektrisches Schweißgerät, umfassend eine erste Stromquelle (30) mit einer ersten Ausgangsleistung, die eine erste Wechselstromausgangsleistung über eine Elektrode (E) und ein Werkstück (W) erzeugt, und eine zweite Stromquelle (32) mit einer zweiten Ausgangsleistung, die eine zweite Wechselstromausgangsleistung über die Elektrode (E) und das Werkstück (W) erzeugt, wobei es sich beim Schweißgerät um ein Lichtbogenschweißsystem (S) zur Erzeugung eines ersten Wechselstrom-Schweißlichtbogens zwischen der Elektrode, die eine erste Schweißelektrode (E1) ist, und dem Werkstück (W1, W2) und eines zweiten Wechselstrom-Schweißlichtbogens zwischen einer zweiten Schweißelektrode (E2) und dem Werkstück (W1, W2), während sich die erste und die zweite Elektrode (E1, E2) entlang des Werkstücks (W1, W2) bewegen, handelt, wobei das System (S) eine erste Zelle (S') mit zumindest der ersten und der zweiten Stromquelle (30, 32), welche zwei Stromversorgungen (M1, S1) sind, die an den ersten Lichtbogen angeschlossen sind und zu einer ersten synchronisierten Zeit, die durch ein erstes Synchronisationssignal bestimmt wird, mit ersten Schweißparametern betrieben werden, und einer Verbindungsschnittstelle (344) mit hoher Genauigkeit zwischen den Stromversorgungen (M1, S1) der ersten Zelle (S'), um die Polaritätsumschaltung der Stromversorgungen der ersten Zelle (S') zu korrelieren, umfasst, gekennzeichnet durch eine zweite Zelle (S") mit einer ersten und einer zweiten Stromquelle (30, 32), welche zwei Stromversorgungen (M2, S2) sind, die an den zweiten Lichtbogen angeschlossen sind und zu einer zweiten synchronisierten Zeit, die durch ein vom ersten Synchronisationssignal versetztes zweites Synchronisationssignal bestimmt wird, mit zweiten Schweißparametern betrieben werden, und einer Verbindungsschnittstellenkarte (342) mit hoher Genauigkeit zwischen den Stromversorgungen (M2, S2) der zweiten Zelle (S"), um die Polaritätsumschaltung der Stromversorgungen (M2, S2) der zweiten Zelle (S") zu korrelieren; und ein Informationsnetzwerk mit niedriger Genauigkeit, das an die erste und die zweite Zelle (S', S") angeschlossen ist und digitale Parametersignale enthält, die die ersten und zweiten Schweißparameter und ein digitalisiertes erstes und zweites Synchronisationssignal beinhalten.
     
    14. Lichtbogenschweißsystem nach Anspruch 13, wobei das Informationsnetzwerk einen Internetanschluss und ein Ethernet, das mit diesem Anschluss in Verbindung steht, beinhaltet.
     
    15. Lichtbogensystem nach Anspruch 13 oder 14, wobei die ersten und zweiten Parameter aus der Klasse gewählt werden, die aus dem Strom, der Spannung und der Drahtvorschubgeschwindigkeit besteht.
     
    16. Lichtbogenschweißsystem nach einem der Ansprüche 13 bis 15, enthaltend eine Softwareschaltung, um die Polarität erst umzuschalten, nachdem von jeder der Stromversorgungen ein "Bereit"-Signal erzeugt wurde.
     


    Revendications

    1. Soudeuse électrique comprenant une première source d'énergie (30) avec une première sortie créant une première sortie de courant alternatif CA à travers une électrode (E) et une pièce de fabrication (W), et une seconde source d'énergie (32) avec une seconde sortie créant une seconde sortie de courant alternatif CA à travers l'électrode (E) et une pièce de fabrication (W), où la soudeuse est un système de soudage à l'arc électrique (S) pour créer un arc de soudage CA entre ladite électrode (E) et une pièce de fabrication (W), ledit système (S) comprenant en outre un premier contrôleur (140a) pour la première source d'énergie (30), qui est une première alimentation électrique (PSA), pour entraîner que ladite première alimentation électrique (PSA) crée la première sortie CA, qui est un courant alternatif CA, entre ladite électrode (E) et une pièce de fabrication (W), en générant un signal de commutation avec des points de commutation d'inversion de polarité en relation synchronisée générale par rapport à un signal de synchronisation spécifique à un système donné vers ledit premier contrôleur (140a), ledit premier contrôleur (140a) étant exploité avec les premiers paramètres de soudage en réponse à des signaux de paramètre spécifiques à la première alimentation électrique (PSA) vers ledit premier contrôleur (140a), caractérisé par au moins un contrôleur esclave (140b) pour faire fonctionner la seconde source d'énergie (32), qui est une alimentation électrique esclave (PSB), pour créer la seconde sortie CA, qui est un courant alternatif CA, entre ladite électrode (E) et une pièce de fabrication (W) en inversant la polarité desdits courants CA aux points de commutation, ledit contrôleur esclave (140b) étant exploité avec les seconds paramètres de soudage en réponse à des signaux de paramètre spécifiques à la seconde alimentation électrique (PSB) vers ledit contrôleur esclave (140b), un réseau d'information connecté audit premier contrôleur (140a) et audit contrôleur esclave (140b) et contenant des signaux numériques d'information de paramètre spécifique à des première et seconde alimentations électriques (PSA, PSB) pour ledit premier contrôleur (140a) et ledit contrôleur esclave (140b) et ledit signal de synchronisation spécifique à un système donné, où le réseau d'information est un réseau de faible précision, et une interface numérique raccordant ledit premier contrôleur (140a) audit contrôleur esclave (140b) pour contrôler lesdits points de commutation de ladite seconde alimentation électrique (PSB) par ledit signal de commutation provenant dudit premier contrôleur (140a), où l'interface numérique sont des cartes de réseau de haute précision.
     
    2. Système de soudage à l'arc électrique tel que défini dans la revendication 1, dans lequel lesdites alimentations (PSA, PSB) changent de polarité en même temps après ledit signal de commutation.
     
    3. Système de soudage à l'arc électrique tel que défini dans la revendication 1 ou la revendication 2, dans lequel ledit réseau d'information comprend une liaison Internet (62) et une liaison Ethernet (70) communiquant avec ladite liaison (62).
     
    4. Système de soudage à l'arc électrique tel que défini dans l'une quelconque des revendications 1 à 3, dans lequel ledit réseau d'information contient un second signal de synchronisation spécifique à un système donné décalé dans le temps par rapport audit premier signal donné mentionné et au moins un troisième signal de paramètre spécifique d'alimentation électrique.
     
    5. Système de soudage à l'arc électrique tel que défini dans l'une quelconque des revendications 1 à 4, dans lequel ladite interface numérique a une précision de synchronisation inférieure à environ 10 µs.
     
    6. Système de soudage à l'arc électrique tel que défini dans la revendication 5, dans lequel ladite précision est environ de 1 à 5 µs.
     
    7. Système de soudage à l'arc électrique tel que défini dans l'une quelconque des revendications 1 à 5, comprenant un circuit logiciel pour commuter ladite polarité uniquement après qu'un signal « prêt » a été créé par chacune desdites alimentations électriques (PSA, PSB).
     
    8. Système de soudage à l'arc électrique tel que défini dans l'une quelconque des revendications 1 à 7, dans lequel lesdites alimentations CA comprennent des inverseurs (100).
     
    9. Système de soudage à l'arc électrique tel que défini dans l'une quelconque des revendications 1 à 8, dans lequel lesdites alimentations CA comprennent des hacheurs consécutifs.
     
    10. Soudeuse électrique selon la revendication 1, comprenant en outre la première source d'énergie (30) ayant un premier réseau de commutation à changement de polarité de sortie qui crée la première sortie CA avec des premiers conducteurs de sortie (10, 12) connectés à travers ladite électrode (E) et une pièce de fabrication (W) et la seconde source d'énergie (32) ayant un second réseau de commutation à changement de polarité de sortie qui crée la seconde sortie CA avec des seconds conducteurs de sortie (20, 22) connectés à travers ladite électrode (E) et une pièce de fabrication (W) en parallèle avec lesdits premiers conducteurs (10, 12), moyennant quoi le courant desdites sources d'énergie (30, 32) est ajouté.
     
    11. Soudeuse à l'arc électrique telle que définie dans la revendication 10, dans laquelle chacune desdites sorties CA a une forme d'onde créée par un certain nombre d'impulsions de courant se produisant à une fréquence d'au moins 18 kHz, avec l'amplitude de chaque impulsion étant contrôlée par un metteur en forme d'onde.
     
    12. Soudeuse à l'arc électrique telle que définie dans la revendication 10 ou la revendication 11, dans laquelle ladite pièce de fabrication (W) est un joint nu ouvert.
     
    13. Soudeuse électrique comprenant une première source d'énergie (30) avec une première sortie créant une première sortie de courant alternatif CA à travers une électrode (E) et une pièce de fabrication (W), et une seconde source d'énergie (32) avec une seconde sortie créant une seconde sortie de courant alternatif CA à travers l'électrode (E) et une pièce de fabrication (W), où la soudeuse est un système de soudage à l'arc électrique (S) pour créer un premier arc de soudage CA entre ladite électrode, qui est une première électrode de soudage (E1) et ladite pièce de fabrication (W1, W2) et un second arc de soudage CA entre une seconde électrode de soudage (E2) et ladite pièce de fabrication (W1, W2) tandis que lesdites première et seconde électrodes (E1, E2) se déplacent le long de ladite pièce de fabrication (W1, W2), ledit système (S) comprenant une première cellule (S') avec au moins la première et la seconde sources d'énergie (30, 32), qui sont deux alimentations électriques (M1, S1), connectées audit premier arc et exploitées à un premier temps synchronisé déterminé par un premier signal synchronisé avec des premiers paramètres de soudage et une interface d'interconnexion de haute précision (344) entre lesdites alimentations électriques (M1, S1) de ladite première cellule (S') pour corréler la commutation de polarité desdites alimentations électriques de ladite première cellule (S'), caractérisée par une seconde cellule (S") avec des première et seconde sources d'énergie (30, 32), qui sont deux alimentations électriques (M2, S2), connectées audit second arc et exploitées à un second temps synchronisé déterminé par un second signal synchronisé décalé dudit premier signal synchronisé avec des seconds paramètres de soudage et une carte d'interface d'interconnexion de haute précision (342) entre lesdites alimentations électriques (M2, S2) de ladite seconde cellule (S") pour corréler la commutation de polarité desdites alimentations électriques (M2, S2) de ladite seconde cellule (S"), et un réseau d'information de paramètres de faible précision connecté auxdites première et seconde cellules (S', S") et contenant des signaux numériques comprenant lesdits premier et second paramètres de soudage et lesdits premier et second signaux de synchronisation numériques.
     
    14. Système de soudage à l'arc électrique tel que défini dans la revendication 13, dans lequel ledit réseau d'information comprend une liaison Internet et une liaison Ethernet communiquant avec ladite liaison.
     
    15. Système de soudage à l'arc électrique tel que défini dans les revendications 13 ou 14, dans lequel lesdits premier et second paramètres sont sélectionnés dans la classe constituée du courant, de la tension et de la vitesse d'avancée du fil.
     
    16. Système de soudage à l'arc électrique tel que défini dans l'une quelconque des revendications 13 à 15, comprenant un circuit logiciel pour commuter ladite polarité uniquement après qu'un signal « prêt » a été créé par chacune desdites alimentations électriques.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description