(19)
(11)EP 1 961 102 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.08.2011 Bulletin 2011/33

(21)Application number: 06820761.2

(22)Date of filing:  27.09.2006
(51)International Patent Classification (IPC): 
H02K 15/03(2006.01)
(86)International application number:
PCT/IB2006/002679
(87)International publication number:
WO 2007/063369 (07.06.2007 Gazette  2007/23)

(54)

LAMINATED CORE FOR PERMANENT MAGNET ROTOR OF ROTATING MACHINES

BLECHPAKET FÜR DEN PERMANENTMAGNETROTOR ROTIERENDER MASCHINEN

EMPILEMENT DE TÔLES POUR UN ROTOR A AIMANTS PERMANENTS D'UNE MACHINE ROTATIVE


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30)Priority: 29.11.2005 IT BZ20050063

(43)Date of publication of application:
27.08.2008 Bulletin 2008/35

(73)Proprietor: WILIC S.AR.L
1724 Luxembourg (LU)

(72)Inventors:
  • PABST, Otto
    I-39037 Rio Di Pusteria, Bolzano (IT)
  • GADRINO, Franco
    I-10044 Pianezza, Torino (IT)

(74)Representative: Eccetto, Mauro et al
Studio Torta S.r.l. Via Viotti, 9
10121 Torino
10121 Torino (IT)


(56)References cited: : 
EP-A- 1 289 097
WO-A-2006/032969
WO-A-00/01056
DE-A1- 10 219 190
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] Embodiments relate to permanent magnet assemblies for rotating machines, , such as wind turbines, rope driven and carried transport systems, electric generators and motors, particularly for electric generator and motor rotors. More particularly, embodiments relate to magnet holders in rotating machine rotors, such as rotors in wind turbines, wind mills, electric generators, electric motors, rope or cable based transport systems, and the like.

    BACKGROUND



    [0002] In power generating and working rotating machinery, such as wind machines and rope or cable driven and carried transport systems, relative motion between magnetic field generators and coils produces electricity, one of these groups being mounted on a rotor and the other group being mounted on a stator of the power generating machine. The magnetic field generators are typically windings, which are electromagnets supplied with a small portion of the output of the power generating machine. However, permanent magnets can instead be used to provide a magnetic field that induces electrical current in conductors when relative motion occurs between the magnets and the conductors. But permanent magnets are relatively heavy, and when used in large scale machinery, the apparatus used to hold the magnets in place can add substantially more undesirable weight, are difficult to install, are limited in the sizes of magnets they can accommodate, or are overly costly. For example, in some applications, the magnets are glued to a rotor body, the glue being applied under pressure. Additional applications use stampings over the ends of the magnets to hold them in place. Still other applications employ clamps, each clamp having an end attached to the underside of the rotor body and another end extending over the body of the magnet.
    In known magnet assemblies, core plate stacks are used to support windings or magnets and shape the magnetic fields thereof. Such core plate stacks include a plurality of sheets of metal, such as metal stampings with desired profiles. The sheets are aligned and have through holes that form a bore through which preformed tie rods or bolts are inserted that hold the plate stacks together. In the known arrangements, the tie rods are attached to the end plates of their respective stacks in various ways.
    An example of such known core plate stacks is disclosed in PCT application WO/97/30504, which also discloses a core plate stack production procedure. To form a core plate stack, a plurality of substantially identical sheets or plates are placed one atop another with end plates on either end of the stack. To hold the stack together, preformed tie bolts are inserted through bores formed by aligned through holes of the plates, but the tie rods are not secured to the end plates per se. Rather, the assembly of plates and tie rods is placed within a winding body that holds the stack and rods in place while the winding is installed and until the final assembly steps are performed. The final assembly steps include placing the winding, complete with core plate stack, tie rods, and winding body, into a mold and flooding the mold with a resin, allowing the resin to cure, and removing the resin-covered and -impregnated winding assembly from the mold. It should be noted that the preformed tie rods are disclosed as being steel or aluminum.
    Such known core plate stacks and windings are relatively heavy due in part to the metal preformed tie rods and the extra end plates that are typically substantially thicker than the bulk of the plates in the stack. Additionally, because of the resin in which the winding and core plate stacks are embedded, it is nearly impossible to repair should anything go wrong or to swap out a part should an operating condition change. Additionally, such known core plate assemblies are not easily adapted to use with permanent magnets
    Document EP 1,289,097 discloses a core plate stack of a rotor of a rotating machine wherein the core plate stack is formed two end plates having a through hole and a numer of intermediate plate having a further through hole. The through holes and the further troughs hole are aligned one another so as to form a bore suitable to receive a retaining member.
    Document DE 102 19 190 discloses a core plate stack of a rotor of a rotating machine and a plastic tie rod for retaining the stack integrally molded with the end plates.
    Document WO 00/01056 discloses a core plate stack of a rotor of a rotating machine and aluminium tie rods for retaining the stack integrally molded with two end rings.

    SUMMARY



    [0003] One object of the present invention cosists in providing a rotating machine having a rotor core plate stack compressed by a pulling force in an economic and simple manner.

    [0004] In accordance with the present invention there is provided a rotating machine as claimed in claim 1.

    [0005] Another object of the present invention consists in providing a method of forming a core plate stack of a rotor of a rotating machine allowing improvements of the pulling force acting on the rotor core plate stack.

    [0006] In accordance with the present invention there is provided a method according to claim 7.

    [0007] Embodiments disclosed herein overcome the difficulties of known magnet assemblies, eliminating adhesive, end over-stamping, and resin impregnation. The core plate assembly of embodiments is easier to manufacture, lighter than known assemblies, and is particularly suited to use with permanent magnets.

    [0008] A plurality of core sheets or plates in the form of metal stampings with identical profiles are created and placed in a stack. When used to support a magnet, two assemblies are used with one stack facing the other and flipped relative to the other stack. Each core plate has two through holes that are aligned throughout a given stack to create a bore. Two end plates with beveled through holes are placed on the stack with the larger diameters of the holes on the outer surface of the end plates. Molten plastic is poured or injected into the bores to form in situ or in place a plastic tie rod that, because of the bevels, draws the end plates toward each other as it cools, thus compressing the entire stack, permanently holding the stack together.

    [0009] It should be noted that the core stack assembly procedure of embodiments could be applied to known core stacks, such as that disclosed in the international application discussed above. The core plates would be stacked and the end plates would be modified to have bevels in the tie rod bores. Plastic could then be injected into the tie rod bores and allowed to cure, forming the tie rods in situ and drawing the core plates together. The resulting compressed core stack would be lighter than that of WO/97/30504 and could be used in the winding body in place of the core plate stack disclosed therein.

    [0010] In embodiments disclosed herein, each plate can include recesses that, when stacked, form a channel that can also receive plastic during an injection step. The completed stack would then include a tooth or section that could be used to hold a permanent magnet when two facing stacks and respective teeth or sections are employed.

    [0011] Additionally, embodiments can employ variations in the profiles of the sheets or plates to accommodate support structures or other elements that will be used with the core plate stacks. For example, a recess can be formed that interacts with an element to be coupled to the stack, or a projection can be formed that will be received in a recess of a support structure.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0012] Embodiments will be described while referring to the accompanying drawings.

    [0013] FIG. 1 shows a schematic cross section of a portion of a rotating machine, such as a wind turbine shown in FIG. 1.

    FIG. 2 shows a schematic elevation of a core plate stack according to embodiments disclosed herein.

    FIG. 3 shows a schematic plan view of a core plate stack end plate or sheet according to embodiments disclosed herein.

    FIG. 4 shows a schematic plan view of a core plate stack internal plate according to embodiments disclosed herein.

    FIG. 5 shows a schematic plan view of another core plate stack end plate according to embodiments disclosed herein.

    FIG. 6 shows a schematic plan view of a core stack plate with tie rods and finger according to embodiments disclosed herein.


    DESCRIPTION



    [0014] Referring to FIG. 1 a rotating machine 100, such as a wind turbine, includes a rotor 101 supported via a bearing by a stator 103. The rotor 101 includes a rotor body that supports a plurality of magnet assemblies 20, each including a magnet holder 2. A suitable magnet holder 2 is disclosed in copending international patent application PCT/IB2006/002684, based on Italian Patent Application No. BZ2005A000062, which includes a pincer element with two claws 3, 4 that are connected by a flexible bridge 5. The claws 3, 4 form a seat 6 that can receive a portion of a magnet assembly 20. Each magnet assembly 20 includes two facing core plate stacks, such as the type of core plate stack 1 disclosed herein and as particularly seen in FIG. 2.

    [0015] Each core plate stack 1 of embodiments is held together by tie rods 2, 3 and preferably includes a finger 4 that can hold a permanent magnet 22 as disclosed in copending PCT application PCT/IB2006/002684, based on Italian Patent Application No. BZ2005A000062. The core stack 1 includes a first end plate 5, an internal or intermediate core plate 6, and a second end plate 7, each of which are seen in FIGS. 2, 3, and 4, respectively. The first end plate 5 includes two through holes 8 that are beveled such that the inner, lower diameter is closer to an adjacent intermediate core plate 6. The first end plate's through holes 8 are formed to align with through holes 9 of the intermediate core plates 6 and through holes 10 of the second end plate 7. The through holes 9 of the intermediate core plates 6 preferably do not have bevels, while the through holes 10 of the second end plate 7 have bevels that, like the first end plate, have the smaller diameter closer to the respective adjacent intermediate core plate 6.

    [0016] With a plurality of the intermediate core plates 6 stacked between the first and second end plates 5, 7, their through holes 8, 9, 10 align to form bores into which plastic can be poured or injected to form in place or in situ a plastic bar or tie rod 11. For example, the core plate stack can be placed in an injection mold and plastic can be injected into the molded. The plastic fills in the bevels of the end plates 5, 7, and solidifies as it cools to form the bar or tie rod 11. Because of the plastic in the bevels, and because the plastic shrinks as it cools, the in situ formed tie rod 11 pulls the end plates 5, 7 toward each other, compressing the entire stack of plates 5, 6, 7 and securing them tightly together. To enhance this effect, the stack can be compressed before injection of the plastic into the bores.

    [0017] As seen in the FIGS., the profile of the plates 5, 6; 7 can include features 12, 13, 14, 15, such as recesses 12, 13, 14 and projections 15, for engagement with other components. For example, the plates 5, 6, 7 can include recesses 12, 13, 14 that, when the plates are stacked, form a channel for holding a tooth 4 that can be used to hold a.permanent magnet 22 of a magnet assembly 20 as discussed above.

    [0018] Embodiments thus provide a simple, relatively inexpensive permanent magnet rotor for electricity producing wind machines. Forming a magnet assembly 20 by placing two core plate stacks 1 opposite one another with a permanent magnet 22 therebetween, then placing the stacks 1 and magnet 22 in a magnet holder 2, provides easy, relatively low-cost and lightweight rotor construction with permanent magnets. Additionally, while the rotor body 1 of embodiments has been described in the context of an electrical generator, specifically a wind-powered electrical generator, it should be noted that embodiments could be applied as the rotor body of an electric motor. Additionally, if the rotor body were linearized, it could be employed in a linear electric motor or generator.


    Claims

    1. A rotating machine comprising a stator (103), and a rotor (101) having a rotor body, and a plurality of magnet holders (2) mounted on the rotor body, the magnet holders (2) receiving magnet assemblies (20), each magnet assembly comprising two core plate stacks (1) supporting a permanent magnet (22), each core plate stack (1) including: two end plates (5, 7) of substantially identical size and shape; at least one through hole (8; 10) in each end plate (5; 7); a plurality of intermediate core plates (6) of substantially identical size and shape to each other and to the end plates (5, 7); a further through hole (8) in each of the intermediate core plates (6) corresponding to and aligned with a respective one of the at least one through hole (8; 10) to form respective bores extending between the end plates (5; 7) and through all of the intermediate plates (6); the rotating machine being characterized in that the at least one through hole (8; 10) in each end plate (5; 7) is beveled, a smaller diameter of each beveled through hole (8; 10) of one end plate (5; 7) being closer to the other end plate (7; 5) when the end plates (5, 7) are aligned, and by an in situ plastic, tie rod (11) engaging the bevels of the respective beveled through holes (8, 10) of the end plates (5, 7) to retain the end and intermediate core plates (5, 6, 7) in stacked relationship, thereby forming a core plate stack (1), wherein each in situ plastic tie rod (11) applies compressive force via the bevels to compress the core plate stack (1) together.
     
    2. The rotating machine of claim 1, wherein the end plates (5, 7) and intermediate core plates (6) all include aligned features configured to interact with other components of the rotor (101).
     
    3. The rotating machine of claim 2, wherein the features comprise at least one recess (12; 13; 14) that form a channel in the assembled core plate stack (1).
     
    4. The rotating machine of claim 3, wherein the channel is configured to receive a holding tooth that engages a permanent magnet in a magnet assembly.
     
    5. The rotating machine of claim 2, wherein the features comprise at least one projection (15) configured to engage a corresponding recess of a magnet holder (2) of the rotor (101).
     
    6. A wind turbine comprising a rotating machine as claimed in any one of the claims 1 to 5.
     
    7. A method of forming a core plate stack of a rotor (101) of a rotating machine (100), wherein the core plate stack (1) comprises two end plates (5, 7) of substantially identical size and shape; at least one through hole (8; 10) in each end plate (5; 7); a plurality of intermediate core plates (6) of substantially identical size and shape to each other and to the end plates (5, 7); a further through hole (8) in each of the intermediate core plates (6) corresponding to and aligned with a respective one of the at least one through hole (8; 10) to form respective bores extending between the end plates (5; 7) and through all of the intermediate plates (6); the method including stacking a number of the intermediate core plates (6) of substantially identical size and shape and with their edges aligned, the further through holes (9) of plates (6) also being aligned to form a respective bore; placing two end plates (5; 7) of substantially identical size and shape with the intermediate core plates (6) and with the through holes (8; 10) corresponding to each further through hole (9) of the intermediate core plates (6); the method being characterised in that each through hole (8; 10) of each end plate (5; 7) has a bevel; and forming a plastic tie rod (11) in situ in each bore so that the plastic tie rod (11) holds the intermediate core plates (6) together via the bevels of the end plates (5, 7), wherein each in situ plastic tie rod (11) applies compressive force via the bevels to compress the core plate stack (1) together.
     
    8. The method of claim 7 wherein said forming a plastic tie rod (11) in each bore comprises placing the stacked plates (5, 6, 7) in an injection mold, injecting plastic into the mold, and allowing the plastic to cure.
     
    9. The method of claim 7 further comprising applying pressure to the stacked plates (5, 6, 7) while forming the plastic tie rods (5, 6, 7).
     


    Ansprüche

    1. Drehmaschine mit einem Stator (103), und einem Rotor (101), der einen Rotorkörper und eine Mehrzahl von Magnethaltern (2) aufweist, die an dem Rotorkörper angebracht sind, wobei die Magnethalter (2) Magnetanordnungen aufnehmen (20), jede Magnetanordnung zwei Kemplattenstapel (1) umfasst, die einen Permanentmagneten (22) tragen, wobei jeder Kemplattenstapel (1) umfaßt: zwei Endplatten (5; 7) von im Wesentlichen identischer Größe und Gestalt; mindestens ein Durchgangsloch (8; 10) in jeder Endplatte (5; 7); eine Mehrzahl von dazwischen liegenden Kemplatten (6) von im Wesentlichen identischer Größe und Gestalt zueinander und zu den Endplatten (5; 7); ein weiteres Durchgangsloch (8) in jeder der dazwischen liegenden Kemplatten (6), das einem jeweiligen des mindestens einen Durchgangslochs (8; 10) entspricht und mit diesem ausgerichtet ist, um jeweilige Bohrungen zu bilden, die sich zwischen den Endplatten (5; 7) und durch alle der dazwischen liegenden Platten (6) erstrecken; wobei die Drehmaschine dadurch gekennzeichnet wird, dass das mindestens eine Durchgangsloch (8; 10) in jeder Endplatte (5; 7) gefast ist, ein kleinerer Durchmesser jedes gefasten Durchgangslochs (8; 10) einer Endplatte (5; 7) näher zu der anderen Endplatte (7; 5) ist, wenn die Endplatten (5; 7) ausgerichtet sind, und durch eine in-situ Kunststoffzugstange (11), die die Fasen der jeweiligen gefasten Durchgangslöcher (8; 10) der Endplatten (5; 7) in Eingriff nimmt, um das Ende und dazwischen liegende Kemplatten (5, 6, 7) in einer gestapelten Beziehung zu halten, wodurch ein Kemplattenstapel (1) gebildet wird, wobei jede in-situ Kunststoffzugstange (11) Druckkraft über die Fasen ausübt, um den Kemplattenstapel (1) zusammen zu drücken.
     
    2. Drehmaschine gemäß Anspruch 1, bei der die Endplatten (5; 7) und dazwischen liegenden Kernplatten (6) alle ausgerichtete Merkmale aufweisen, die konfiguriert sind, um mit anderen Bauteilen des Rotors (101) wechselzuwirken.
     
    3. Drehmaschine gemäß Anspruch 2, bei der die Merkmale mindestens eine Ausnehmung (12; 13; 14) umfassen, die einen Kanal in dem zusammengebauten Kernplattenstapel (1) bilden.
     
    4. Drehmaschine gemäß Anspruch 3, bei der der Kanal konfiguriert ist, um einen Haltezahn aufzunehmen, der einen Permanentmagneten in einer Magnetanordnung in Eingriff nimmt.
     
    5. Drehmaschine gemäß Anspruch 2, bei der die Merkmale mindestens einen Vorsprung (15) umfassen, die konfiguriert ist, um eine entsprechende Ausnehmung eines Magnethalters (2) des Rotors (101) in Eingriff zu nehmen.
     
    6. Windturbine mit einer Drehmaschine gemäß einem der Ansprüche 1 bis 5.
     
    7. Verfahren zum Bilden eines Kemplattenstapels eines Rotors (101) einer Drehmaschine (100), wobei der Kemplattenstapel (1) umfasst: zwei Endplatten (5; 7) von im Wesentlichen identischer Größe und Gestalt; mindestens ein Durchgangsloch (8; 10) in jeder Endplatte (5; 7); eine Mehrzahl von dazwischen liegenden Kemplatten (6) von im Wesentlichen identischer Größe und Gestalt zueinander und zu den Endplatten (5; 7); ein weiteres Durchgangsloch (8) in jeder der dazwischen liegenden Kemplatten (6), das einem jeweiligen des mindestens einen Durchgangslochs (8; 10) entspricht und mit diesem ausgerichtet ist, um jeweiligen Bohrungen zu bilden, die sich zwischen den Endplatten (5; 7) und durch alle der dazwischen liegenden Platten (6) erstrecken; wobei das Verfahren umfasst: ein Stapeln einer Anzahl der dazwischen liegenden Kemplatten (6) von im Wesentlichen identischer Größe und Gestalt und Ausrichten ihrer Ränder, wobei die weiteren Durchgangslöcher (9) der Platten (6) ebenfalls ausgerichtet werden, um eine jeweilige Bohrung zu bilden; ein Platzieren zweier Endplatten (5; 7) von im Wesentlichen identischer Größe und Gestalt mit den dazwischen liegenden Kemplatten (6) und mit den Durchgangslöchern (8; 10) entsprechend jedem weiteren Durchgangsloch (9) der dazwischen liegenden Kemplatten (6); wobei das Verfahren dadurch gekennzeichnet wird, dass jedes Durchgangsloch (8; 10) jeder Endplatte (5; 7) eine Fase aufweist; und ein Bilden einer Kunststoffzugstange (11) in-situ in jeder Bohrung, sodass die Kunststoffzugstange (11) die dazwischen liegenden Kemplatten (6) über die Fasen der Endplatten (5; 7) zusammenhält, wobei jede in-situ Kunststoffzugstange (11) Druckkraft über die Fasen ausübt, um den Kemplattenstapel (1) zusammen zu drücken.
     
    8. Verfahren gemäß Anspruch 7, bei dem das Bilden einer Kunststoffzugstange (11) in jeder Bohrung umfasst: Platzieren der gestapelten Platten (5, 6, 7) in einer Spritzgußform, Spritzen von Kunststoff in die Form und Aushärtenlassen des Kunststoffs.
     
    9. Verfahren gemäß Anspruch 7, ferner mit Ausüben von Druck auf die gestapelten Platten (5, 6, 7) während des Bildens der Kunststoffzugstangen (5, 6, 7).
     


    Revendications

    1. Machine rotative comprenant un stator (103), et un rotor (101) comprenant un corps de rotor, et une pluralité de porte-aimants (2) montés sur le corps de rotor, les porte-aimants (2) recevant des ensembles d'aimants (20), chaque ensemble d'aimant comprenant deux piles de plaques centrales (1) supportant un aimant permanent (22), chaque pile de plaques centrales (1) comprenant : deux plaques d'extrémité (5, 7) de taille et de forme sensiblement identiques ; et au moins un trou débouchant (8, 10) dans chaque plaque d'extrémité (5; 7) ; une pluralité de plaques centrales intermédiaires (6) de taille et de forme sensiblement identiques entre elles et à celles des plaques d'extrémité (5, 7) ; un autre trou débouchant (8) dans chacune des plaques centrales intermédiaires (6) correspondant à et aligné avec un trou débouchant respectif de au moins un trou débouchant (8; 10) en vue de former des alésages respectifs s'étendant entre les plaques d'extrémité (5; 7) et à travers toutes les plaques intermédiaires (6) ; la machine rotative étant caractérisée en ce que au moins un trou débouchant (8; 10) dans chaque plaque d'extrémité (5; 7) est chanfreiné, un plus petit diamètre de chaque trou débouchant chanfreiné (8; 10) d'une plaque d'extrémité (5; 7) étant plus proche de l'autre plaque d'extrémité (7; 5) lorsque les plaques d'extrémité (5, 7) sont alignées, et par un tirant d'assemblage plastique (11) formé sur place s'engageant avec les chanfreins des trous débouchants chanfreinés (8, 10) respectifs des plaques d'extrémité (5, 7) afin de retenir les plaques d'extrémité et intermédiaires (5, 6, 7) dans une relation de type empilement, formant ainsi une pile de plaques centrales (1), dans lequel chaque tirant d'assemblage plastique (11) formé sur place applique une force de compression par l'intermédiaire des chanfreins pour comprimer la pile de plaques centrales (1) les unes contre les autres.
     
    2. Machine rotative de la revendication 1, dans laquelle les plaques d'extrémité (5, 7) et les plaques centrales intermédiaires (6) incluent toutes des particularités alignées configurées pour interagir avec d'autres composants du rotor (101).
     
    3. Machine rotative de la revendication 2, dans laquelle les particularités comprennent au moins un évidement (12; 13; 14) formant un canal dans la pile de plaques centrales (1) assemblée.
     
    4. Machine rotative de la revendication 3, dans laquelle le canal est configuré pour recevoir une dent de support qui s'engage avec un aimant permanent dans un ensemble d'aimants.
     
    5. Machine rotative de la revendication 2, dans laquelle les particularités comprennent au moins une projection (15) configurée pour s'engager avec un évidement correspondant d'un porte-aimant (2) du rotor (101).
     
    6. Turbine éolienne comprenant une machine rotative telle que revendiquée dans l'une quelconque des revendications 1 à 5.
     
    7. Procédé de formation d'une pile de plaques centrales d'un rotor (101) d'une machine rotative (100), dans lequel la pile de plaques centrales (1) comprend deux plaques d'extrémité (5, 7) de taille et de forme sensiblement identiques ; au moins un trou débouchant (8; 10) dans chaque plaque d'extrémité (5; 7) ; une pluralité de plaques centrales intermédiaires (6) de taille et de forme sensiblement identiques entre elles et à celle des plaques d'extrémité (5, 7) ; un autre trou débouchant (8) dans chacune des plaques centrales intermédiaires (6) correspondant à et aligné avec un trou débouchant respectif de l'au moins un trou débouchant (8; 10) afin de former des alésages respectifs s'étendant entre les plaques d'extrémité (5; 7) et à travers toutes les plaques intermédiaires (6) ; le procédé comprenant le fait d'empiler un nombre des plaques centrales intermédiaires (6) de taille et de forme sensiblement identiques avec leurs bords alignés, les autres trous débouchants (9) des plaques (6) étant également alignés pour former un alésage respectif ; de placer deux plaques d'extrémité (5; 7) de taille et de forme sensiblement identiques avec les plaques centrales intermédiaires (6) et avec les trous débouchants (8; 10) correspondant à chaque autre trou débouchant (9) des plaques centrales intermédiaires (6) ; le procédé étant caractérisé en ce que chaque trou débouchant (8; 10) de chaque plaque d'extrémité (5; 7) présente un chanfrein ; et de former un tirant d'assemblage plastique (11) formé sur place dans chaque alésage de sorte que le tirant d'assemblage plastique (11) maintienne les plaques centrales intermédiaires (6) ensemble par l'intermédiaire des chanfreins des plaques d'extrémité (5, 7), dans lequel chaque tirant d'assemblage plastique (11) formé sur place applique une force de compression par l'intermédiaire des chanfreins pour comprimer la pile de plaques centrales (1) les unes contre les autres.
     
    8. Procédé de la revendication 7, dans lequel ladite étape de formation d'un tirant d'assemblage plastique (11) dans chaque alésage comprend le fait de placer les plaques empilées (5, 6, 7) dans un moule d'injection, d'injecter du plastique dans le moule, et de permettre au plastique de durcir.
     
    9. Procédé de la revendication 7 comprenant en outre le fait d'appliquer une pression sur les plaques empilées (5, 6, 7) tout en formant les tirants d'assemblage plastiques (5, 6, 7).
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description