(19)
(11)EP 1 808 957 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.03.2020 Bulletin 2020/11

(21)Application number: 07100401.4

(22)Date of filing:  11.01.2007
(51)International Patent Classification (IPC): 
H02P 23/26(2016.01)
H02P 21/00(2016.01)
H02P 27/16(2006.01)
H02M 7/487(2007.01)

(54)

Electric power conversion

Stromwandlung

Conversion de puissance électrique


(84)Designated Contracting States:
DE FR GB

(30)Priority: 12.01.2006 JP 2006005139

(43)Date of publication of application:
18.07.2007 Bulletin 2007/29

(73)Proprietor: NISSAN MOTOR CO., LTD.
Yokohama-shi, Kanagawa 221-0023 (JP)

(72)Inventors:
  • Maikawa, Kengo c/o Intellectual Property Department
    Atsugi-shi Kanagawa 243-0192 (JP)
  • Yoshimoto, Kantaro c/o Intellectual Property Department
    Atsugi-shi Kanagawa 243-0192 (JP)

(74)Representative: Hoefer & Partner Patentanwälte mbB 
Pilgersheimer Straße 20
81543 München
81543 München (DE)


(56)References cited: : 
EP-A1- 1 396 927
WO-A1-2005/099075
JP-A- H01 170 373
WO-A1-03/038987
WO-A1-2005/105511
  
  • PATRICK W WHEELER ET AL: "Matrix Converters: A Technology Review", IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, USA, vol. 49, no. 2, 1 April 2002 (2002-04-01), XP011073702, ISSN: 0278-0046
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates generally to electric power conversion and particularly, but not exclusively, to a control unit for controlling an electric power converter, a method for controlling an electric power converter and an electric power converting system for receiving multi-phase alternating current (AC) and outputting multi-phase current.

[0002] There are known electric power converters that receive multi-phase alternating-current from a commercial power source and output multi-phase alternating-current for variably driving the speed of an AC motor. For example, Japanese Published Patent Application No. 2002-354815 discloses an electric power converting apparatus, and in particular, a control method of a matrix converter for variably controlling a motor speed using three-phase alternating current as an input.

[0003] In that apparatus, it is known to generate a PMW pulse for operating the electric power converting apparatus. An input current command value is calculated from a phase of an input current, a positive-phase-sequence current component and a negative-phase-sequence current component. An input current distribution ratio is calculated from the input current command value. An input power factor is controlled in order to suppress an influence of phase unbalance of the input electric power. Input voltages are detected, and two line voltages are elected from a magnitude relation of the input voltages. Finally, the PWM pulse is calculated from the two line voltages and the input current distribution ratio.

[0004] A method according to the preamble portion of claim 1 is known from WO03/038987A1. JPH01 170373A discloses a control unit for controlling a electric power converter according to the preamble portion of claim 1. WO2005/105511A1, WO2005/099075A1 and EP1396927A1 are disclosing further control units for controlling an electric power converter. XP011073702 is an article referring to electric power conversion.

[0005] It is an aim of the present invention to improve upon known technology. Other aims and advantages of the invention will become apparent from the following description, claims and drawings.

[0006] Aspects of the invention therefore provide a control unit, a system and a method as claimed in the appended claims.

[0007] According to another aspect of the invention there is provided a control unit for controlling an electric power converter, the electric power converter converting multi-phase alternating current inputted from a generator and supplying the converted current to a motor, the control unit comprising an input power factor commanding section operable to output an input power factor command value for an input power factor of the generator according to an operating condition of the motor and an input power factor controlling section operable to output a control signal to the electric power converter, the control signal for controlling the input power factor and based on the input power factor command value.

[0008] According to another aspect of the invention, the input power factor commanding section is operable to calculate the input power factor command value based on an output torque command value of the motor and an output rotation angular speed of the motor.

[0009] In an embodiment, the input power factor commanding section is operable to apply the required voltage and to calculate the input power factor of minimizing the input current as the command value.

[0010] According to another aspect of the invention, the input power factor controlling section is operable to generate a drive voltage command to satisfy an output voltage command of the motor by synthesizing output voltages of two virtual direct current voltage sources, which correspond to a respective instantaneous input voltage value of an input voltage of the multi-phase alternating current from the generator. The input power factor controlling section may be operable to control the input power factor by varying a voltage distribution ratio of the two virtual direct current voltage sources.

[0011] The input power factor controlling section may comprise one or more of an input voltage determining section operable to generate the respective input voltage value and a mode signal indicative of a condition of the input voltage based on a magnitude relation of the input voltage values, an output voltage calculating section operable to calculate the output voltage command based on an output torque command value of the motor and an output rotation angular speed of the motor, a virtual PWM signal generating section operable to generate a virtual PWM signal of a switch when a drive voltage satisfies the output voltage command by generating and synthesizing a pulse by a predetermined voltage distribution ratio between respective output voltages of the two virtual direct-current voltage sources, a voltage distribution ratio calculating section operable to calculate a voltage distribution ratio from the input voltage and the input power factor command value and a signal synthesizing section operable to generate the control signal wherein the control signal is a synthesized PWM signal from the mode signal and the virtual PWM signal.

[0012] In an embodiment, the virtual PWM signal generating section comprises one or more of a voltage command value calculating section operable to generate a voltage command value of each respective input voltage value based on a product of the output voltage command and the voltage distribution ratio and a regulated voltage commanding section operable to generate a regulated voltage command obtained by regulating the voltage command value of each respective input voltage value with respect to the corresponding input voltage. The virtual PWM signal generating section may be operable to generate the virtual PWM signal by executing a triangular wave comparison PWM control of the regulated voltage command.

[0013] In an embodiment, the signal synthesizing section comprises a map representing a relationship between the virtual PWM signal and the mode signal.

[0014] The input power factor commanding section may comprise one or more of a coordinate converting section operable to generate a conversion current by executing a coordinate conversion of the input current, a conversion current command calculating section operable to generate a conversion current command value and a compensating section operable to adjust the input power factor command value based on a difference between the conversion current and the conversion current command value.

[0015] In an embodiment, the conversion current command calculating section is further operable to generate the conversion current command value based on a product of an amplitude of the input current and a trigonometric function of the power factor command value.

[0016] The input power factor commanding section may comprises one or more of a coordinate converting section operable to generate a conversion current by executing a coordinate conversion of the input current, a conversion current command calculating section operable to generate a conversion current command value, a compensating section operable to calculate an adjustment value for the input power factor command value on the basis of a difference between the conversion current and the conversion current command value and a correcting section operable to correct the input power factor command value based on a sum of the input power factor command value and the adjustment value.

[0017] In an embodiment, the control signal includes at least one of an ON/OFF signal output to each of a first switch connecting R-phase and U-phase of the electric power converter, a second switch connecting S-phase and the U-phase of the electric power converter, a third switch connecting T-phase and the U-phase of the electric power converter, a fourth switch connecting the R-phase and V-phase of the electric power converter, a fifth switch connecting S-phase and the V-phase of the electric power converter, a sixth switch connecting the T-phase and the V-phase of the electric power converter, a seventh switch connecting the R-phase and W-phase of the electric power converter, an eighth switch connecting the S-phase and the W-phase of the electric power converter, and a ninth switch connecting the T-phase and the W-phase of the electric power converter.

[0018] In an embodiment, there is provided an electric power converting system comprising a generator operable to generate multi-phase alternating current, a motor driven by the multi-phase alternating current, an electric power converter connected to the generator and the motor and a control unit according to any of the appended claims 1-6 for controlling the electric power converter.

[0019] According to a further aspect of the invention there is provided a method for controlling an electric power converter, wherein the electric power converter receives multi-phase alternating current input current from a generator and supplies converted output current to a motor, the method comprising determining an input power factor command value for the input power factor of the generator, the input power factor command value based on an operating condition of the motor and outputting a control signal to the electric power converter for controlling the input power factor of the generator based on the input power factor command value.

[0020] According to a further aspect of the invention, determining an input power factor command value further comprises calculating the input power factor command value based on an output torque command value of the motor and an output rotation angular speed of the motor.

[0021] In an embodiment, the input power factor commanding section is operable to apply the required voltage and to calculate the input power factor of minimizing the input current as the command value.

[0022] The method may comprise generating a conversion current by executing a coordinate conversion of the input current from the generator, generating a conversion current command value, calculating an adjustment value for the input power factor command value based on a difference between the conversion current and the conversion current command value and correcting the input power factor command value based on a sum of the input power factor command value and the adjustment value.

[0023] For example, a control unit for controlling an electric power converter that receives multi-phase alternating current inputted from a generator and supplies the converted current to a motor comprises an input power factor commanding section operable to output an input power factor command value for an input power factor of the generator according to an operating condition of the motor and an input power factor controlling section operable to output a control signal to the electric power converter, the control signal for controlling the input power factor and based on the input power factor command value.

[0024] According to an example not forming part of the invention, an electric power converting system may comprise a generator operable to generate multi phase alternating current, a motor driven by the multi phase alternating current, an electric power converter connected to the generator and the motor and a control unit for controlling the electric power converter. The control unit includes an input power factor commanding section operable to generate an input power factor command value for an input power factor of the generator, the input power factor command value based on an operating condition of the motor, and an input power factor controlling section operable to output a control signal to the electric power converter for controlling the input power factor based on the input power factor command value.

[0025] According to an example not forming part of the invention, a method for controlling an electric power that receives multi phase alternating current input current from a generator and supplies converted output current to a motor may comprise determining an input power factor command value for the input power factor of the generator, the input power factor command value based on an operating condition of the motor, and outputting a control signal to the electric power converter for controlling the input power factor of the generator based on the input power factor command value.

[0026] Within the scope of this application it is envisaged that the various aspects, embodiments, examples and alternatives set out in the preceding paragraphs, in the claims and in the following description may be taken individually or in any combination thereof.

[0027] The present invention will now be described, by way of example only, with reference to the accompanying drawings in which:

FIG. 1 is a view illustrating an example of hardware of a hybrid electric power conversion system according to a first embodiment of the invention;

FIG. 2 is a circuit illustrating the electric power converter according to the first embodiment of the invention;

FIG. 3 is a virtual circuit corresponding to the circuit shown in FIG. 2;

FIG. 4 is a flowchart showing an example of a selecting operation executed by a voltage selecting section according to the first embodiment of the invention;

FIG. 5 is an example of a map employed by a power factor angle generating section according to the first embodiment of the invention;

FIG. 6 is a graph showing a relationship among a power factor, an input voltage effective value and an input current effective value according to the first embodiment of the invention;

FIG. 7 is a view illustrating another example of hardware of the hybrid electric power conversion system according to a second embodiment of the invention;

FIG. 8 is a block diagram illustrating an example of a power factor angle correcting section according to the second embodiment of the invention;

FIG. 9 is a view illustrating another example of hardware of the hybrid electric power conversion system according to a third embodiment of the invention; and

FIG. 10 is a view illustrating an example of hardware of an electric vehicle system according to a fourth embodiment of the invention.



[0028] Although the known apparatus described in Japanese Published Patent Application No. 2002-354815 is capable of executing appropriate control of the output-side motor according to the input voltage, the voltage becomes insufficient when the output-side motor is driven in the high speed range, and a required voltage is raised. This prevents the output-side motor from driving in the high speed range.

[0029] In contrast, embodiments of the invention disclosed herein are able to drive an output-side motor in a high speed range under a variety of conditions. According to such embodiments, there are provided an electric power converter, electric power converter controlling method and electric power converting system for converting multi-phase alternating-current inputted from a generator and outputting multi-phase alternating current for controlling a drive of a motor. A command value of an input power factor is output according to an operating condition of the motor, and the input power factor of the generator is controlled on the basis of the command value of the input power factor. Hence, it becomes possible to raise an input voltage of the generator by controlling the input power factor. Accordingly, it is possible to stably supply a required high voltage when the motor operates at high speed.

[0030] Hereinafter there are discussed embodiments of the invention in detail based on the drawings. An example of an electric power conversion system is shown as a first embodiment, an example of the electric power conversion system of the first embodiment with a power factor angle correcting section is shown as a second embodiment, an example of the electric power conversion system of the second embodiment with another power factor angle correcting section is shown as a third embodiment, and an example of an electric vehicle system is shown as a fourth embodiment.

[0031] FIG. 1 and FIG. 2 are views explaining an example of hardware of a hybrid electric power conversion system incorporating the electric power converter, electric power converter controlling method and electric power converting system of the invention. In the example shown in Fig. 1, a rotation shaft of a first permanent magnet synchronous motor 1 is mechanically connected to an engine 8. The first permanent magnet synchronous motor 1 and a second permanent magnet synchronous motor 2 are electrically connected to an electric power converter 3. The electric power converter 3 uses R-phase, S-phase and T-phase from the first permanent magnet synchronous motor 1 as inputs. A first capacitor 6-1 is connected between the R-phase input and the S-phase input; a second capacitor 6-2 is connected between the S-phase input and the T-phase input; and a third capacitor 6-3 is connected between the R-phase input and the T-phase input. The electric power converter 3 uses U-phase, V-phase and W-phase of the second permanent magnet synchronous motor 2 as outputs.

[0032] Electric power converter 3 constitutes, in this example, a circuit shown in FIG. 2. In FIG. 2, R-phase and U-phase are connected through a switch Sru, S-phase and U-phase are connected through a switch Ssu, T-phase and U-phase are connected through a switch Stu, R-phase and V-phase are connected through a switch Srv, S-phase and V-phase are connected through a switch Ssv, T-phase and V-phase are connected through a switch Stv, R-phase and W-phase are connected through a switch Srw, S-phase and W-phase are connected through a switch Ssw, and T-phase and W-phase are connected through a switch Stw. These arrangements represent hardware of the first embodiment.

[0033] Control unit 4 controls the electric power converter 3. As shown in FIG. 1, control unit 4 has a parameter converting section 4-1, a voltage selecting section 4-2, a power factor angle command generating section 4-3, a voltage distribution ratio generating section 4-4, an output voltage command generating section 4-5, a voltage distributing section 4-6, a regulated voltage commanding section 4-7, a PWM pulse generating section 4-8, and a logic synthesizing section 4-9, as will be described in detail herein. The control unit 4, and its sections, or control blocks, can be implemented by a combination of hardware and software. For example, the control unit 4 can be a microprocessor with peripheral components such as memory and input and output connections programmed to perform the various functions of the sections. The microprocessor could be incorporated into a microcontroller. Alternatively, certain functions, such as the generation of PWM pulses could be implemented by an integrated circuit, such as a field-programmable gate array (FPGA). An application-specific integrated circuit (ASIC) is another possible choice to implement the control unit 4 or certain of its sections. Various configurations would be possible as known to those skilled in the art given the description of the functionality of the control unit 4 herein.

[0034] Various parameters are received as input and/or produced as output by the respective sections of the control unit 4. In particular, as input to parameter converting section 4-1, Vrs denotes a voltage of R-phase relative to S-phase, and Vst denotes a voltage of S-phase relative to T-phase. As inputs to both power factor angle command generating section 4-3 and output voltage command generating section 4-5, Tm* denotes a torque command of permanent-magnet synchronous motor 2, and θm denotes a rotational position of permanent-magnet synchronous motor 2. As further inputs to output voltage command generating section 4-5, iv denotes a V-phase current, and iu denotes a U-phase current.

[0035] Parameters Vr, Vs and Vt denote phase voltages of R-phase, S-phase and T-phase relative to an electrically intermediation point of permanent-magnet synchronous motor 1, respectively, and are output to voltage selecting section 4-2 from parameter converting section 4-1. Outputs from voltage selecting section 4-2 include Mode signal, Vdc_a, Vdc_b, Vmax, Vmid, and Vgrd. Mode signal denotes a signal showing a selected voltage mode and is input to logic synthesizing section 4-9. Parameters Vdc_a and Vdc_b denote input line voltages selected at voltage selecting section 4-2 and are input to regulated voltage commanding section 4-7. Parameters Vmax, Vmid and Vgnd denote a maximum value, an intermediate value and a reference value in R-phase, S-phase and T-phase voltages and are input to voltage distribution ratio generating section 4-4.

[0036] Parameter φ* denotes a power factor angle command value, which is output by power factor angle command generating section 4-3 and is input to voltage distribution ratio generating section 4-4. Parameter γ denotes a voltage distribution ratio, which is output by voltage distribution ratio generating section 4-4 to voltage distributing section 4-6. Output voltage command generating section 4-5 passes parameters Vu*,Vv* and Vw*, which denote voltage command values of the U-phase, V-phase and W-phase, respectively, to voltage distributing section 4-6. Voltage command values passed from voltage distributing section 4-6 to regulated voltage commanding section 4-7 are denoted by Vu_a*, Vu_b*, Vv_a*, Vv_b*, Vw_a*, and Vw_b*. Particularly, Vu_a* denotes a voltage command value to U-phase using the line voltage Vdc_a; Vu_b* denotes a voltage command value to U-phase using the line voltage Vdc_b; Vv_a* denotes a voltage command value to V-phase using the line voltage Vdc_a; Vv_b* denotes a voltage command value to V-phase using the line voltage Vdc_b; Vw_a* denotes a voltage command value to W-phase using the line voltage Vdc_a; and Vw_b* denotes a voltage command value to W-phase using the line voltage Vdc_b. Regulated voltage commands passed from regulated voltage commanding section 4-7 to PWM pulse generating section 4-8 are denoted by mu_a*, mu_b*, mv_a*, mv_b*, mw_a* and mw_b*.

[0037] The electric power converter 3 may be explained by way of a virtual circuit, shown in FIG. 3, which is equivalent to the circuit shown in FIG. 2. This virtual circuit of the electric power converter uses input line voltages Vdc_a and Vdc_b selected at voltage selecting section 4-2 as a virtual direct-current source, uses U-phase, V-phase and W-phase as inputs and is constituted by virtual switches UA∼UF, VA∼VF and WA∼WF. As this virtual circuit is equivalent to the circuit shown in FIG. 2, the two circuits exhibit corresponding responses to the instantaneous value of the current. In order to easily execute input power factor control, which is discussed later, the control is executed by setting the virtual circuit to supply electric power from the two virtual current sources to one of motors 1 and 2.

[0038] Continuing the explanation of the parameters by again referencing FIG. 1, Vu_pwmA∼F, which is passed from the PWM pulse generating section 4-8 to the logic synthesizing section 4-9, is comprised of Vu_pwmA, Vu_pwmB, Vu_pwmC, Vu_pwmD, Vu_pwmE and Vu_pwmF, which are U-Phase PWM pulses that determine the opening/closing state of virtual switches UA, UB, UC, UD, UE and UF, respectively. Similarly, PWM pulses of V-phase and W-phase are denoted by Vv_pwmA∼F and Vw_pwmA∼F, respectively, in similar manner to Vu_pwmA∼F as discussed above. As outputs of logic synthesizing section 4-9, iSru1, iSsu1, iStu1, iSrv1, iSsv1, iStv1, iSrw1, iSsw1, and iStw1 denote PWM pulses determining the opening/closing states of respective switches Sru1, Ssu1, Stu1, Srv1, Ssv1, Stv1, Srw1, Ssw1, and Stw1 shown in FIG. 2. Similarly, iSru2 through iStw2 denote PWM pulses determining the opening/closing states of respective switches in a similar manner to that described in connection with iSru2 through iStw2.

[0039] Next, control blocks 4-1 though 4-9 are described starting with control block 4-1. Parameter converting section 4-1 receives Vrs and Vst, executes a parameter conversion thereof and provides Vr, Vs and Vt as outputs. Parameters Vr, Vs and Vt are calculated according to the following expressions:



and



[0040] Voltage selecting section 4-2 receives Vr, Vs and Vt, executes a selection of the voltages from the inputted voltages and outputs Vmax, Vmid, Vgnd, Vdc_a, Vdc_b and a Mode signal. As a method of selecting voltage, Vmax, Vmid, Vgnd, and Mode signal are selected by executing a process such as that in the flowchart shown in FIG. 4. A minimum voltage filter sets a parameter Vmin equal to the minimum voltage present among Vr, Vs, Vt, -Vr, -Vs and -Vt. Parameters Vdc_a and Vdc_b are calculated on the basis of the following expressions:

and



[0041] Power factor angle command generating section 4-3 receives Tm* and θm and outputs an appropriate power factor angle command φ* using a lookup table or the like. The lookup table, or map, shown in FIG. 5 shows a relationship between Tm* and ωm obtained by temporal differentiation of output side revolution speed position θm. Herein, there is discussed a method of deriving the appropriate power factor angle command φ*. Firstly, two preconditions of the method are as follows. All of the electric power generated by an electric power conversion system is electric power generated by permanent magnet synchronous motor 1. In case that all of the electric power is consumed in the electric power conversion system, the two preconditions are that:
  1. 1. input-side average generated power energy Pin is determined by output-side average generated power energy Pout; and
  2. 2. when the power factor is changed while input-side generated power energy Pin is constant, an input voltage effective value (root-mean-square value) and input current effective value (root-mean-square value) are changed as shown in FIG. 6.


[0042] The foregoing preconditions merit additional explanation. As to the first precondition, the hybrid system is arranged such that electric power necessary for the output side is generated by an input side permanent magnet synchronous motor. Accordingly, in this system an absolute value of the input side average generated power energy Pin becomes equal to an absolute value of the output side average consumed power energy. Subsequently, as to the second precondition, the average generated power energy Pin is expressed as a product of an effective value Irms of the input AC current, an effective value Vrms of the input AC voltage and the power factor cosφ, as follows:



[0043] Invalid quantity (reactive power) Pin_var of the input electric power is represented as follows:



[0044] Apparent power Pin_a is represented as follows:



[0045] If an input impedance is Z, Irms and Vrms establish the following relationship:



[0046] FIG. 6 shows a relationship among the power factor, the input voltage effective value and the input current effective value obtained based on expressions (1) and (4). When the input power factor approaches 0, the input voltage is increased. When the input power factor approaches 1 (i.e., unity), the input current is decreased.

[0047] It is preferable to use a graph like that shown in FIG. 6 for each output electric power to obtain an appropriate input power factor angle command φ*. For example, when the output side permanent magnet synchronous motor rotates at high speed, an induction voltage generated by a permanent magnet of the motor becomes high, and therefore the input side voltage also becomes high. Accordingly, the power factor angle command value is set such that the input voltage becomes high. When it is not necessary to set the output side voltage at a high value, the power factor is set at a value near 1 so as to further effectively generate electric power. That is, the power factor is selected so as to generate a required voltage at the output side and to minimize the input current. On the basis of the above-discussed principle, the appropriate power factor angle command value φ* is obtained.

[0048] Voltage distribution ratio generating section 4-4 receives φ*, Vmax, Vmid and Vgnd as inputs and outputs an appropriate voltage distribution ratio γ, which is used to correct the input power factor. Herein, voltage distribution ratio γ represents a power source load rate of the virtual direct-current (DC) power sources Vdc_a and Vdc_b in the virtual circuit of FIG. 3. The input power factor angle command φ* and the voltage distribution ratio γ establish the following relationship, and γ is calculated on the basis of the following expression:



[0049] Returning to FIG. 1, output voltage command generating section 4-5 receives measured current values iu and iv of permanent magnet synchronous motor 2, revolution speed θm of permanent magnet synchronous motor 2 and the torque command tm* of permanent magnet synchronous motor 2, and outputs the respective phase voltages Vu*, Vv* and Vw* required by permanent magnet synchronous motor 2. The voltages Vu*, Vv* and Vw* are calculated on the basis of the PI control and the vector calculation.

[0050] Voltage distribution section 4-6 receives γ, Vu*, Vv* and Vw* and outputs Vu_a*, Vu_b*, Vv_a*, Vv_b*, Vw_a* and Vw_b*. Voltage command values Vu_a*, Vu_b*, Vv_a*, Vv_b*, Vw_a* and Vw_b* are calculated by voltage distribution section 4-6 on the basis of the following expressions:









and



[0051] Regulated voltage commanding section 4-7 receives Vu_a*, Vu_b*, Vv_a*, Vv_b*, Vw_a*, Vw_b*, Vdc_a and Vdc_b and outputs mu_a*, mu_b*, mv_a*, mv_b*, mw_a* and mw_b*. Regulated voltage commands mu_a*, mu_b*, mv_a*, mv_b*, mw_a* and mw_b* are calculated by regulated voltage commanding section 4-7 on the basis of the following expressions:









and



[0052] The PWM pulse generating section 4-8 receives mu_a*, mu_b*, mv_a*, mv_b*, mw_a* and mw_b* as inputs and outputs Vu_pwmA∼Vu_pwmF, Vv_pwmA∼Vv_pwmF, and Vw_pwmA∼Vw_pwmF by means of a conventional triangular wave comparing method. It is also possible to utilize a method disclosed in United States Patent Application Publication No. US 2006-0006832 A1, which is assigned to the assignee of this invention.

[0053] Logic synthesizing section 4-9 receives Vu_pwmA∼Vu_pwmF, Vv_pwmA∼Vv_pwmF, Vw_pwmA∼Vw_pwmF and Mode signal as inputs and outputs iSru1∼iStw2. Vu_pmwA∼Vw_pwmF are allocated to iSru1∼iStw2 by each mode on the basis of the following TABLE 1.

[0054] In TABLE 1, Vu_pwmA∼Vu_pwmF, Vv_pwmA∼Vv_pwmF, and Vw_pwmA∼Vw_pwmF are represented by UA∼UF, VA∼VF, and WA∼WF, respectively, wherein, by way of example, UA represents Vu_pwmA, and UB represents Vu_pwmB.



[0055] Since the present invention according to the first embodiment is arranged to comprise the means for selecting an input power factor by which the required voltage is supplied at the output side, and the input current is decreased, it is possible to stably apply a sufficient voltage against a high induction voltage of the permanent magnet motor, and therefore it becomes possible to drive the output side motor at high speed.

[0056] Further, since the change of the input power factor is achieved by changing the voltage distribution ratio γ of the virtual circuits, it is possible to modify the input power factor by a small calculation quantity. Furthermore, since an operation of increasing the input voltage requires no reactor and no converter, the cost is decreased by a cost of a reactor and a converter. Since iron loss and copper loss of the reactor and converter loss are not generated, it also becomes possible to produce a low-loss system. Since Mode signal, voltage distribution ratio γ and the regulated voltage command are determined on the basis of the input voltages, the motors and the input currents are stably controlled even when the input voltages fluctuate. Further, the synthetic pulse is produced by a table relating the virtual voltage pulse and the actual circuit switch on the basis of Mode signal. Accordingly, the circuit of FIG. 3, which is constructed by the virtual switches, is produced by each mode. Therefore, the short-circuit pattern and the opened pattern are limited, and this is advantageous in malfunction diagnosis and the maintenance.

[0057] There is shown a second embodiment in FIG. 7 The second embodiment is arranged to further comprise a block 4-10 for correcting the power factor angle command φ* of the first embodiment so as to further accurately control the input power factor.

[0058] More specifically, FIG. 7 shows hardware according to the second embodiment. In like manner as discussed in connection with the first embodiment, a rotation shaft of first permanent magnet synchronous motor 1 is mechanically connected to engine 8. Electric power converter 3 uses R-phase, S-phase and T-phase of the first permanent magnet synchronous motor 1 as inputs, and U-phase, V-phase and W-phase of the second permanent magnet synchronous motor 2 as outputs. Capacitors 6-1, 6-2 and 6-3 are connected to the inputs of the electric power converter 3 as described in connection with the first embodiment.

[0059] Control of the second embodiment is discussed on the basis of the control unit 4-a in FIG. 7, which is connected to the electric power converter 3 and the motors 1, 2. Blocks 4-1∼4-3 and 4-5∼4-9 are the same as those in the first embodiment, and therefore the explanation thereof is omitted. Only voltage distribution ratio generating section 4-4-a and power factor angle correcting section 4-10 will be discussed.

[0060] Power factor angle correcting section 4-10 receives input phase currents ir and is, input side rotational angle position θg and power factor angle command φ* as inputs. Based on these inputs, power factor angle correcting section 4-10 corrects the power factor angle command by the feedback of the input current and outputs the corrected power factor angle command φ1*. Power factor angle correcting section 4-10 includes a coordinate converting section 4-10-a, a power factor angle correction value generating section 4-10-b and a corrected power factor angle generating section 4-10-c as shown in FIG. 8. Hereinafter, an explanation thereof will be made of these control blocks.

[0061] Coordinate converting section 4-10-a receives ir, is and θg as inputs, converts ir and is into coordinates synchronized with θg, and outputs a current igq synchronized with θg. In this manner, igq is calculated as follows:



[0062] Current command value generating section 4-10-b receives ir, is and θg as inputs and generates a current command value igq*. Current command value igq* is calculated according to the following expression:

where:

and



[0063] Corrected power factor angle generating section 4-10-c receives igq and igq* as inputs and outputs power factor command φ1* by executing the PI control.

[0064] Voltage distribution ratio generating section 4-4-a generates a voltage distribution ratio with respect to the corrected power factor angle command φ1* on the basis of the following expression:



[0065] Since the power factor angle correcting section 4-10 is added, and the control is executed while the change of the input current is compensated by the feedback of the input current, the input current is further accurately controlled. Therefore, it is possible to increase the effects of increasing the revolution speed of the motor, making the motor more efficient and decreasing losses.

[0066] A third embodiment of the hybrid electric power system in FIG. 9 incorporates the power factor angle correcting section 4-10. This constitution further improves the responsiveness of the input power factor by applying a correction that adds the power factor angle command φ* to the power angle command φ1* of the second embodiment.

[0067] FIG. 9 shows hardware according the third embodiment. In like manner as discussed in connection with the first and second embodiments, the third embodiment has rotation shaft of the first permanent magnet synchronous motor 1 mechanically connected to engine 8. Electric power converter 3 uses the R-phase, S-phase and T-phase of the first permanent magnet synchronous motor 1 as inputs and uses the U-phase, V-phase and W-phase of second permanent magnet synchronous motor 2 as outputs. Capacitors 6-1, 6-2 and 6-3 are connected to the inputs of the electric power converter 3 as described in connection with the first embodiment.

[0068] Control of the third embodiment is described herein in connection with a control unit 4-b shown in FIG. 9. Control unit 4-b is connected to electric power converter 3 and motors 1, 2. Herein, an explanation is made only as to an adder 4-11 and a voltage distribution ratio generating section 4-4-b, which are changed sections from those of the second embodiment.

[0069] Adder 4-11 generates a corrected power factor angle command φ2* by adding the power factor angle command φ* to the power angle command φ1*.

[0070] Voltage distribution ration generating section 4-4-b generates a voltage distribution ratio with respect to the correcting power factor angle command φ2* on the basis of the following expression:



[0071] With the arrangement of the third embodiment, by adding the power factor angle command φ* to the power factor angle command φ1* by means of the feedforward, it becomes possible to control the input power factor at high speed and to respond to a sharp change of the torque command, in addition to the merits of the first and second embodiments.

[0072] There is next shown an electric vehicle system as a fourth embodiment in FIG. 10. The electric vehicle is arranged to adapt the first, second and third embodiments to an electric vehicle and to allow four-wheel-drive operation of the electric vehicle using the energy of the motors and the energy of the engine. As shown in FIG. 10, a rotation shaft of first permanent magnet synchronous motor 1 is mechanically connected to an engine 8. First permanent magnet synchronous motor 1 and second permanent magnet synchronous motor 2 are electrically connected to electric power converter 3. Electric power converter 3 uses R-phase, S-phase and T-phase as inputs and U-phase, V-phase and W-phase as outputs. A first capacitor 6-1 is connected between the R-phase and the S-phase; a second capacitor 6-2 is connected between the S-phase and the T-phase; and a third capacitor 6-3 is connected between the R-phase and the T-phase. Control unit 4 is shown, but control unit 4-a or 4-b could be used.

[0073] Also shown in FIG. 10, reference numeral 9-1 denotes a vehicle body. Reference numeral 9-2 denotes front wheels. Reference numeral 9-3 denotes rear wheels. Reference numeral 9-4 denotes a front-wheel drive shaft, which transmits a driving force of the engine to the front wheels. Reference numeral 9-5 denotes a rear-wheel drive shaft, which transmits a driving force of the permanent magnet synchronous motor 2 to the rear wheels.

[0074] With the fourth embodiment it is possible to control the power factor of the motor connected to the engine at high speed and with high accuracy by applying the power factor control of the first, second and third embodiment to the electric vehicle. It is also possible to control the voltage and the current of the motor by means of this control.

[0075] Embodiments of the invention are suitable for use in a hybrid vehicle and the electric power converting system equipped in an electric vehicle discussed in the first and fourth embodiments. In these hybrid vehicles, all of electric power generated by the electric power converting system is electric power generated by the permanent magnet synchronous motor 1 and is consumed in the electric power converting system. Therefore, it is possible to utilize the input power factor discussed in the first through third embodiments in the control. More specifically, since it is possible to raise the voltage without increasing the revolution speed of the engine for driving the generator, this system has an advantage. Further, since it becomes possible to utilize a high-speed operating range of the drive-side permanent magnet, the system further has an advantage.

[0076] With the electric power converter, electric power converter controlling method and electric power converting system according to the invention, it is possible to bring the input power factor command to the output condition thereof, to appropriately control the input power factor when the output side of the system is rotated at high speed, and to drive the motor in the high speed range. Therefore, it is capable of being utilized in a hybrid electric power converting system using such an electric power converter, an electric vehicle system, and a matrix converter system employing a three-phase AC generator.

[0077] Also, the above-described embodiments have been described in order to allow easy understanding of the present invention and do not limit the present invention.


Claims

1. A control unit (4, 4-a, 4-b) for controlling an electric power converter (3) arranged to convert multi-phase alternating current input from a generator (1) and supply the converted current to a motor (2), the control unit comprising:

input power factor commanding means (4-3, 4-10) for outputting an input power factor command value (φ*) for controlling an input power factor of the generator (1) based on an output torque command value (Tm*) of the motor (2) and an output rotation angular speed (ωm) of the motor (2); and

input power factor controlling means (4-4∼4-9) for outputting a control signal to the electric power converter (3) for controlling the input power factor to the value based on the input power factor command value (φ*),

characterized in that

the input power factor controlling means (4-4∼4-9) is arranged to generate a drive voltage command to satisfy an output voltage command (vu*, vv*, vw*) of the motor (2) by synthesizing output voltages of two virtual direct current voltage sources (Vdc_a, Vdc_b), which correspond to a respective instantaneous input voltage value (Vmax, Vmid, Vgrd) of an input voltage (Vr, Vs, Vt) of the multi-phase alternating current from the generator (1), and wherein the input power factor controlling means (4-4∼4-9) is arranged to control the input power factor by varying a voltage distribution ratio (γ) of the two virtual direct current voltage sources (Vdc_a, Vdc_b).


 
2. A control unit as claimed in claim 1 wherein the input power factor controlling means (4-4-4-9) comprises:

input voltage determining means (4-2) for generating the respective input voltage value (Vmax, Vmid, Vgrd) and a mode signal (MODE SIGNAL) indicative of a condition of the input voltage based on a magnitude relation of the input voltage values (Vr, Vs, Vt);

output voltage calculating means (4-5) for calculating the output voltage command (vu*, vv*, vw*) based on the output torque command value (Tm*) of the motor (2) and an output rotation angular speed (ωm) of the motor (2);

virtual PWM signal generating means (4-6∼4-8) for generating a virtual PWM signal (vu_pwmA∼F, vv_pwmA∼F, vw_pwmA∼F) of a switch when a drive voltage satisfies the output voltage command (vu*, vv*, vw*) by generating and synthesizing a pulse by a predetermined voltage distribution ratio between respective output voltages of the two virtual direct-current voltage sources (Vdc_a, Vdc_b);

voltage distribution ratio calculating means (4-4) for calculating a voltage distribution ratio (γ) from the input voltage (Vmax, Vmid, Vgrd) and the input power factor command value (φ*); and

signal synthesizing means (4-9) for generating the control signal wherein the control signal is a synthesized PWM signal from the mode signal (MODE SIGNAL) and the virtual PWM signal (vu_pwmA∼F, vv_pwmA∼F, vw_pwmA∼F).


 
3. A control unit as claimed in claim 2 wherein the virtual PWM signal generating means (4-6∼4-8) comprises:

voltage command value calculating means (4-6) for generating a voltage command value (vu_a*, vu_b*, vv_a*, vv_b*, vw_a*, vw_b*) of each respective input voltage value based on a product of the output voltage command (vu*, vv*, vw*) and the voltage distribution ratio (γ); and

regulated voltage commanding means (4-7) for generating a regulated voltage command (mu_a*, mu_b*, mv_a*, mv_b*, mw_a*, mw_b*) obtained by regulating the voltage command value (vu_a*, vu_b*, vv_a*, vv_b*, vw_a*, vw_b*) of each respective input voltage value with respect to the corresponding input voltage, and wherein the virtual PWM signal generating means (4-8) is arranged to generate the virtual PWM signal (vu_pwmA∼F, vv_pwmA∼F, vw_pwmA∼F) by executing a triangular wave comparison PWM control of the regulated voltage command (mu_a*, mu_b*, mv_a*, mv_b*, mw_a*, mw_b*).


 
4. A control unit as claimed in any preceding claim wherein the input power factor commanding means (4-3, 4-10) comprises:

coordinate converting means (4-10-a) for generating a conversion current (igq) by executing a coordinate conversion of the input current (ir, is);

conversion current command calculating means (4-10-b) for generating a conversion current command value (igq*);

compensating means (4-10-c) for adjusting the input power factor command value (φ*) based on a difference between the conversion current (igq) and the conversion current command value (igq*); and, optionally,

correcting means (4-11) for correcting the input power factor command value (φ*) based on a sum of the input power factor command value (φ*) and the adjusted input power factor command value (φ1*).


 
5. A control unit as claimed in claim 4 wherein the conversion current command calculating means (4-10-b) is arranged to generate the conversion current command value (igq*) based on a product of an amplitude of the input current (ir, is) and a trigonometric function of the input power factor command value (φ*).
 
6. A control unit as claimed in any preceding claim wherein the control signal includes an ON/OFF signal output (iSru1∼2, iSsu1∼2, iStu1∼2, iSrv1∼2, iSsv1∼2, iStv1∼2, iSrw1∼2, iSsw1∼2, iStw1∼2) to each of:

a first switch (Sru) for connecting R-phase and U-phase of the electric power converter (3);

a second switch (Ssu) for connecting S-phase and the U-phase of the electric power converter (3);

a third switch (Stu) for connecting T-phase and the U-phase of the electric power converter (3);

a fourth switch (Srv) for connecting the R-phase and V-phase of the electric power converter (3);

a fifth switch (Ssv) for connecting S-phase and the V-phase of the electric power converter (3);

a sixth switch (Stv) for connecting the T-phase and the V-phase of the electric power converter (3);

a seventh switch (Srw) for connecting the R-phase and W-phase of the electric power converter (3);

an eighth switch (Ssw) for connecting the S-phase and the W-phase of the electric power converter (3); and

a ninth switch (Stw) for connecting the T-phase and the W-phase of the electric power converter (3).


 
7. An electric power converting system comprising:

a generator (1) operable to generate multi-phase alternating current;

a motor (2) driven by the multi-phase alternating current;

an electric power converter (3) connected to the generator (1) and the motor (2); and

a control unit (4, 4-a, 4-b) as claimed in any preceding claim.


 
8. A method for controlling an electric power converter (3) arranged to receive multi-phase alternating current input from a generator (1) and supply a converted output current to a motor (2), the method comprising:

determining an input power factor command value (φ*) for controlling an input power factor of the generator (1) based on an output torque command value (Tm*) of the motor (2) and an output rotation angular speed (ωm) of the motor (2); and

outputting a control signal to the electric power converter (3) for controlling the input power factor of the generator (1) to the value based on the input power factor command value,

characterized by

generating a drive voltage command to satisfy an output voltage command (vu*, vv*, vw*) of the motor (2) by synthesizing output voltages of two virtual direct current voltage sources (Vdc_a, Vdc_b), which correspond to a respective instantaneous input voltage value (Vmax, Vmid, Vgrd) of an input voltage (Vr, Vs, Vt) of the multi-phase alternating current from the generator (1), and controlling the input power factor by varying a voltage distribution ratio (γ) of the two virtual direct current voltage sources (Vdc_a, Vdc_b).


 
9. A method as claimed in claim 8 comprising:

generating a conversion current (igq) by executing a coordinate conversion of the input current (ir, is) from the generator (1);

generating a conversion current command value (igq*);

calculating an adjustment value (φ1*) for the input power factor command value (φ*) based on a difference between the conversion current (igq) and the conversion current command value (igq*); and

correcting the input power factor command value (φ*) based on a sum of the input power factor command value (φ*) and the adjustment value (φ1*).


 


Ansprüche

1. Steuereinheit (4, 4-a, 4-b) zum Steuern eines Stromrichters (3), der zum Umwandeln eines von einem Generator (1) eingegebenen mehrphasigen Wechselstroms und zum Zuführen des umgewandelten Stroms zu einem Motor (2) eingerichtet ist, wobei die Steuereinheit umfasst:

eine Eingangsleistungsfaktor-Befehlseinrichtung (4-3, 4-10) zum Ausgeben eines Eingangsleistungsfaktor-Befehlswerts (φ*) zum Steuern eines Eingangsleistungsfaktors des Generators (1) basierend auf einem Ausgangsdrehmoment-Befehlswert (Tm*) des Motors (2) und einer Ausgangdrehwinkelgeschwindigkeit (ωm) des Motors (2); und

eine Eingangsleistungsfaktor-Steuereinrichtung (4-4 ∼ 4-9) zum Ausgeben eines Steuersignals an den Stromrichter (3) zum Steuern des Eingangsleistungsfaktors auf den Wert, der auf dem Eingangsleistungsfaktor-Befehlswert (φ*) basiert,

dadurch gekennzeichnet, dass

die Eingangsleistungsfaktor-Steuereinrichtung (4-4 ∼ 4-9) zum Erzeugen eines Antriebsspannungsbefehls zum Erfüllen eines Ausgangsspannungsbefehls (vu*, vv*, vw*) des Motors (2) durch Synthetisieren von Ausgangsspannungen zweier virtuellen Gleichspannungsquellen (Vdc_a, Vdc_b) konfiguriert ist, die zu einem jeweiligen momentanen Eingangsspannungswert (Vmax, Vmid, Vgrd) einer Eingangsspannung (Vr, Vs, Vt) des mehrphasigen Wechselstroms vom Generator (1) korrespondieren, und wobei die Eingangsleistungsfaktor-Steuereinrichtung (4-4-4-9) zum Steuern des Eingangsleistungsfaktors durch Variieren eines Spannungsverteilungsverhältnisses (γ) der zwei virtuellen Gleichspannungsquellen (Vdc_a, Vdc_b) eingerichtet ist.


 
2. Steuereinheit nach Anspruch 1, wobei die Eingangsleistungsfaktor-Steuereinrichtung (4-4-4-9) umfasst:

eine Eingangsspannung-Ermittlungseinrichtung (4-2) zum Erzeugen des jeweiligen Eingangsspannungswerts (Vmax, Vmid, Vgrd) und eines Modussignals (MODE SIGNAL), das einen Zustand der Eingangsspannung basierend auf einer Größenbeziehung der Eingangsspannungswerte (Vr, Vs, Vt) anzeigt;

eine Ausgangsspannung-Berechnungseinrichtung (4-5) zum Berechnen des Ausgangsspannungsbefehls (vu*, vv*, vw*) basierend auf dem Ausgangsdrehmoment-Befehlswert (Tm*) des Motors (2) und einer Ausgangsdrehwinkelgeschwindigkeit (ωm) des Motors (2);

eine Erzeugungseinrichtung (4-6-4-8) eines virtuellen PWM-Signals zum Erzeugen eines virtuellen PWM-Signals (vu_pwmA∼F, vv_pwmA∼F, vw_pwmA∼F) für einen Schalter, wenn eine Ansteuerspannung den Ausgangsspannungsbefehl (vu*, vv*, vw*) durch Erzeugen und Synthetisieren eines Impulses durch ein vorbestimmtes Spannungsverteilungsverhältnis zwischen jeweiligen Ausgangsspannungen der beiden virtuellen Gleichspannungsquellen (Vdc_a, Vdc_b) erfüllt;

eine Spannungsverteilungsverhältnis-Berechnungseinrichtung (4-4) zum Berechnen eines Spannungsverteilungsverhältnisses (γ) aus der Eingangsspannung (Vmax, Vmid, Vgrd) und dem Eingangsleistungsfaktor-Befehlswert (φ*); und

eine Signal-Synthetisierungseinrichtung (4-9) zum Erzeugen des Steuersignals, wobei das Steuersignal ein synthetisiertes PWM-Signal aus dem Modussignal (MODE SIGNAL) und dem virtuellen PWM-Signal (vu_pwmA∼F, vv_pwmA∼F, vw_pwmA∼F) ist.


 
3. Steuereinheit nach Anspruch 2, wobei die Einrichtung (4-6-4-8) zum Erzeugen eines virtuellen PWM-Signals aufweist:

eine Spannungsbefehlswert-Berechnungseinrichtung (4-6) zum Erzeugen eines Spannungsbefehlswerts (vu_a*, vu_b*, vv_a*, vv_b*, vw_a*, vw_b*) jedes jeweiligen Eingangsspannungswerts basierend auf einem Produkt des Ausgangsspannungsbefehls (vu*, vv*, vw*) und des Spannungsverteilungsverhältnisses (γ); und

eine Regelspannung-Befehlseinrichtung (4-7) zum Erzeugen eines Regelspannungsbefehls (mu_a*, mu_b*, mv_a*, mv_b*, mw_a*, mw_b*), der durch Regulieren des Spannungsbefehlswerts (vu_a*, vu_b*, vv_a* vv_b*, vw_a*, vw_b*) jedes jeweiligen Eingangsspannungswerts in Bezug auf die entsprechende Eingangsspannung erhalten wird, und wobei die Erzeugungseinrichtung (4-8) für das virtuelle PWM-Signal zum Erzeugen des virtuellen PWM-Signals (vu_pwmA∼F, vv_pwmA∼F, vw_pwmA∼F) durch Ausführen einer Dreieckwellenvergleich-PWM-Steuerung des Regelspannungsbefehls (mu_a*, mu_b*, mv_a*, mv_b*, mw_a*, mw_b*) eingerichtet ist.


 
4. Steuereinheit nach einem der vorhergehenden Ansprüche, wobei die Eingangsleistungsfaktor-Befehlseinrichtung (4-3, 4-10) aufweist:

eine Koordinatenumwandlungseinrichtung (4-10-a) zum Erzeugen eines Umwandlungsstroms (igq) durch Ausführen einer Koordinatenumwandlung des Eingangsstroms (ir, is);

eine Umwandlungsstrombefehl-Berechnungseinrichtung (4-10-b) zum Erzeugen eines Umwandlungsstrom-Befehlswerts (igq);

eine Kompensationseinrichtung (4-10-c) zum Anpassen des Eingangsleistungsfaktor-Befehlswerts (φ*) basierend auf einer Differenz zwischen dem Umwandlungsstrom (igq) und dem Umwandlungsstrom-Befehlswert (igq *); und optional

eine Korrektureinrichtung (4-11) zum Korrigieren des Eingangsleistungsfaktor-Befehlswerts (φ*) basierend auf einer Summe des Eingangsleistungsfaktor-Befehlswerts (φ*) und des angepassten Eingangsleistungsfaktor-Befehlswerts (φ1*).


 
5. Steuereinheit nach Anspruch 4, wobei die Umwandlungsstrom-Befehlsberechnungseinrichtung (4-10-b) zum Erzeugen des Umwandlungsstrombefehlswert (igq*) basierend auf einem Produkt einer Amplitude des Eingangsstroms (ir, is) und einer trigonometrischen Funktion des Eingangsleistungsfaktor-Befehlswerts (φ*) eingerichtet ist.
 
6. Steuereinheit nach einem der vorhergehenden Ansprüche, wobei das Steuersignal einen EIN-/AUS-Signalausgang (iSru1∼2, iSu1∼2, iStu1∼2, iSrv1∼2, iSsv1∼2, iStv∼2, iSrw1∼2, iSsw1∼2, iStw1∼2) jeweils zu:

einem ersten Schalter (Sru) zum Verbinden der R-Phase und der U-Phase des Stromrichters (3);

einem zweiten Schalter (Ssu) zum Verbinden der S-Phase und der U-Phase des Stromrichters (3);

einem dritten Schalter (Stu) zum Verbinden der T-Phase und der U-Phase des Stromrichters (3);

einem vierten Schalter (Srv) zum Verbinden der R-Phase und der V-Phase des Stromrichters (3);

einem fünften Schalter (Ssv) zum Verbinden der S-Phase und der V-Phase des Stromrichters (3);

einem sechsten Schalter (Stv) zum Verbinden der T-Phase und der V-Phase des Stromrichters (3);

einem siebten Schalter (Srw) zum Verbinden der R-Phase und der W-Phase des Stromrichters (3);

einem achten Schalter (Ssw) zum Verbinden der S-Phase und der W-Phase des Stromrichters (3); und

einem neunten Schalter (Stw) zum Verbinden der T-Phase und der W-Phase des Stromrichters (3) umfasst.


 
7. Stromwandlersystem, umfassend:

einen Generator (1), der zum Erzeugen eines Mehrphasenwechselstroms betreibbar ist;

einen Motor (2), der durch den Mehrphasenwechselstrom angetrieben wird;

einen Stromrichter (3), der mit dem Generator (1) und dem Motor (2) verbunden ist; und

eine Steuereinheit (4, 4-a, 4-b) nach einem der vorhergehenden Ansprüche.


 
8. Verfahren zum Steuern eines Stromrichters (3), der zum Aufnehmen eines von einem Generator (1) eingegebenen mehrphasigen Wechselstroms, und zum Zuführen eines umgewandelten Ausgangsstroms zu einem Motor (2) eingerichtet ist, wobei das Verfahren folgende Schritte umfasst:

Ermitteln eines Eingangsleistungsfaktor-Befehlswerts (φ*) zum Steuern eines Eingangsleistungsfaktors des Generators (1) basierend auf einem Ausgangsdrehmoment-Befehlswert (Tm*) des Motors (2) und einer Ausgangsdrehwinkelgeschwindigkeit (ωm) des Motors (2); und

Ausgeben eines Steuersignals an den Stromrichter (3) zum Steuern des Eingangsleistungsfaktors des Generators (1) auf den Wert, der auf dem Eingangsleistungsfaktor-Befehlswert basiert,

gekennzeichnet durch

Erzeugen eines Antriebsspannungsbefehls zum Erfüllen eines Ausgangsspannungsbefehls (vu*, vv*, vw*) des Motors (2) durch Synthetisieren von Ausgangsspannungen von zwei virtuellen Gleichspannungsquellen (Vdc_a, Vdc_b), die zu einem jeweiligen momentanen Eingangsspannungswert (Vmax, Vmid, Vgrd) einer Eingangsspannung (Vr, Vs, Vt) des Mehrphasenwechselstroms vom Generator (1) korrespondieren, und Steuern des Eingangsleistungsfaktors durch Variieren eines Spannungsverteilungsverhältnisses (γ) der beiden virtuellen Gleichspannungsquellen (Vdc_a, Vdc_b).


 
9. Verfahren nach Anspruch 8, umfassend:

Erzeugen eines Umwandlungsstroms (igq) durch Ausführen einer Koordinatenumwandlung des Eingangsstroms (ir, is) vom Generator (1);

Erzeugen eines Umwandlungsstrom-Befehlswerts (igq*);

Berechnen eines Anpassungswerts (φ1*) für den Eingangsleistungsfaktor-Befehlswert (φ*) basierend auf einer Differenz zwischen dem Umwandlungsstrom (igq) und dem Umwandlungsstrom-Befehlswert (igq*); und

Korrigieren des Eingangsleistungsfaktor-Befehlswerts (φ*) basierend auf einer Summe des Eingangsleistungsfaktor-Befehlswerts (φ*) und des Anpassungswerts (φ1*).


 


Revendications

1. Unité de commande (4, 4-a, 4-b) pour commander un convertisseur de puissance électrique (3) agencé pour convertir un courant alternatif polyphasé introduit à partir d'un générateur (1) et fournir le courant converti à un moteur (2), l'unité de commande comprenant :

un moyen d'instruction de facteur de puissance d'entrée (4-3, 4-10) pour délivrer en sortie une valeur d'instruction de facteur de puissance d'entrée (φ*) pour commander un facteur de puissance d'entrée du générateur (1) sur la base d'une valeur d'instruction de couple de sortie (Tm*) du moteur (2) et d'une vitesse angulaire de rotation de sortie (ωm) du moteur (2) ; et

un moyen de commande de facteur de puissance d'entrée (4-4∼4-9) pour délivrer en sortie un signal de commande au convertisseur de puissance électrique (3) pour commander le facteur de puissance d'entrée à la valeur basée sur la valeur d'instruction de facteur de puissance d'entrée (φ*),

caractérisée en ce que

le moyen de commande de facteur de puissance d'entrée (4-4∼4-9) est agencé pour générer une instruction de tension d'attaque pour satisfaire une instruction de tension de sortie (vu*, vv*, vw*) du moteur (2) en synthétisant des tensions de sortie de deux sources de tension continue virtuelles (Vdc_a, Vdc_b), qui correspondent à une valeur de tension d'entrée instantanée respective (Vmax, Vmid, Vgrd) d'une tension d'entrée (Vr, Vs, Vt) du courant alternatif polyphasé provenant du générateur (1), et où le moyen de commande de facteur de puissance d'entrée (4-4∼4-9) est agencé pour commander le facteur de puissance d'entrée en faisant varier un rapport de distribution de tension (γ) des deux sources de tension continue virtuelles (Vdc_a, Vdc_b).


 
2. Unité de commande telle que revendiquée dans la revendication 1, dans laquelle le moyen de commande de facteur de puissance d'entrée (4-4∼4-9) comprend :

un moyen de détermination de tension d'entrée (4-2) pour générer la valeur de tension d'entrée respective (Vmax, Vmid, Vgrd) et un signal de mode (MODE SIGNAL) indiquant une condition de la tension d'entrée sur la base d'une relation de grandeur des valeurs de tension d'entrée (Vr, Vs, Vt) ;

un moyen de calcul de tension de sortie (4-5) pour calculer l'instruction de tension de sortie (vu*, vv*, vw*) sur la base de la valeur d'instruction de couple de sortie (Tm*) du moteur (2) et d'une vitesse angulaire de rotation de sortie (ωm) du moteur (2) ;

un moyen de génération de signal PWM virtuel (4-6∼4-8) pour générer un signal PWM virtuel (vu_pwmA∼F, vv_pwmA∼F, vw_pwmA∼F) d'un commutateur lorsqu'une tension d'attaque satisfait l'instruction de tension de sortie (vu*, vv*, vw*) en générant et en synthétisant une impulsion par un rapport de distribution de tension prédéterminé entre des tensions de sortie respectives des deux sources de tension continue virtuelles (Vdc_a, Vdc_b) ;

un moyen de calcul de rapport de distribution de tension (4-4) pour calculer un rapport de distribution de tension (γ) à partir de la tension d'entrée (Vmax, Vmid, Vgrd) et de la valeur d'instruction de facteur de puissance d'entrée (φ*) ; et

un moyen de synthèse de signal (4-9) pour générer le signal de commande où le signal de commande est un signal PWM synthétisé à partir du signal de mode (MODE SIGNAL) et du signal PWM virtuel (vu_pwmA∼F, vv_pwmA∼F, vw_pwmA∼F).


 
3. Unité de commande telle que revendiquée dans la revendication 2, dans laquelle le moyen de génération de signal PWM virtuel (4-6∼4-8) comprend :

un moyen de calcul de valeur d'instruction de tension (4-6) pour générer une valeur d'instruction de tension (vu_a*, vu_b*, vv_a*, vv_b*, vw_a*, vw_b*) de chaque valeur de tension d'entrée respective sur la base d'un produit de l'instruction de tension de sortie (vu*, vv*, vw*) et du rapport de distribution de tension (γ) ; et

un moyen d'instruction de tension régulée (4-7) pour générer une instruction de tension régulée (mu_a*, mu_b*, mv_a*, mv_b*, mw_a*, mw_b*) obtenue en régulant la valeur d'instruction de tension (vu_a*, vu_b*, vv_a*, vv_b*, vw_a*, vw_b*) de chaque valeur de tension d'entrée respective par rapport à la tension d'entrée correspondante, et où le moyen de génération de signal PWM virtuel (4-8) est agencé pour générer le signal PWM virtuel (vu_pwmA∼F, vv_pwmA∼F, vw_pwmA∼F) en exécutant une commande PWM de comparaison d'ondes triangulaires de l'instruction de tension régulée (mu_a*, mu_b*, mv_a*, mv_b*, mw_a*, mw_b*).


 
4. Unité de commande telle que revendiquée dans l'une des revendications précédentes, dans laquelle le moyen d'instruction de facteur de puissance d'entrée (4-3, 4-10) comprend :

un moyen de conversion de coordonnées (4-10-a) pour générer un courant de conversion (igq) en exécutant une conversion de coordonnées du courant d'entrée (ir, is) ;

un moyen de calcul d'instruction de courant de conversion (4-10-b) pour générer une valeur d'instruction de courant de conversion (igq*) ;

un moyen de compensation (4-10-c) pour ajuster la valeur d'instruction de facteur de puissance d'entrée (φ*) sur la base d'une différence entre le courant de conversion (igq) et la valeur d'instruction de courant de conversion (igq*) ; et, éventuellement,

un moyen de correction (4-11) pour corriger la valeur d'instruction de facteur de puissance d'entrée (φ*) sur la base d'une somme de la valeur d'instruction de facteur de puissance d'entrée (φ*) et de la valeur d'instruction de facteur de puissance d'entrée ajustée (φ1*).


 
5. Unité de commande telle que revendiquée dans la revendication 4, dans laquelle le moyen de calcul d'instruction de courant de conversion (4-10-b) est agencé pour générer la valeur d'instruction de courant de conversion (igq*) sur la base d'un produit d'une amplitude du courant d'entrée (ir, is) et d'une fonction trigonométrique de la valeur d'instruction de facteur de puissance d'entrée (φ*).
 
6. Unité de commande telle que revendiquée dans l'une des revendications précédentes, dans laquelle le signal de commande comporte un signal de mise sous tension/hors tension délivré en sortie (iSru1∼2, iSsu1∼2, iStu1-2, iSrv1∼2, iSsv1∼2, iStv1∼2, iSrw1∼2, iSsw1∼2, iStw1∼2) à chacun parmi :

un premier commutateur (Sru) pour connecter la phase R et la phase U du convertisseur de puissance électrique (3) ;

un deuxième commutateur (Ssu) pour connecter la phase S et la phase U du convertisseur de puissance électrique (3) ;

un troisième commutateur (Stu) pour connecter la phase T et la phase U du convertisseur de puissance électrique (3) ;

un quatrième commutateur (Srv) pour connecter la phase R et la phase V du convertisseur de puissance électrique (3) ;

un cinquième commutateur (Ssv) pour connecter la phase S et la phase V du convertisseur de puissance électrique (3) ;

un sixième commutateur (Stv) pour connecter la phase T et la phase V du convertisseur de puissance électrique (3) ;

un septième commutateur (Srw) pour connecter la phase R et la phase W du convertisseur de puissance électrique (3) ;

un huitième commutateur (Ssw) pour connecter la phase S et la phase W du convertisseur de puissance électrique (3) ; et

un neuvième commutateur (Stw) pour connecter la phase T et la phase W du convertisseur de puissance électrique (3).


 
7. Système de conversion de puissance électrique comprenant :

un générateur (1) pouvant fonctionner pour générer un courant alternatif polyphasé ;

un moteur (2) attaqué par le courant alternatif polyphasé ;

un convertisseur de puissance électrique (3) connecté au générateur (1) et au moteur (2) ; et

une unité de commande (4, 4-a, 4-b) telle que revendiquée dans l'une des revendications précédentes.


 
8. Procédé de commande d'un convertisseur de puissance électrique (3) agencé pour recevoir un courant alternatif polyphasé introduit à partir d'un générateur (1) et fournir un courant de sortie converti à un moteur (2), le procédé comprenant le fait :

de déterminer une valeur d'instruction de facteur de puissance d'entrée (φ*) pour commander un facteur de puissance d'entrée du générateur (1) sur la base d'une valeur d'instruction de couple de sortie (Tm*) du moteur (2) et d'une vitesse angulaire de rotation de sortie (ωm) du moteur (2) ; et

de délivrer en sortie un signal de commande au convertisseur de puissance électrique (3) pour commander le facteur de puissance d'entrée du générateur (1) à la valeur basée sur la valeur d'instruction de facteur de puissance d'entrée,

caractérisé par le fait

de générer une instruction de tension d'attaque pour satisfaire une instruction de tension de sortie (vu*, vv*, vw*) du moteur (2) en synthétisant des tensions de sortie de deux sources de tension continue virtuelles (Vdc_a, Vdc_b), qui correspondent à une valeur de tension d'entrée instantanée respective (Vmax, Vmid, Vgrd) d'une tension d'entrée (Vr, Vs, Vt) du courant alternatif polyphasé provenant du générateur (1), et de commander le facteur de puissance d'entrée en faisant varier un rapport de distribution de tension (γ) des deux sources de tension continue virtuelles (Vdc_a, Vdc_b).


 
9. Procédé tel que revendiqué dans la revendication 8, comprenant le fait :

de générer un courant de conversion (igq) en exécutant une conversion de coordonnées du courant d'entrée (ir, is) provenant du générateur (1) ;

de générer une valeur d'instruction de courant de conversion (igq*) ;

de calculer une valeur d'ajustement (φ1*) pour la valeur d'instruction de facteur de puissance d'entrée (φ*) sur la base d'une différence entre le courant de conversion (igq) et la valeur d'instruction de courant de conversion (igq*) ; et

de corriger la valeur d'instruction de facteur de puissance d'entrée (φ*) sur la base d'une somme de la valeur d'instruction de facteur de puissance d'entrée (φ*) et de la valeur d'ajustement (φ1*).


 




Drawing
































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description