(19)
(11)EP 1 853 290 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
23.05.2012 Bulletin 2012/21

(21)Application number: 06701864.8

(22)Date of filing:  02.02.2006
(51)Int. Cl.: 
A61K 38/01  (2006.01)
A61K 38/06  (2006.01)
A23J 3/34  (2006.01)
A23J 1/04  (2006.01)
A23L 1/30  (2006.01)
A61P 9/12  (2006.01)
(86)International application number:
PCT/CA2006/000121
(87)International publication number:
WO 2006/084351 (17.08.2006 Gazette  2006/33)

(54)

ANTI-HYPERTENSIVE DIETARY SUPPLEMENT DERIVED FROM SALMO OR ONCORHYNCHUS PROTEIN HYDROLYSATES

BLUTDRUCKSENKENDE NAHRUNGSERGÄNZUNG AUS SALMO- ODER ONCORHYNCHUS-PROTEINHYDROLYSATEN

COMPLEMENT DIETETIQUE ANTI-HYPERTENSIF DERIVE D'HYDROLYSATS DE PROTEINES DE SAUMON OU D'ONCORHYNCHUS


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30)Priority: 14.02.2005 US 56145

(43)Date of publication of application:
14.11.2007 Bulletin 2007/46

(73)Proprietor: Ocean Nutrition Canada Limited
Dartmouth Nova Scotia B2Y 4T6 (CA)

(72)Inventors:
  • EWART, Harry Stephen
    Halifax, Nova Scotia B3L 1H5 (CA)
  • DENNIS, Dorothy Anne
    Halifax, Nova Scotia B3K 2J7 (CA)
  • BARROW, Colin
    Halifax, Nova Scotia B3H 1A8 (CA)
  • POTVIN, Michael Anthony
    Dartmouth, Nova Scotia B2W 1Z3 (CA)

(74)Representative: Watson, Robert James et al
Mewburn Ellis LLP 33 Gutter Lane
London EC2V 8AS
London EC2V 8AS (GB)


(56)References cited: : 
WO-A1-84/01378
JP-A- 7 188 282
US-B1- 6 214 797
WO-A1-90/05742
JP-A- 11 029 594
  
  • KOHAMA Y. ET AL.: 'Potent synthetic analogues of angiotensin-converting enzyme inhibitor derived from tuna muscle' AGRIC. BIOL. CHEM. vol. 55, no. 8, 1991, pages 2169 - 2170, XP008119933
  • OHTA T. ET AL.: 'Antihypertensive action of the orally administered protease hydrolysates of chum salmon head and their angiotensin I-converting enzyme inhibitory peptides' FOOD SCI. TECHNOL. INT. TOKYO vol. 3, no. 4, 1997, pages 339 - 343, XP008120062
  • YAMAMOTO N. ET AL.: 'Biogenic peptides and their potential use' CURR. PHARM. DESIGN vol. 9, 2003, pages 1345 - 1355, XP008030833
  • KRISTINSSON H.G. AND RASCO B.A.: 'Fish protein hydrolysates: production, biochemical, and fuctional properties' CRIT. REV. FOOD SCI. NUTR. vol. 40, no. 1, 2000, pages 43 - 81, XP008003069
  • LIASET B ET AL: "Enzymatic hydrolysis of by-products from the fish-filleting industry; chemical characterisation and nutritional evaluation", JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, WILEY & SONS, CHICHESTER, GB, vol. 80, no. 5, 1 April 2000 (2000-04-01), pages 581-589, XP002502819, ISSN: 0022-5142, DOI: DOI:10.1002/(SICI)1097-0010(200004)80:5<58 1::AID-JSFA578>3.0.CO;2-I
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] The invention concerns an anti-hypertensive composition, and a dietary supplement comprising such a composition.

BACKGROUND OF THE INVENTION



[0002] Hypertension is a condition commonly associated with narrowing of the arteries. This causes blood to be pumped with excessive force against the artery walls. It is a sign that the heart and blood vessels are being overworked. If left untreated hypertension can cause serious cardiovascular disease. For example, the heart muscle can thicken (cardiac hypertrophy) and function abnormally, or dilate and contract less forcefully (dilated cardiomyopathy). High blood pressure can also cause injury to the brain, the eyes and/or the kidneys. Hypertensive patients are also at increased risk of having a stroke.

[0003] In vivo the renin/angiotensin system functions to regulate blood pressure. This system comprises the angiotensin I-converting enzyme (ACE) which catalyses the cleavage of inactive angiotensin I into the active vasoconstrictor, angiotensin 11. ACE also catalyses the degradation of the vasodilator, bradykinin.

[0004] Various enzymatic hydrolysates and peptides derived from food protein have been reported to have ACE inhibitory activity.

[0005] In particular, Ono et al. (2003) report that a chum salmon hydrolysate, obtained using thermolysin, had ACE inhibitory activity. Thermolysin is a metalloendopeptidase with a specificity for peptide bonds on the N-terminal side of hydrophobic amino acids, and which is produced by Bacillus thermoproteolyticus).

[0006] Ohta et al. (1997) report that a hydrolysate obtained by hydrolysis of a chum salmon head with the commercial serine endopeptidase Biopurase SP10 (from Bacillus subtilis) had greater ACE inhibitory activity than hydrolysates prepared by digestion of the salmon head with any of the following commercial proteases: XP-415 (from Rhizopus delemar), Papain (from Carica papaya), DenazymeAP (from Aspergillus oryzae) or Denapsin2P (from Aspergillus niger).

[0007] However, neither Ono et al., Ohta et al. JP 11-029594 or JP 07-188282 report the use of a bacillolysin in preparing anti-hypertensive fish protein hydrolysates.

SUMMARY OF THE INVENTION



[0008] Accordingly, in one aspect the invention provides an anti-hypertensive fish protein hydrolysate, wherein said fish is of the Salmo spp. or Oncorhynchus spp. type, and wherein the fish protein hydrolysate comprises at least 3 peptides selected from the group consisting of:

Leu-Ala-Phe, Leu-Thr-Phe, I-le-Ile-Phe, , Val-Phe-Tyr, Val-Leu-Trp, and Ile-Ala-Trp.



[0009] JP 11-029594 reports that tuna hydrolysates may act as ACE inhibitors.

[0010] JP 07-188282 reports that sardine and soybean hydrolysates have ACE inhibiting activity in vitro and compositions including them have activity in vivo.

[0011] Liaset et al., J. Sci Food Agric, 80(5): 581-58 (2000) describes the nutritional value of protein hydrolysates obtained from Atlantic salmon or cod using bacillolysin however does not describe their anti-hypertensive effect.

[0012] Such hydrolysates may be prepared by hydrolyzing the fish protein with a bacillolysin.

[0013] In another aspect, the present invention provides an anti-hypertensive composition comprising an anti-hypertensive fish protein hydrolysate as described-above.

[0014] In still another aspect, the present invention provides a dietary supplement, nutraceutical product, or functional food product comprising an anti-hypertensive fish protein hydrolysate as described above.

[0015] In yet another aspect, the present invention provides an anti-hypertensive fish protein hydrolysate as described above for use in the treatment or prevention of hypertension in a patient.

[0016] The invention provides, in another aspect, an anti-hypertensive fish protein hydrolysate as described above for inhibiting angiotension I-converting enzyme (ACE) activity in a patient.

[0017] In still another aspect, the present invention provides an anti-hypertensive fish protein hydrolysate as described above for reducing mean blood pressure in a patient. Also described herein is a method of producing an anti-hypertensive dietary supplement comprising hydrolyzing fish protein with a bacillolysin, wherein said fish is of the genus Salmo or Oncorhynchus.

BRIEF DESCRIPTION OF THE DRAWINGS



[0018] 

Figure 1 is a flow chart illustrating steps in the preparation of a salmon protein hydrolysate according to the invention.

Figure 2 depicts a graph showing a comparison of the anti-hypertensive effect in spontaneous hypertensive rats of unprocessed, ultrafiltered, and ethanol precipitated Protease S Amano salmon protein hydrolysates. The effect of bonito peptide hydrolysate is depicted for comparison.

Figure 3 depicts a graph showing a comparison of ACE inhibitory IC50 values of salmon protein hydrolysates obtained using various proteases.

Figure 4 depicts a graph showing a comparison of the anti-hypertensive effect in spontaneous hypertensive rats of salmon protein hydrolysates prepared with Protease S Amano and Multifect Neutral.


DETAILED DESCRIPTION OF THE INVENTION


Fish Species



[0019] The fish species used in accordance with the present invention are of the salmonid type, which includes the genus Salmo or Oncorhynchus. Most preferably, the fish are selected from the group consisting of: atlantic salmon (Salmo salar) also know as kennebec salmon, sebago salmon, grilse or kelt; coho salmon (Oncorhynchus kisutch) also known as silver salmon, sea trout or blueback; chinook salmon (Oncorhynchus tshawytscha) also known as king salmon, tyee, spring salmon or quinnat; steelhead salmon (Oncorhynchus mykiss) also known as rainbow or silver trout; pink salmon (Oncorhynchus gorbuscha); and sockeye salmon (Oncorhynchus nerka).

[0020] The fish used in the invention may comprise the whole fish, a fillet, a rack, other fish parts, extracts or purified or partially purified fish proteins.

Hydrolysates



[0021] If the fish protein is initially provided in the form of, for example, a fish fillet, rack or whole fish, the fish material is preferably ground using a grinding machine known to those of skill in the art. The fish may also be de-boned using de-boning apparatus prior to grinding. Alternatively, the starting material may be pre-ground, or take the form of an extract or purified or partially purified fish protein product, in which case further grinding is not required.

[0022] The ground fish may be homogenized in water or other aqueous solution in, for example, a 1:1 ratio.

[0023] The water or aqueous solution may contain an anti-bacterial agent such as methyl and/or propyl parabens to minimize bacterial degradation. Typically, if both methyl- and propylparabens are added it may be in the ratio, 2 parts methylparabens and 1 part propylparabens. Optionally, a further preservative may be added.

[0024] The protein present in the homogenized mixture of water and ground fish may be preferably denatured using heat prior to hydrolysis. The denaturing temperature may be, for example, greater than 65°C and most preferably, about 70°C. Preferably, the denaturing step may be from, for example, 5 to 20 minutes in duration. More preferably, the denaturing step may be from 5 to 15 minutes in duration. Most preferably, the denaturing step may be about 10 minutes in duration.

[0025] The mixture may preferably be cooled, for example, to about 50°C and the pH of the mixture adjusted to, for example, between about pH 7 to pH 9 by the drop-wise addition of 1N sodium hydroxide. Preferably, the pH is adjusted to about 8.

[0026] Enzymatic hydrolysis is carried out using an enzyme of the metalloendopeptidase type selected from those in the Enzyme Commission class: EC 3.4.24.28, which are also known as bacillolysins. More particularly, the metalloendopeptidase may be selected from those that preferentially catalyse the hydrolysis of peptide bonds on the C-terminal side of, in descending order with the most preferred amino acid first, arginine, alanine, lysine, phenylalanine and leucine.

[0027] In one embodiment, the enzyme is a bacillolysin produced by fermentation of Bacillus stearothermophilus. A preferred type of bacillolysin is Protease S Amano. Protease S Amano is obtainable from Amano Enzyme USA Company Limited (Lombard, IL.).

[0028] When Protease S Amano is used, it may be added at a ratio of from about 1.6% to 3.6% w/w Protease S Amano to fish protein substrate. For example, the ratio may be from about 2.0% to 3.0% w/w and most preferably about 2.6% w/w.

[0029] Hydrolysis of the fish protein may be performed at a temperature of, for example, from about 45°C to 75°C. Preferably the hydrolysis is carried out at a temperature of from about 45°C to about 55°C, most preferably at a temperature of about 50°C.

[0030] Hydrolysis is preferably carried out until a degree of hydrolysis of about 10% to about 30% is achieved. A degree of about 17% hydrolysis is particularly preferred. Typically this takes from about 3 to about 8 hours to achieve. Preferably the hydrolysis reaction proceeds for about 5.5 to about 7.5 hours. Most preferably the hydrolysis reaction proceeds for about 6.5 to about 7 hours.

[0031] Advantageously, it is not necessary to constantly maintain a steady pH value of the homogenized fish mixture during the hydrolysis reaction.

[0032] If desired, the protein content in the ground fish material may be determined by a method known to those skilled in the art, for example, by the Kjeldahl nitrogen method wherein the percentage protein is equal to the percentage nitrogen multiplied by 6.25. The degree of hydrolysis may be determined by the OPA reaction method.

[0033] The homogenized mixture may be heated to a temperature greater than 80°C for longer than 3 minutes to inactivate the metalloendopeptidase and thereby stop the hydrolysis reaction.

[0034] Bones and other, heavy, insoluble material may be removed from the mixture by, for example, filtration through a screen or two-phase centrifugation.

[0035] The, light, insoluble fraction and oil may be removed by, for example, three-phase centrifugation or vacuum filtration through a suitable filter or membrane, for example, diatomaceous earth.

[0036] The aqueous fraction is preferably dried such as by spray drying to obtain a powdered fish protein hydrolysate.

[0037] Alternatively, the aqueous fraction may be concentrated, for example, with a rotary evaporator, and then lyophilized, or spray-dried to yield a concentrated, powdered, protein hydrolysate.

[0038] Alternatively, the aqueous fraction may be further processed either before or after concentration and/or freeze-drying by for example, ethanol precipitation, ultrafiltration or reverse-phase chromatography to remove salt, high molecular weight peptides or protein fragments. The aqueous fraction may also be further processed by, for example, filtration, chromatography, dialysis and/or centrifugation, or any combination thereof, as are known in the art.

[0039] Advantageously, the fish protein hydrolysate of the present invention is not required to be processed further by, for example, ethanol precipitation, ultrafiltration or reverse-phase chromatography for it to be efficacious.

[0040] Described herein is a fish protein hydrolysate comprising at least one peptide selected from the group consisting of Leu-Ala-Phe, Leu-Thr-Phe, Ile-Ile-Phe, Leu-Ala-Tyr, Ile-Ala-Tyr, Val-Phe-Tyr, Val-Leu-Trp, Ile-Ala-T-rp, Tyr-Ala-Leu, and Tyr-Asn-Arg. In the present invention, the hydrolysate comprises at least 3 peptides selected from the group consisting of: Leu-Ala-Phe, Leu-Thr-Phe, Ile-Ile-Phe, Val-Phe-Tyr, Ile-Ala-Trp and Val-Leu-Trp, and the hydrolysate preferably comprises 3, 4, 5 or all of these peptides. Of this group, Leu-Ala-Phe, Ile-Ile-Phe, Val-Phe-Tyr, Val-Leu-Trp and Ile-Ala-Trp are more preferred, and the hydrolysate preferably comprises 3, 4 or 5 of these peptides. Most preferably, the hydrolysate comprises at least 3, 4, or 5 of the peptides Leu-Ala-Phe, Ile-Ile-Phe, Val-Phe-Tyr, Val-Leu-Trp and Ile-Ala-Trp.

[0041] The protein hydrolysate obtained by the methods as described above may be used in the production of a composition or compound comprising the above tri-peptides.

Uses



[0042] The fish protein hydrolysates of the present invention possess useful anti-hypertensive properties, having been demonstrated to be potent inhibitors of ACE and to reduce mean blood pressure in SHR. Accordingly, the hydrolysates of the invention are useful in the prevention and treatment of hypertension in a subject as well as in the treatment and prevention of the complications of hypertension, for example, cardiac hypertrophy, dilated cardiomyopathy, congestive heart failure, ischaemic heart disease, atherosclerosis, stroke, renal injury including aneurysm, arteriovenous fistula, arterial blockage or renal vein thrombosis; brain damage, loss of vision.

[0043] Obesity and diabetes mellitus are conditions in which blood pressure may be elevated. The hydrolysates of the present invention may be of use in the treatment of high blood pressure in these conditions.

[0044] The subject may be a mammal, such as a human, companion animal or other mammal of agricultural or commercial importance.

Compositions



[0045] Compounds and compositions according to the present invention may be used in a variety of products, for example, pharmaceutical or nutraceutical products, dietary supplements, nutritional supplements, food products, food ingredients and beverages. The fish protein hydrolysate may be microencapulated in order to improve palatability or processing characteristics of the food or beverage products. Alternatively, the fish protein hydrolysates may be used on their own.

[0046] Preferably, nutraceutical and pharmaceutical formulations of compositions and compounds in accordance with the present invention are intended for oral administration. The formulations comprise the composition of the present invention in combination with one or more physiologically acceptable ingredients, such as carriers, excipients or diluents. Compositions and formulations for oral administration are particularly preferred. Formulations may be prepared, for example, in unit dose forms, such as hard capsules, tablets, capsules, dragees, and ampoules or as a powder in a sachet for dissolving in a liquid. They may be prepared in a conventional manner, for example by means of conventional mixing, granulating, confectioning, dissolving or lyophilizing processes.

[0047] Typical physiologically acceptable ingredients include, for example:
  1. a) binding agents such as starch, polyvinylpyrrolidone, hydroxypropylmethyl cellulose and/or gelatine;
  2. b) fillers such as rice powder, sugars (for example, lactose, saccharose, mannitol, sorbitol) and amylopectin, cellulose preparations (for example, microcrystaline cellulose), calcium phosphates (for example, tricalcium phosphate, calcium hydrogen phosphate, lactose), magnesium stearate and/or titanium dioxide;
  3. c) lubricants such as steric acid, calcium stearate, magnesium stearate, talc, silica, silicic acid, polyethylene glycol and/or waxes;
  4. d) disintegrants such the above mentioned starches, carboxymethyl starch, cross-linked polyvinylpyrrolidone, agar, alginic acid or a salt thereof (for example, sodium alginate) and/or sodium starch glycolate;
  5. e) wetting agents such as sodium lauryl sulphate; and/or
  6. f) stabilizers.


[0048] Soft gelatine capsules may be prepared with capsules containing a mixture of the fish protein hydrolysate composition together with paraffin oil, liquid polyethylene glycols, vegetable oil, fat and/or another suitable vehicle for soft gelatine capsules. Plasticizers such as glycerol or sorbitol may also be used. Hard gelatine capsules may contain granules of the composition. Hard gelatine capsules may also contain the composition in combination with solid powdered ingredients such as those listed above.

[0049] Liquid formulations for oral administration may be prepared in the form of solutions, syrups or suspensions. Liquid formulations typically comprise the fish protein hydrolysate composition with an excipient such as sugar or sugar alcohols, and a carrier such as ethanol, water, glycerol, propylene glycol, polyethylene glycol, almond oil, oily esters or mixtures thereof. If desired, such liquid formulations may also contain colouring agents, flavouring agents, saccharine, thickening agents (for example, carboxy methyl cellulose), suspending agents (for example, sorbitol syrup, methylcellulose, hydrogenated edible fats), emulsifying agents (for example, lecithin, acacia), and/or preservatives (for example, methyl p-hydroxy benzoates, propyl p-hydroxy benzoates, sorbic acid). Liquid formulations for oral administration may also be prepared in the form of a dry powder to be reconstituted with water or another suitable vehicle prior to use.

[0050] Formulations may contain one or more additional active ingredients particularly one or more further anti-hypertensive agents. The one or more further anti-hypertensive agents is preferably selected from the group consisting of alpha1-adrenergic antagonists, beta-adrenergic antagonists, combined alpha/beta-adrenergic antagonists, adrenergic neuron blocking agents, CNS-acting antihypertensives, angiotensin converting enzyme (ACE) inhibitors, angiotensin-II receptor antagonists, calcium channel blockers and diuretic agents.

[0051] An effective amount of the fish protein hydrolysate composition can be determined by the skilled person and may depend on various factors, such as the nature of the product, the condition to be prevented or treated, the method of administration, species of animal, age and/or individual condition. Typically, the dose may comprise between 1 to 5 grams of hydrolysate per day for a 70Kg human. Preferably the dose comprises 1.5 grams of dry hydrolysate per day. Preferably, the hydrolysate may be taken between 2 to 4 times daily such that the dose does not have to be taken at once.

[0052] The following examples are offered by way of illustration and not by way of limitation.

EXAMPLE 1



[0053] This example illustrates the preparation and testing of an anti-hypertensive fish protein hydrolysate made using a bacillolysin.

Preparation of ACE Inhibitory Hydrolysate



[0054] Figure 1 outlines the preparation of salmon protein hydrolysate. Ground salmon frames were homogenized with water at a 1:1 ratio. 0.013% parabens (2 parts methyl and 1 part propyl) were added to the water to minimize bacterial degradation. Ground salmon frames were obtained from a salmon processing plant. The mixture was heated to 70°C and held there for 10min. to denature the protein. The mixture was then cooled to 50°C. After 50°C was achieved, the pH of the mixture was adjusted to 8.0 with 1N NaOH. Protease S Amano was added at a 2.6% enzyme/substrate (protein) ratio and d at 50°C for 7h to a 17.0% degree of hydrolysis. The pH was not maintained constant. Protease S Amano produced by Bacillus stearothermophilus fermentation was purchased from Amano Enzyme USA Co., Ltd. (Lombard, IL.).

[0055] Protein content in the ground salmon frames was determined by the Kjeldahl nitrogen method and % protein = % nitrogen x 6.25. The protein content in the ground salmon frames was 40%. 70-80% of fish muscle protein is structural protein (actin, myosin, tropomyosin, and actomyosin) and with respect to fish protein hydrolysis is subject to enzymatic hydrolysis. (Kristinsson and Rasco, 2000).

[0056] The degree of hydrolysis was determined by the OPA reaction method. Heating the mixture to 85°C and holding there for 10 min terminated the hydrolysis by inactivating the Protease S Amano. The bones and heavy insoluble fraction were removed by centrifugation. The light insoluble fraction and oil were removed by vacuum filtration through diatomaceous earth. The aqueous fraction was spray dried to obtain a powdered salmon protein hydrolysate. High molecular weight peptides were removed by ethanol precipitation or ultrafiltration.

In vitro ACE Inhibitory Activity



[0057] The ACE inhibitory activity (IC50) of the salmon protein hydrolysates was determined by the method of Holmquist et al. Table 1 shows the yield, ACE inhibitory activity, molecular weight distribution, and ash content of the hydrolysate without additional processing, and after ethanol precipitation or ultrafiltration. The ACE inhibitory activity of the hydrolysate without additional processing was 58.5µg/mL. The activities after ethanol precipitation or ultrafiltration were 42.1µg/mL and 41.1µg/mL respectively.
Table 1: Yield, ACE inhibitory activity, molecular weight distribution, and ash content of salmon protein hydrolysates.
 Yield (%)ACE inhibitory activity (µg/mL)Average Molecular Weight (daltons)Ash (%)
Unprocessed hydrolysate 6.42 58.5 1290 11.4
Ethanol soluble fraction n/d 42.1 723 15.8
<3000 dalton fraction 1.02 41.1 547 15.8

In-Vivo Antihypertensive Effect in Spontaneous Hypertensive Rats



[0058] The antihypertensive effect of a single oral administration of salmon protein hydrolysates in spontaneous hypertensive rats (SHR) was determined. Hydrolysates were unprocessed, and ultrafiltered or ethanol precipitated. Each hydrolysate was dissolved in water and 1500mg/kg body weight (bw) was administered by gavage. Ultrafiltered Bonito peptide (1307mg/kg bw to account for its lower ash content) was administered as a positive control. Six rats were included in each treatment group. Mean blood pressure measurements were taken from the carotid artery before, and 1, 2, 4, 6, and 8h after administration.

[0059] The average mean blood pressure was 177 ± 17mmHg before administration. Figure 2 shows the changes in mean blood pressure after administration of salmon hydrolysates and bonito peptide in SHR. The in vitro ACE-inhibitory activity of the unprocessed hydrolysate was increased by ultrafiltration or ethanol precipitation. In the SHR, a single oral administration of equal doses of the ultrafiltered and ethanol precipitated hydrolysate and the unprocessed hydrolysate all had significant antihypertensive effects. One hour after administration of the unprocessed hydrolysate and the ethanol-precipitated hydrolysate, the mean blood pressure was significantly reduced by 15% and this reduction was maintained over the 1 to 8 hour measurement period. However, for the ultrafiltered hydrolysate, the mean blood pressure reduction occurred more gradually, becoming evident after 2h (∼ 15%). This reduction was not prolonged, such that after 4h blood pressure rose to baseline values.

[0060] When the salmon rack is digested with Protease S Amano, the hydrolysate is centrifuged to separate the active peptides (in the supernatant) from debris (for example, bone and undigested protein). This is what is referred to as an "unprocessed" hydrolysate. Based on what is known in the art for other blood pressure lowering hydrolysates the applicants believed that to obtain an efficacious product, a processing step to concentrate the active peptides in the supernatant would be required. For example, the bonito peptide product used as a comparison was processed by an ultrafiltration step (3000 MWCO). This removes high molecular weight peptides. The applicants tested two approaches: ultrafiltration (3000 MWCO) and ethanol precipitation, a step that preferentially removes higher molecular weight peptides. Surprisingly, it was the "unprocessed" hydrolysate that was most effective at reducing blood pressure. In the side-by-side comparison, the unprocessed hydrolysate of the instant invention was as effective at lowering blood pressure as the bonito peptide in vivo.

ACE Inhibitory Peptides



[0061] Several ACE inhibitory peptides in the ultrafiltered salmon protein hydrolysate were identified. The ultrafiltered hydrolysate powder in water was applied on a gel filtration TSK-gel G3000PWXL column (7.8 x 300mm, 6µ, Tosoh). The column was eluted with 10% aqueous methanol at a flow rate of 0.8mL/min. The elution was monitored by UV diode array detection collecting UV absorbance data from 192-450nm. Individual fractions were lyophilized and their ACE inhibitory activities were measured.

[0062] The identification of the peptides in the active fractions and their quantification in the unprocessed hydrolysate was carried out by LC-MS/MS consisting of a Q-Tof detector (Micromass). The peptides were identified by ProteinLynx Global Server software (Micromass). The fractions or standards were applied on a reverse-phase PLRP-S 100A column (4.6 x 150mm, 5µ, Polymer Labs). The column was eluted with a linear gradient of methanol (5-90% / 90min.) at a flow rate of 0.2mL/min.

[0063] The ACE inhibitory activity of the ultrafiltered hydrolysate was 41.1µg/mL. Three fractions A, B, and C) were eluted when the ultrafiltered hydrolysate was fractionated on the gel filtration column. Table 2 shows the yield and ACE inhibitory activity of each fraction. After gel filtration the activity of the most active fraction (C) was 15µg/mL demonstrating a stronger ACE inhibitory activity in the lower molecular weight fraction. Fraction C was applied to reverse phase HPLC and using the ProteinLynx Global server software, individual peptides were identified. >200 peptides were identified when fraction C was fractionated on the reverse phase column.

[0064] Several tripeptides identified in fraction C were synthesized, and their ACE inhibitory activities were determined. Table 1 shows the ACE inhibitory activity of the tripeptides with the most potent ACE inhibitory activity. Tripeptides are considered to be absorbed in their intact form in the intestine without being degraded by gastrointestinal proteases and might have antihypertensive effects in vivo. The ACE inhibitory activities of Leu-Ala-Phe, Leu-Thr-Phe, Ile-Ile-Phe, Leu-Ala-Tyr, Ile-Ala-Tyr, Val-Phe-Tyr, Tyr-Ala-Tyr, Val-Leu-Trp, Ile-Ala-Trp, Tyr-Ala-Leu, and Tyr-Asn-Arg were 13.7, 30.7, 8.9, 32.9, 57.5, 11.1, 13.2, 3.7, 56.2, and 54.8µg/mL respectively. The identification of each of these peptides was confirmed with the corresponding synthetic peptide by their retention time and mass spectroscopy and the synthetic peptide was used to quantitate each peptide in the unprocessed hydrolysate by LC-MS/MS. Among these peptides, Leu-Ala-Phe, Ile-Ile-Phe, Val-Phe-Tyr, Tyr-Ala-Tyr, Val-Leu-Trp, and Ile-Ala-Trp have been quantitated in the unprocessed hydrolysate. Table 3 also shows the peptides contents in the unprocessed hydrolysate.
Table 2: Fractions from Gel Filtration of the ultrafiltered hydrolysate.
FractionYield (%)IC50 (µg/mL)
Ultrafiltered hydrolysate   58.5
A 82 105.0
B 15 52.1
C 3 16.5
Table 3: Some tripeptides identified in fraction C.
TripeptideIC50 (µg/mL; [µM])Content in the unprocessed hydrolysate (µg/g)
Leu-Ala-Phe 13.7 [39.2] ∼3.6
Leu-Thr-Phe ∼30.7  
Ile-Ile-Phe 8.9 [22.7] ∼0.4
Leu-Ala-Tyr* ∼32.9  
Ile-Ala-Tyr* ∼57.5  
Val-Phe-Tyr 11.1 [26.0] ∼22
Tyr-Ala-Tyr 13.2 [31.8] ∼0.01
Val-Leu-Trp 10.0 [24.0] ∼280
Ile-Ala-Trp 3.7 [9.5] ∼0.5
Tyr-Ala-Leu* ∼56.2  
Tyr-Asn-Arg* ∼54.8 [121]  
*Semi-pure synthetic peptides.

EXAMPLE 2



[0065] This example compares the ACE inhibitory activity of salmon protein hydrolysates prepared using various proteases.

[0066] Salmon frames were hydrolyzed in optimum hydrolysis conditions with various proteases by the process described in Example 1 and the ACE inhibitory activity of the hydrolysates was determined by the methods described in Example 1.

[0067] Figure 3 shows the ACE inhibitory activities of salmon protein hydrolysates obtained using different proteases which had no additional processing or were purified further on a Diaion® HP-20 solid phase column. The proteases were obtained from the following manufacturers: Alcalase (Novozymes); Flavourzyme (Novozymes); Fungal Protease Concentrate (Genencor); GC106 (Genencor); Multifect® Neutral (Genencor); Proleather FG-F (Amano Enzymes) and Protease S Amano (Amano Enzymes).

[0068] As can be seen from the Figure 3, hydrolysates that were obtained by using Protease S Amano and Multifect Neutral proteases, which were subsequently purified on the solid phase column, demonstrated the best in vitro ACE inhibitory activity.

[0069] As shown in Figure 3, the hydrolysates prepared with various proteases differed substantially in ACE inhibitory activity. Without wishing to be bound by any particular theory, it is believed that the differing activity of the various hydrolysates likely results from their differing peptide compositions, resulting from the different specificities of the proteases used to prepare the hydrolysates.

EXAMPLE 3



[0070] In this example, the in vivo anti-hypertensive effect of a salmon protein hydrolysate prepared using Protease S Amano is compared to that of a salmon protein hydrolysate prepared using Multifect® Neutral.

[0071] The in vivo effect of a single oral administration of 1500mg/kg of body weight to spontaneous hypertensive rats (SHRs) was determined.

[0072] Hydrolysates prepared with Protease S Amano and Multifect® Neutral, using optimal digestive conditions of the enzymes and ethanol precipitated to remove high molecular weight peptides, had IC50 of 40.5µg/mL and 32.8µg/mL, respectively.

[0073] Referring to Figure 4 it can be seen that only the ethanol precipitated hydrolysate prepared using Protease S Amano resulted in an in vivo reduction in blood pressure. The Protease S Amano hydrolysate significantly reduced mean carotid blood pressure by -11.2% to -14.6% during the period from 2 to 8 hours from administration.

REFERENCES



[0074] 

Holmquist B, Bunning P, Riordan JF. A Continuous Spectrophotometric Assay for Angiotension Converting Enzyme. Analytical Biochemistry 1979;95:540-548.

Kristinsson H, Rasco B. Fish Protein Hydrolysates: Production, Biochemical, and Functional Properties. Critical Reviews in Food Science and Nutrition 2000;40(1):43-81.

Maruyama S, Tanaka H, Maeda H, Miyoshi S, Ishikawa H, Fukui F. Oligopeptide, Angiotension Converting Enzyme Inhibitors, Hypotensive Agent, and Method for Treatment of Hypertension. Patent number 05238921 1993.

Ohta T. et al. Antihypertensive Action of the Orally Administered Protease Hydrolysates of Chum Salmon Head and Their Angiotensin I-Converting Enzyme Inhibitory Peptides. Food Sci. Technol. Int. Tokyo 1997;3(4):339-343.

Ono et al. Isolation of Peptides with Angiotensin I-Converting Enzyme Inhibitory Effect Derived from Hydrolysate of Upstream Chum Salmon Muscle. Journal of Food Science 2003;68(5) :1611-1614.

Yasuda M, Izeki T, Sezoko M, Kaneshiro M. Blood Pressure Suppressant Using Red Koji Yeast, and Production Method Therefor. Publication number 04083529 JP 2004.



[0075] It must be noted that as used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Unless defined otherwise all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs.


Claims

1. An anti-hypertensive fish protein hydrolysate, wherein said fish is of the Salmo spp. or Oncorhynchus spp. type, and wherein the fish protein hydrolysate comprises at least 3 peptides selected from the group consisting of: Leu-Ala-Phe, Leu-Thr-Phe, Ile-Ile-Phe, Val-Phe-Tyr, Ile-Ala-Trp and Val-Leu-Trp.
 
2. The anti-hypertensive fish protein hydrolysate according to claim 1, comprising at least 4 of the peptides selected from the group defined in claim 1.
 
3. The anti-hypertensive fish protein hydrolysate according to claim 1, comprising at least 5 of the peptides selected from the group defined in claim 1.
 
4. The anti-hypertensive fish protein hydrolysate according to claim 1, comprising the peptides Leu-Ala-Phe, Ile-Ile-Phe, Val-Phe-Tyr, Val-Leu-Trp and Ile-Ala-Trp.
 
5. The anti-hypertensive fish protein hydrolysate according to claim 1, wherein the fish is selected from the group consisting of: atlantic salmon (Salmo salar), Coho salmon (Oncorhynchus kisutch), chinook salmon (Oncorhynchus tshawytscha), steelhead salmon (Oncorhynchus mykiss), pink salmon (Oncorhynchus gorbuscha), and sockeye salmon (Oncorhynchus nerka).
 
6. The anti-hypertensive fish protein hydrolysate according to claim 1, produced by the hydrolysis of fish protein with a bacillolysin, preferably a bacillolysin produced by fermentation of Bacillus stearothermophilus, preferably Protease S Amano.
 
7. An anti-hypertensive composition comprising an anti-hypertensive fish protein hydrolysate according to any one of claims 1 to 6.
 
8. The anti-hypertensive composition according to claim 7, wherein the composition comprises one or more further anti-hypertensive agents, preferably selected from the group consisting of alpha1-adrenergic antagonists, beta-adrenergic antagonists, combined alpha/beta-adrenergic antagonists, adrenergic neuron blocking agents, CNS-acting anti-hypertensives, angiotensin converting enzyme (ACE) inhibitors, angiotensin-II receptor antagonists, calcium channel blockers and diuretic agents.
 
9. A dietary supplement, nutraceutical product, or functional food product comprising an anti-hypertensive fish protein hydrolysate according to any one of claims 1 to 6.
 
10. The anti-hypertensive fish protein hydrolysate according to any one of claims 1 to 6 for use in the treatment or prevention of hypertension in a patient.
 
11. The anti-hypertensive fish protein hydrolysate according to any one of claims 1 to 6 for use in inhibiting angiotensin 1-converting enzyme (ACE) activity in a patient.
 
12. The anti-hypertensive fish protein hydrolysate according to any one of claims 1 to 6 for use in reducing mean blood pressure in a patient.
 


Ansprüche

1. Blutdrucksenkendes Fischproteinhydrolysat, worin der Fisch dem Typ Salmo spp. oder Oncorhynchus spp. angehört und worin das Fischproteinhydrolysat zumindest 3 aus der aus Leu-Ala-Phe, Leu-Thr-Phe, Ile-Ile-Phe, Val-Phe-Tyr, Ile-Ala-Trp und Val-Leu-Trp bestehenden Gruppe ausgewählte Peptide umfasst.
 
2. Blutdrucksenkendes Fischproteinhydrolysat nach Anspruch 1, das zumindest 4 der aus der in Anspruch 1 definierten Gruppe ausgewählten Peptide umfasst.
 
3. Blutdrucksenkendes Fischproteinhydrolysat nach Anspruch 1, das zumindest 5 der aus der in Anspruch 1 definierten Gruppe ausgewählten Peptide umfasst.
 
4. Blutdrucksenkendes Fischproteinhydrolysat nach Anspruch 1, das die Peptide Leu-Ala-Phe, Ile-Ile-Phe, Val-Phe-Tyr, Val-Leu-Trp und Ile-Ala-Trp umfasst.
 
5. Blutdrucksenkendes Fischproteinhydrolysat nach Anspruch 1, worin der Fisch aus der aus Atlantischem Lachs (Salmo salar), Silberlachs (Oncorhynchus kisutch), Königslachs (Oncorhynchus tshawytscha), Regenbogenforelle (Oncorhynchus mykiss), Buckellachs (Oncorhynchus gorbuscha) und Rotlachs (Oncorhynchus nerka) bestehenden Gruppe ausgewählt ist.
 
6. Blutdrucksenkendes Fischproteinhydrolysat nach Anspruch 1, hergestellt durch die Hydrolyse von Fischprotein mit einem Bacillolysin, vorzugsweise einem durch Fermentation von Bacillus stearothermophilus hergestellten Bacillolysin, vorzugsweise Protease S Amano.
 
7. Blutdrucksenkende Zusammensetzung, die ein blutdrucksenkendes Fischproteinhydrolysat nach einem der Ansprüche 1 bis 6 umfasst.
 
8. Blutdrucksenkendes Zusammensetzung nach Anspruch 7, worin die Zusammensetzung ein oder mehrere weitere, vorzugsweise aus der aus α1-adrenergen Antagonisten, β-adrenergen Antagonisten, kombinierten α/β-adrenergen Antagonisten, adrenergen Neuronen blockierenden Mitteln, auf das ZNS wirkende blutdrucksenkende Mittel, Inhibitoren des Angiotensin überführenden Enzyms (ACE), Angiotensin-11-Rezeptorantagonisten, Calciumkanalblockern und Diuretika bestehenden Gruppe ausgewählte, blutdrucksenkende Mittel umfasst.
 
9. Nahrungsergänzungsmittel, Nutraceutical oder funktionelles Lebensmittel, das ein blutdrucksenkendes Fischproteinhydrolysat nach einem der Ansprüche 1 bis 6 umfasst.
 
10. Blutdrucksenkendes Fischproteinhydrolysat nach einem der Ansprüche 1 bis 6 zur Verwendung bei der Behandlung oder Prävention von Bluthochdruck bei einem Patienten.
 
11. Blutdrucksenkendes Fischproteinhydrolysat nach einem der Ansprüche 1 bis 6 zur Verwendung bei der Hemmung der Aktivität des Angiotensin I überführenden Enzyms (ACE) bei einem Patienten.
 
12. Blutdrucksenkendes Fischproteinhydrolysat nach einem der Ansprüche 1 bis 6 zur Verwendung bei der Reduktion des mittleren Blutdrucks bei einem Patienten.
 


Revendications

1. Hydrolysat de protéine de poisson anti-hypertensif, où ledit poisson est du type espèce Salmo ou espèce Oncorhynchus, et où l'hydrolysat de protéine de poisson comprend au moins 3 peptides sélectionnés dans le groupe consistant en : Leu-Ala-Phe, Leu-Thr-Phe, Ile-Ile-Phe, Val-Phe-Tyr, Ile-Ala-Trp et Val-Leu-Trp.
 
2. Hydrolysat de protéine de poisson anti-hypertensif selon la revendication 1, comprenant au moins 4 des peptides sélectionnés dans le groupe défini dans la revendication 1.
 
3. Hydrolysat de protéine de poisson anti-hypertensif selon la revendication 1, comprenant au moins 5 des peptides sélectionnés dans le groupe défini dans la revendication 1.
 
4. Hydrolysat de protéine de poisson anti-hypertensif selon la revendication 1, comprenant les peptides Leu-Ala-Phe, Ile-Ile-Phe, Val-Phe-Tyr, Val-Leu-Trp et Ile-Ala-Trp.
 
5. Hydrolysat de protéine de poisson anti-hypertensif selon la revendication 1, où le poisson est sélectionné dans le groupe consistant en : le saumon atlantique (Salmo salar), le saumon argenté (Oncorhynchus kisutch), le saumon royal (Oncorhynchus tshawytscha), le saumon arc-en-ciel (Oncorhynchus mykiss), le saumon rose (Oncorhynchus gorbuscha), et le saumon rouge (Oncorhynchus nerka).
 
6. Hydrolysat de protéine de poisson anti-hypertensif selon la revendication 1, produit par l'hydrolyse d'une protéine de poisson avec une bacillolysine, de préférence une bacillolysine produite par la fermentation de Bacillus stearothermophilus, de préférence la protéase S Amano.
 
7. Composition anti-hypertensive comprenant un hydrolysat de protéine de poisson anti-hypertensif selon l'une quelconque des revendications 1 à 6.
 
8. Composition anti-hypertensive selon la revendication 7, où la composition comprend un ou plusieurs agents anti-hypertensifs supplémentaires, sélectionnés de préférence dans le groupe consistant en des antagonistes alpha1-adrénergiques, des antagonistes bêta-adrénergiques, des antagonistes alpha/bêta-adrénergiques combinés, des agents bloquant les neurones adrénergiques, des antihypertenseurs agissant sur le SNC, des inhibiteurs de l'enzyme de conversion de l'angiotensine (ECA), des antagonistes du récepteur de l'angiotensine-II, des inhibiteurs des canaux calciques et des agents diurétiques.
 
9. Complément diététique, produit nutraceutique, ou produit alimentaire fonctionnel comprenant un hydrolysat de protéine de poisson anti-hypertensif selon l'une quelconque des revendications 1 à 6.
 
10. Hydrolysat de protéine de poisson anti-hypertensif selon l'une quelconque des revendications 1 à 6, destiné à être utilisé dans le traitement ou la prévention de l'hypertension chez un patient.
 
11. Hydrolysat de protéine de poisson anti-hypertensif selon l'une quelconque des revendications 1 à 6, destiné à être utilisé pour inhiber l'activité de l'enzyme de conversion de l'angiotensine-I (ECA) chez un patient.
 
12. Hydrolysat de protéine de poisson anti-hypertensif selon l'une quelconque des revendications 1 à 6, destiné à être utilisé pour réduire la pression artérielle moyenne chez un patient.
 




Drawing















REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description