(19)
(11)EP 1 880 457 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
12.07.2017 Bulletin 2017/28

(21)Application number: 06752060.1

(22)Date of filing:  01.05.2006
(51)Int. Cl.: 
H02H 6/00  (2006.01)
G01R 31/34  (2006.01)
(86)International application number:
PCT/US2006/016749
(87)International publication number:
WO 2006/121694 (16.11.2006 Gazette  2006/46)

(54)

ELECTRONIC OVERLOAD RELAY FOR MAINS-FED INDUCTION MOTORS

ELEKTRONISCHES ÜBERLASTRELAIS FÜR INDUKTIONSMOTOREN MIT NETZSPEISUNG

RELAIS DE SURCHARGE ELECTRONIQUE POUR MOTEURS A INDUCTION ALIMENTES PAR CABLES


(84)Designated Contracting States:
FR

(30)Priority: 09.05.2005 US 125352

(43)Date of publication of application:
23.01.2008 Bulletin 2008/04

(73)Proprietor: Schneider Electric USA, Inc.
Schaumburg, IL 60173 (US)

(72)Inventors:
  • GAO, Zhi
    Raleigh NC 27609 (US)
  • HABETLER, Thomas, G.
    Snellville, GA 30078 (US)
  • HARLEY, Ronald, G.
    Lawrenceville, GA 30044 (US)
  • COLBY, Roy, Stephen
    Raleigh, NC 27615 (US)

(74)Representative: Hayden, Nicholas Mark 
Murgitroyd & Company Scotland House 165-169 Scotland Street
Glasgow G5 8PL
Glasgow G5 8PL (GB)


(56)References cited: : 
US-A- 4 413 325
US-A- 4 914 386
  
  • HURST K D ET AL: "A thermal monitoring and parameter tuning scheme for induction machines" INDUSTRY APPLICATIONS CONFERENCE, 1997. THIRTY-SECOND IAS ANNUAL MEETING, IAS '97., CONFERENCE RECORD OF THE 1997 IEEE NEW ORLEANS, LA, USA 5-9 OCT. 1997, NEW YORK, NY, USA,IEEE, US, vol. 1, 5 October 1997 (1997-10-05), pages 136-142, XP010248568 ISBN: 0-7803-4067-1
  • KRAL C ET AL: "Rotor temperature estimation of squirrel cage induction motors by means of a combined scheme of parameter estimation and a thermal equivalent model" ELECTRIC MACHINES AND DRIVES CONFERENCE, 2003. IEMDC'03. IEEE INTERNATIONAL JUNE 1-4, 2003, PISCATAWAY, NJ, USA,IEEE, vol. 2, 1 June 2003 (2003-06-01), pages 931-937, XP010643462 ISBN: 0-7803-7817-2
  • BEGUENANE R ET AL: "Induction Motors Thermal Monitoring by Means of Rotor Resistance Identification" IEEE TRANSACTIONS ON ENERGY CONVERSION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 14, no. 3, September 1999 (1999-09), pages 566-570, XP011084468 ISSN: 0885-8969
  • GAO Z ET AL: "An Online Adaptive Stator Winding Temperature Estimator Based on a Hybrid Thermal Model for Induction Machines" ELECTRIC MACHINES AND DRIVES, 2005 IEEE INTERNATIONAL CONFERENCE ON MAY 15, 2005, PISCATAWAY, NJ, USA,IEEE, 15 May 2005 (2005-05-15), pages 754-761, XP010854525 ISBN: 0-7803-8987-5
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] This invention is directed generally to electronic overload relays for mains-fed induction motors. More particularly, this invention pertains to a system for controlling electronic overload relays for mains-fed induction motors.

BACKGROUND OF THE INVENTION



[0002] The permissible temperature limit for the winding of a motor is primarily determined by the motor's insulation. Applicable standards (UL, CSA, IEC, and NEMA) distinguish different classes of insulation and corresponding temperature limits. Typical allowable temperatures inside the stator windings are given in Information Guide for General Purpose Industrial AC Small and Medium Squirrel-Cage Induction Motor Standards, NEMA Standard MG1-2003, Aug. 2003.

[0003] If the motor is working continuously in an over-temperature condition, the aging process is accelerated. This is a chemical process that involves the deterioration of the insulation material. It is often assumed that a winding temperature that is constantly 10°C higher than the temperature limit reduces the motor life by half. This life law shows that particular attention must be paid to adhering to the permitted operating temperature for long periods of time.

[0004] Various standards have been established to provide general guidelines in estimating stator winding temperature for motor overload protection. See, e.g., IEEE Guide for AC Motor Protection, IEEE Standard C37.96-2000, March, 2000; Guide for the Presentation of Thermal Limit Curves for Squirrel Cage Induction Machines, IEEE Standard 620-1996, June, 1996; and IEEE Standard Inverse-time Characteristic Equations for Overcurrent Relays, IEEE Standard C37.112-1996, September, 1996.

[0005] Many manufacturers provide motor protective relays based on a thermal model with a single thermal time constant, derived from the temperature rise in a uniform object.

[0006] HURST K D ET AL: "A thermal monitoring and parameter tuning scheme for induction machines" INDUSTRY APPLICATIONS CONFERENCE, 1997, discloses a method of estimating the stator winding temperature of an induction motor having a rotor and a stator, said method comprising estimating the stator temperature from the motor current and the angular speed using an online hybrid thermal model.

SUMMARY OF THE INVENTION



[0007] In accordance with one embodiment of the present invention, an induction motor having a rotor and a stator is protected by an apparatus as claimed in claim 16. As used herein, the term "online" means that the measurements, calculations or other acts are made while the motor is in service, connected to a load and running. A running overload is typically a condition in which the stator current is in the range of from about 100% to about 200% of the rated current of the motor, with motor continuously running. The stator winding temperature is tracked by use of an online hybrid thermal model that uses the resistance of the rotor as an indicator of rotor temperature and thus of the thermal operating conditions of the motor. The hybrid thermal model incorporates rotor losses and heat transfer between the rotor and the stator, and approximates the thermal characteristics of the rotor and stator.

[0008] One embodiment of the hybrid thermal model includes adjustable thermal parameters that permit the hybrid thermal model to be tuned when it does not match the actual thermal operating condition of the motor, to adapt the hybrid thermal model to the cooling capability of the motor. The match between the hybrid thermal model and the actual thermal operating condition of the motor can be measured by a function of the difference between a rotor temperature estimated using the online hybrid thermal model and a rotor temperature estimated from the estimated rotor resistance, and the tuning is effected when the error exceeds a predetermined threshold.

[0009] Thus, the invention can provide a system for estimating stator winding temperature by an adaptive architecture, utilizing the rotor resistance as an indication of rotor temperature, and consequently the motor thermal characteristics. The hybrid thermal model is capable of reflecting the real thermal characteristic of the motor under protection. With the learned parameters for the hybrid thermal model from the rotor resistance estimation, it is capable of protecting an individual motor in an improved manner, reducing unnecessary down time due to spurious tripping.

[0010] One embodiment of the invention provides an improved on-line system for estimating the rotor resistance of an induction motor by estimating motor inductances from the stator resistance and samples of the motor terminal voltage and current; and estimating the rotor resistance from samples of the motor terminal voltage and current, the angular speed of the rotor, and the estimated inductances. The voltage and current samples are used to compute the positive sequence, fundamental components of voltage and current. A preferred algorithm computes the ratio of rotor resistance to slip, in terms of the positive sequence voltage and current components and the motor inductances, and multiplies the ratio by the slip to obtain rotor resistance. The rotor temperature is estimated from the estimated rotor resistance.

[0011] One embodiment of the invention provides a method according to claim 1.

BRIEF DESCRIPTION OF THE DRAWINGS



[0012] The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.

FIGs. 1a and 1b are block diagrams of stator temperature tracking systems for controlling an overload protection relay for an induction motor, in accordance with two alternative embodiments of the invention,

FIGs. 2a and 2b are equivalent circuits of a d-q axis model of a 3-phase induction motor,

FIGs. 3a and 3b are flowcharts of online inductance estimation algorithms suitable for use in the systems of FIGs. 1a and 1b, respectively,

FIG. 4 is a steady-state equivalent circuit of an induction motor,

FIG. 5 is a phasor diagram for the equivalent circuit of FIG 4,

FIG. 6 is a graph depicting the relationship among three parameters used in one implementation of the system illustrated in FIG. 1,

FIG. 7 is a flow chart of of an online parameter tuning algorithm for a hybrid thermal model,

FIG. 8 is a full-order hybrid thermal model of an induction motor,

FIG. 9 is a decoupled hybrid thermal model of an induction motor under a locked rotor condition,

FIG. 10 is a reduced-order hybrid thermal model of an induction machine,

FIG. 11 is a diagram of the overall architecture of an adaptive Kalman filter with noise identification and input estimation, for use in one implementation of the system of FIG. 1,

FIGs. 12a and 12b are positive and negative sequence equivalent circuits for an induction motor,

FIGs. 13a and 13b are graphs showing the relationship between rotor resistance and frequency/slip, and

FIG. 14 is a diagrammatic illustration of the torques produced by positive and negative sequence currents.


DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS



[0013] Turning now to the drawings, FIG. 1 illustrates the overall architecture of a system for estimating the stator winding temperature in an induction motor. This estimated temperature can then be used to control the tripping of an electronic relay that protects the motor from overload conditions. The system includes an inductance estimator 10, a rotor resistance estimator 12, a rotor temperature estimator 14, and a stator temperature estimator 16. Online signals supplied to the system include signals is and vs representing samples of the motor terminal current and voltage, respectively, signal Rs representing the resistance of the stator in the motor, and a signal representing the NEMA design A, B, C or D of the motor. The output of the system is a signal θsHTM representing the estimated stator temperature.

[0014] The four estimators 10-16 are preferably implemented by a single microprocessor programmed to execute algorithms that calculate the desired estimates based on the input signals and/or the results produced by the estimators. Each of these algorithms will be described in detail below.

[0015] The inductance estimator 10 estimates the stator leakage inductance Lls, the rotor leakage inductance Llr and the mutual inductance Lm of the motor from the samples vs and is of the motor terminal voltage and current, the stator resistance Rs, and the signal representing the NEMA design A, B, C or D. These inductance values are temperature-independent. The inductance estimation algorithm is preferably carried out within one minute from the motor start so that the stator temperature, and hence resistance, are relatively constant.

[0016] The online inductance estimation is based on the d-q axis dynamic model of a 3-phase induction motor. FIGs. 2a and 2b are equivalent circuits of the d-q axis model of a 3-phase induction motor where Rs is the stator resistance; Rr is the rotor resistance; Lls is the stator leakage inductance; Llr is the rotor leakage inductance; Lm is the mutual inductance, and ω is the angular frequency of the reference frame.

[0017] Applying the synchronously rotating reference frame to the equivalent circuits shown in FIGs. 2a and 2b under steady state yields:

where s is the slip under steady state operation.

[0018] The flux and current have the following relationship:

Combining Equations (1) and (2) yields:

Proper simplification of Equation (3) yields:

where Rs and Rr are the stator and rotor resistances respectively; Ls, Lr, and Lm are the stator, rotor and mutual inductances, respectively; ωe is the angular frequency (rad/s) of the synchronous reference frame; s is the slip; and e is the slip frequency.

[0019] Aligning the d-axis with the stator current space vector is(t) yields Ids = Is and Iqs = 0. Then Equation (4) can be further simplified to:



[0020] Defining



and using Equation (5), gives the following relationship:



[0021] A compact form of Equation (6) is given by:

where



and



[0022] The values of y and u depend on the operating point of the motor. For a given motor, different load levels lead to different values of u.

[0023] Because the parameter vector θ is composed solely of the motor inductance values, parametric estimation of the vector θ can be carried out by measuring the voltage and current at different load levels.

[0024] With recorded voltage and current data at n operating points, the following vectors can be formed:



[0025] Then Equation (8) can be expressed as:



[0026] If n > 2 then matrix U is not square. To determine the corresponding parameter vector θ, the Moore-Penrose inverse of U, which is designated by U, can be taken. For a non-square matrix, the Moore-Penrose inverse is not only a good analogy to the conventional inverse of the square matrix, but also a minimum norm least square solution with superb stability to the simultaneous linear Equation (8) under small signal perturbation.

[0027] Having obtained the Moore-Penrose inverse of U , the solution to Equation (8) can then be written as:



[0028] Once the parameter vector

is determined, the value of Ls and σLs can be attained by solving the following second-order polynomial equation:



[0029] Assuming the roots of Equation (10) are x1 and x2, with x1 > x2, gives:



[0030] From IEEE Standard Test Procedure for Polyphase Induction Motors and Generators, IEEE Standard 112-1996, Sept. 1996, the ratio between the leakage inductances is obtained for motors with different NEMA designs,

The mutual inductance Lm is then the positive root of the following quadratic equation:

where x1 and x2 are the roots of equation (10).

[0031] Once the mutual inductance Lm is found, the stator leakage inductance can be acquired by:

And the rotor leakage inductance is:



[0032] FIG. 3 is a flow chart for the inductance estimation algorithm. Sensors are needed to collect voltage and current information va, vb, vc and ia, ib, ic, which is conventional for many motor applications.

[0033] The inductance estimation algorithm requires the cold state (ambient temperature) stator resistance Rs as its input, as illustrated in FIG. 3. This stator resistance is usually provided by the motor manufacturer. If it is not, a simple direct current injection test can determine the precise value of the cold state stator resistance. In some cases, a multimeter can establish the resistance value with reasonable accuracy.

[0034] The other input needed is the machine design: NEMA A, B, C or D, which is normally printed on the motor's nameplate. This is used to determine the ratio Υ between the stator leakage inductance and the rotor leakage inductance.

[0035] The online inductance estimation algorithm is based on the equations for steady state motor operation, and thus is not run during the transient state. As can be seen in FIG. 3, the algorithm executes Equations (8), (9), (10), (12), (13) and (14) sequentially.

[0036] Multiple runs at different load levels are used to construct the matrices y and U. They should be of appropriate dimensions to permit estimation of the motor parameter vector θ. Most mains-fed motors have a working cycle of starting - accelerating - running - stopped. The online inductance estimation algorithm enables the overload relay to learn the motor parameters during the first several such working cycles. After the successful recognition of those machine parameters, the electrical model of the induction machine is then properly tuned for the rotor resistance estimation algorithm. At this moment, the inductance estimation algorithm has accomplished its design objective and can therefore be safely bypassed.

[0037] The motor inductances may also be estimated from phasor analysis of the steady-state equivalent circuit illustrated in FIG. 4. To eliminate the stator resistance from the circuit equations, as illustrated in the modified block diagrams in FIGs. 1b and 3b. Expressions relating Vs,Is,r1,Ls maybe derived as follows:

[0038] In FIG. 4, the stator self inductance is Ls = Lls + Lm ; the rotor self inductance is Lr = Llr + Lm ;

s is the slip; ωe is the angular speed, in rad/s, of the synchronously rotating reference frame;

and

are the stator voltage and current space vectors under the synchronously rotating reference frame, respectively;

and

are the stator current space vectors along the q-axis and d-axis, respectively.

[0039] From the complex vector analysis, the voltage and current space vectors,

and

are regarded as s and s rotating in space. Hence phasors can also be used in FIG. 4 to represent the steady state motor operation.

[0040] Let r and m denote the phasors corresponding to

and

respectively. By aligning the x-axis with s, the abscissa and ordinate of a plane Cartesian coordinate are completely determined in the phasor diagram depicted in FIG. 5. Let Vsx and Vsy denote the projection of s onto the x-axis and y-axis, and similarly Irx and Iry for r, then:



[0041] Eliminating Irx and Iry from the first two rows, eliminating r2 from the last row, and substituting those relationships into the third row yields, after proper rearrangement:



[0042] By taking the voltage and current measurements at two different load levels, the induction machine parameter vector

+ is solved for motor inductances, Ls and σLs as described above.

[0043] Since the motor inductance estimation algorithm is essentially based on the fundamental frequency positive sequence machine model, other components in the voltage and current samples should be eliminated. The digital positive waveform synthesis is designed for such purpose. By extracting positive sequence instantaneous values va1,vb1,vc1 or ia1,ib1,ic1 from the original sampled data va,vb,vc or ia,ib,ic, filtered data can be acquired for the estimation algorithm.

[0044] The most important aspect of digital positive and negative sequence waveform synthesis is the digital phasor extraction. Its purpose is to extract from the instantaneous voltage and current data the corresponding phasors under sinusoidal steady state condition. Its theory of operation is detailed below.

[0045] Starting from the basic concept, a periodic impulse train is described by:



[0046] The discrete Fourier series of this impulse train is:

where



[0047] When k ≠ 0, the discrete Fourier series in Equation (18) is simplified to:



[0048] The real part of Equation (19) is:



[0049] Similarly, the imaginary part of Equation (19) is:



[0050] If the frequency of the power supply is fe, then the angular frequency of the power supply is ωe=2πfe, and the period is

In each cycle N samples of the voltage and current signals are taken.

[0051] If tn is the corresponding time for the nth sample,

So from Equation (20) and Equation (21), it is known that:







where p and q are positive integers. From Equations (20)-(21), Equations (22)-(25) are all zero, unless p ± q = 0.

[0052] Typical voltage or current waveforms with fundamental frequency fe can be described by:

where a1 and b1 are constant coefficients for fundamental frequency components, and ah and bh (h>2) are coefficients for harmonic content in the waveform.

[0053] Based on Equations (22) through (25), the following Equations (27) through (28) can be employed to determine the constant coefficients a1 and b1 in the voltage or current waveform f(t):





[0054] Once the coefficients, a1 and b1, in the fundamental component of the instantaneous voltage, v(t) = a1cos(ωet)+b1sin(ωet), are known from Equations (27) and (28), the corresponding voltage phasor,

can be calculated.



[0055] FIG. 6 can be used as an aid in determining the angle ϕ from Equation (29). When the point (a1, b1) is in Quadrants I and IV,

when point (a1, b1) is in Quadrants II and III,

when point (a1, b1) is on the vertical axis,

for b1>0 and

for b1<0.

[0056] After extracting the phasors from the instantaneous values, the second step is to use a symmetric components method to decompose them into positive and negative sequence components for future analysis.

[0057] Denoting a = ej120° yields:



[0058] By decomposing the voltage and current information into positive and negative sequence components, further analysis can be done on the machine's sequence model.

[0059] Once the positive sequence phasors are computed, the corresponding instantaneous values for each individual phase can be obtained by the following mapping:



[0060] The rotor resistance estimator 12 estimates the rotor resistance based on the estimated inductances of the motor, the samples vs and is of the motor terminal voltage and current, and the angular speed ωrud of the rotor. The rotor resistance value is temperature-dependent.

[0061] The digital positive sequence waveform synthesizer (DPSWS) block is also used in the rotor resistance estimation algorithm to filter out the negative sequence components and harmonics to insure a reliable estimate of the rotor resistance.

[0062] Rotor speed can be obtained, for example, from a saliency harmonic speed detection algorithm based on K.D. Hurst and T. G. Habetler, "A Comparison of Spectrum Estimation Techniques for Sensorless Speed Detection in Induction Machines," IEEE Transactions on Industry Applications, Vol. 33, No. 4 July/August 1997, pp. 898-905.

[0063] Using a synchronously rotating reference frame, the operation of a symmetrical induction machine can be described by the following set of equations:

where Rs and Rr are the stator and rotor resistance respectively; Ls, Lr and Lm are the stator, rotor and mutual inductance respectively; ωe is the angular frequency (rad/s) of the synchronous reference frame; s is the slip; and p is the differential operator



[0064] Aligning the d-axis with the stator current vector is(t) and assuming steady state operation so that p = 0, Equation (32) can be simplified to:



[0065] Solving Equation (33) for Rr gives:



[0066] Equation (34) is the primary equation used for rotor resistance estimation. Since it requires only inductances Ls, Lr and Lm ; voltage, Vqs ; current, Is and slip frequency, e, the outcome gives an accurate estimate of rotor resistance. This rotor resistance estimate is independent of the stator resistance and hence the stator winding temperature.

[0067] The rotor resistance may also be estimated from phasor analysis of the steady-state equivalent circuit illustrated in FIG. 4.

[0068] First, the last two rows in Equation (15) are solved for Irx and Iry:



[0069] Substituting Irx in the first row of Equation (15), solving for r2 and using the notational definition r2 = Rr/s(Lm/Lr)2, gives:



[0070] The rotor temperature estimator 14 estimates the rotor temperature

from the estimated rotor resistance and the well known linear relationship between the rotor temperature and rotor resistance.

[0071] The stator temperature estimator 16 estimates the stator temperature of an induction machine from its rotor angular speed ωrud, the stator current is and the estimated rotor temperature

using a full-order hybrid thermal model (HTM) illustrated in FIG. 7. The HTM approximates the rotor and stator thermal characteristics. The model parameters are loosely associated with aspects of the machine design.

[0072] The quantities θs and θr are temperature rises [°C] above ambient on the stator and rotor sides, respectively. The power input Ps[W] is associated directly with the I2R loss generated in the stator winding. In addition, under constant supply voltage, the core loss generated in the stator teeth and the back iron contributes a fixed portion to the rise of θs. The power input Pr is associated mainly with the I2R loss in the rotor bars and end rings. These losses are calculated from the induction machine equivalent circuit.

[0073] The thermal resistance R1C/W] represents the heat dissipation capability of the stator to the ambient through the combined effects of heat conduction and convection; the thermal resistance R2C/W] is associated with the heat dissipation capability of the rotor to its surroundings; the thermal resistance R3C/W] is associated with the heat transfer from the rotor to the stator across the air gap. Since the radiation only accounts for a small amount of energy dissipated for most induction machines, its effect can be safely ignored without introducing significant errors in the stator winding temperature estimation.

[0074] The thermal capacitances C1 and C2 [J/°C] are defined to be the energy needed to elevate the temperature by one degree Celsius for the stator and rotor, respectively. The capacitance C1 represents the total thermal capacity of the stator windings, iron core and frame, while C2 represents the combined thermal capacity of the rotor conductors, rotor core and shaft.

[0075] A motor's stator and rotor thermal capacitances C1 and C2 are fixed once the motor is manufactured. The motor's thermal resistances, however, are largely determined by its working environment. When a motor experiences an impaired cooling condition, R1, R2 and R3 vary accordingly to reflect the changes in the stator and rotor thermal characteristics.

[0076] The thermal characteristics of a motor manifest themselves in the rotor temperature, which can be observed from the rotor temperature via the embodiment of the rotor resistance estimator. Based on the estimated rotor temperature, the parameters of the HTM can therefore be adapted in an online fashion to reflect the motor's true cooling capability.

[0077] Compared with the conventional thermal model using a single thermal capacitor and a single thermal resistor, the HTM incorporates the rotor losses and the heat transfer between the rotor and the stator. When properly turned to a specific motor's cooling capacity, it is capable of tracking the stator winding temperature during running overloads, and therefore provides adequate protection against overheating. Furthermore, the HTM is of adequate complexity compared to more complex thermal networks. This makes it suitable for online parameter tuning.

[0078] For most TEFC machines up to 100 hp, C1 is usually larger than C2 due to the design of the motor. R1 is typically smaller than R2 because of the superior heat dissipation capacity of the stator. R3 is usually of the same order of magnitude as R1, and it correlates the rotor temperature to the stator temperature. These relationships are justified by the detailed analysis of the machine design.
  1. 1) Relationship between C1 and C2: For most small-size induction machines with the TEFC design, the frame is an integral part of the machine. The frame acts as a heat sink with a large thermal capacitance. Therefore, even thought the bulk parts of both the stator and rotor are laminated silicon steel of the same axial length, the thermal capacitance C1 is often larger than C2 due to the inclusion of the frame. In addition, the stator winding overhang provides some extra thermal capacity to C1. Normally, C1 is 2 to 3 times larger than C2.
  2. 2) Relationship between R1 and R2: The frame of a small-size TEFC motor prevents the free exchange of air between the inside and outside of the case. Consequently, the heat transfer by means of convection from the rotor to the external ambient is restricted at all conditions. Only a limited amount of heat created by the rotor is transferred by means of conduction from the rotor bars and the end rings through the rotor iron to the shaft, and then flows axially along the shaft, through the bearings to the frame and finally reaches the ambient. In contrast, the stator dissipates heat effectively through the combined effects of conduction and convection. The axial ventilation through the air gap carries part of the heat away from the stator slot winding and the stator teeth, with the balance of the heat transferred radially through the stator iron and frame to the external ambient.
    As evidence of the good thermal conductivities of the stator iron and frame, the temperature of the stator slot winding is usually 5-10 °C lower than that of the stator end winding. Some TEFC motors are even equipped with pin-type cooling fins on the surface of the frame, which makes it easier for the heat to be evacuated to the ambient. R2 is usually 4-30 times larger than R1 at rated conditions.
  3. 3) Relationship between R1 and R3: Most induction machines with TEFC design in the low power range are characterized by a small air gap (typically around 0.25-0.75 mm) to increase efficiency. Furthermore, only a limited amount of air is exchanged between the inside and outside of the motor due to the enclosure. Therefore, among the rotor cage losses that are dissipated through the air gap, a significant portion is transferred to the stator by means of laminar heat flow, while the rest is passed to the endcap air inside the motor. These rotor cage losses, combined with the stator losses, travel through the stator frame and end shield and finally reach the ambient. Hence, the rotor and stator temperatures are highly correlated due to this heat flow pattern.


[0079] It has been estimated that 65% of the overall rotor losses are dissipated through the air gap at rated condition. This indicates that R3 is much smaller than R2, and is usually of the same order of magnitude as R1. Otherwise, the rotor losses would be dissipated mainly along the shaft instead of through the air gap.

[0080] Assuming Ps and Pr are the inputs and θr is the output, the state space equations that describe the hybrid thermal model in FIG. 7 are:



Since the magnitude of the core loss is independent of the motor load level under constant supply voltage, and the core loss is far less than the stator I2R loss for most modem induction machines, it is therefore neglected in Ps. By taking into account only the I2R losses in the stator and rotor, P, and Pr are:



where Is is the stator rms current; Rs and Rr are the stator and rotor resistances, respectively; Lm and Lr are the mutual and rotor inductances, respectively; s is the per unit slip; and ωe is the synchronous speed.

[0081] K is the ratio of Pr to Ps :

Since the temperature increases gradually inside the motor at running overload conditions, K remains constant if the rotor speed does not change.

[0082] By substituting Pr with KPs in Equation (37) and taking the Laplace transform, the transfer function between the input Ps, and the output θr in the s-domain, where s now denotes the Laplace operator, is:

where a0 = R1 + R2 + R3; a1 = C1R1R3 + C1R1R2 + C2R2R3 + C2R1R2; a2 = C1C2R1R2R3; b0 = R1R2 + R1R2K + R2R3K;b1 =C1R1R2R3K.

[0083] When the input to the hybrid thermal model is a step signal with a magnitude c, the output, in the time domain, is:

where

u(t) is a unit step;





and



[0084] In Equation (43), α represents the magnitude of the steady-state rotor temperature; β1eλ1t and β2eλ2t correspond to the rotor thermal transient.

[0085] Information Guide for General Purpose Industrial AC Small and Medium Squirrel-Cage Induction Motor Standards, NEMA Standard MG1-2003, August 2003, specifies the major physical dimensions of induction machines up to 100 hp, with squirrel-cage rotors. Analysis of these design specifications gives a typical range for the thermal parameters R1, R2, R3, C1 and C2 in the hybrid thermal model. Therefore, for a typical small-size, mains-fed induction machine, β1eλ1t corresponds to a slow exponential change with large magnitude, while β2eλ2t corresponds to a fast but rather small thermal transient. Since the latter term vanishes quickly, β1eλ1t is identified as the dominant component in the rotor thermal transient. Similar conclusions can also be drawn for the stator thermal transient. Consequently, Equation (43) is simplified to the following:

where τth is the thermal time constant obtained from the rotor temperature, estimated from the rotor temperature estimation algorithm.

[0086] As a consequence of the strong correlation between the rotor and stator temperatures at running overload conditions, the stator winding thermal transient has the same thermal time constant as the rotor.

[0087] Since a typical small-size, mains-fed induction machine's internal losses are dissipated chiefly through the stator to the ambient, and the thermal resistance R1 is directly connected to the stator side in the full-order HTM in FIG. 7, R1 is the most significant factor in determining the steady-state rotor temperature and its thermal time constant in a thermal transient. Due to the strong correlation between the rotor and stator temperatures, R1 is also the most important factor in determining the steady-state stator temperature and its thermal time constant in a thermal transient. The stator steady-state temperature is relatively insensitive to the changes in R2 and R3.

[0088] To ensure comprehensive motor overload protection under the running overload condition, an online parameter tuning algorithm is used to protect the motor against running overloads with stator current between 100% and 200% of the motor's rated current.

[0089] FIG. 8 shows the flowchart of the online parameter tuning algorithm. R2 and C2 are first computed offline from the motor nameplate data, including the full load current, the service factor and the trip class. Then R1, R3 and C1 are calculated online based on the data from heat runs at various load levels.

[0090] To check whether the tuned hybrid thermal model matches the motor's true thermal behavior, the sum of the squared error (SSE) is used as an index. It is defined as the error between the rotor temperature predicted by the hybrid thermal model and the rotor temperature estimated from the rotor resistance:

where N is the number of samples used in computing SSE.

[0091] Once the SSE becomes smaller than a predetermined threshold value ε, the tuning is done. Otherwise, a mismatch exists between the hybrid thermal model and the motor's true thermal operating condition, and more iterations are needed with additional data from heat runs to tune the parameters until a solution is found.

[0092] Since R1 is more closely related to the motor cooling capability than R2 and R3 due to the heat flow inside an induction machine, R1 is the focus of the online parameter tuning algorithm. The tuning of R1 alone can yield a sufficiently accurate estimate of the stator winding temperature.

[0093] The thermal parameters R2 and C2 are determined from the motor specifications at the locked rotor condition. When the rotor is locked, there is no ventilation in the air gap. Consequently, it can be assumed that no heat is transferred across the air gap by means of laminar heat flow during this short interval. Then this locked rotor condition is modeled by letting R3 →∞ and decoupling the full-order HTM into two separate parts, the stator part and the rotor part, as shown in FIG. 9.

[0094] During locked rotor conditions, the thermal capacity of an induction machine is usually rotor limited. At an ambient temperature of 40 °C, a typical maximum allowable rotor temperature of 300 °C is assumed.

[0095] Associated with the rotor thermal capacity at locked rotor conditions, the trip class is defined as the maximum time (in seconds) for an overload trip to occur when a cold motor is subjected to 6 times its rated current. It is related to R2 and C2 by:

where TC is the trip class given by the motor manufacturer; and SF is the service factor.

[0096] Alternatively, a manufacturer may specify a Stall Time and the Locked Rotor Current. One may substitute Stall Time for Trip Class in Equation (46) and the ratio of Locked Rotor Current to Full Load Current for the constant 6, to obtain the rotor thermal parameters.

[0097] The rise of the rotor temperature during a locked rotor condition is:

where

is the rotor I2R loss at the locked rotor condition; θr(t)|t=0 is the initial rotor temperature; and θr(t)|t=TC is the rotor temperature after TC elapsed.

[0098] Substituting θr(t)|t=TC and θr(t)|t=0 in Equation (47) with 300 °C and 40 °C, respectively; and combining Equations (47) and (46) to obtain R2 and C2 :





[0099] The thermal parameters R3, R1 and C1 are calculated online based on the data from heat runs at various load levels. First, R3 is determined from the motor specifications at the rated condition:

where θs(t)|t=∞ and θr(t)|t=∞ are the steady state stator and rotor temperature rises above the ambient at the rated condition, respectively; Pr is the rotor I2R loss at the rated condition; and R2 is computed previously by Equation (48). θs(t)|t=∞ is either specified in the motor manufacturer's data sheet or obtained by measuring the stator resistance at the rated condition through the direct current injection method.

[0100] Then the coefficients in the dominant component of the rotor thermal transient, β1 and λ1, are identified. The identification process involves regression analysis, i.e., fitting an exponential function in the same form as Equation (44) to the rotor thermal transient, which is derived from the estimated rotor resistance.

[0101] Finally, R1 and C1 are solved from β1 and λ1 by numerical root finding techniques. Given R2, R3 and C2, R1 and C1 are related to β1 and λ1:

where the nonlinear functions f1, and f2 are formulated from Equation (44). Newton's method is chosen as the numerical root finding method due to its superior convergence speed.

[0102] After successful completion of the tuning, SSE is constantly monitored to detect changes in the motor's cooling capability, such as those caused by a broken cooling fan or a clogged motor casing. If such a change is detected, R1 is tuned again since only this parameter is highly correlated with the motor's cooling capability. In this case, λ1 is first updated through regression analysis. Then it is expressed as a function of R1:

where f2 has the same form as f2 in Equation (51), but C1 is now regarded as a known constant. Finally a new R1 is solved from Equation (52) by the Newton's method to reflect the change in the motor's cooling capability.

[0103] Through the online parameter tuning, the hybrid thermal model ensures a correct prediction of the stator winding temperature, even under an impaired cooling condition, thereby providing a comprehensive overload protection to the motor.

[0104] Most induction machines of TEFC (totally enclosed fan-cooled) design in the low power range (< 30 hp) are characterized by a small air gap (typically between 0.25 mm and 3 mm) to increase the efficiency. In addition, the machines are shielded by frames to prevent the free exchange of air between the inside and outside of the case. Therefore, among the rotor cage losses that are evacuated through the air gap, a significant portion is transferred to the stator slots, while the rest is passed to the endcap air inside the motor. These rotor cage losses, combined with the stator losses, travel through the motor frames and finally reach the ambient. Hence the rotor conductor temperature and the stator winding temperature are correlated due to the machine design.

[0105] Based on the analysis of the full-order hybrid thermal model, a reduced-order hybrid thermal model may be used, as illustrated in FIG. 10 . This simplified thermal model is capable of predicting the stator winding temperature rise from only current and rotor speed information. The model parameters are loosely associated with aspects of the machine design.

[0106] The quantities θs and θr are temperature rises [°C] above ambient on the stator and rotor, respectively. The power input Ps [Watt] is associated chiefly with the I2R loss generated in the stator winding. The power input Pr is associated mainly with the I2R loss in the rotor bars and end rings. They are calculated from the induction machine electrical model. The thermal resistance R1 [°C/W] represents the heat dissipation capability of the stator to the surrounding air through the combined effects of heat conduction and convection, while R3 is associated with the heat transfer from the rotor to the stator through the air gap, mainly by means of conduction and convection. The thermal capacitance C1 [J/°C] is determined by the overall thermal capacities of the stator winding, iron core and motor frame. The voltage V in FIG. 10 represents the rotor temperature estimated from the rotor resistance. Compared with the full-order HTM, R1 in the reduced-order HTM is the same as R1 in FIG. 7, R3 in the reduced-order HTM is the same as R3 in FIG. 9, and C1 in the reduced-order HTM is the same as C1 in FIG. 7.

[0107] According to I. Boldea and S.A. Nasar, The Induction Machine Handbook. Boca Raton: CRC Press, 2002, p. 406, at rated speed, approximately 65% of the rotor cage losses are dissipated through the air gap to the stator and ambient. This figure may be different at other operating points. Therefore, ΔPr is incorporated in the reduced-order HTM to indicate the variation of power losses across the air gap at different load levels. This reduced-order HTM not only correlates the stator winding temperature with the rotor conductor temperature, but also unifies the thermal model-based and the parameter-based temperature estimators. In addition, the reduced-order HTM is of reasonable complexity for real time implementation. With proper tuning, the HTM provides a more flexible approach than most state-of-the-art relays to the problem of estimating the stator winding temperature under running overload conditions. The increased flexibility and versatility are due to the real time tuning of the HTM thermal parameters to reflect the true thermal characteristics of the motor.

[0108] The operation of the reduced-order HTM can be divided into two stages:

Stage I involves the online parameter estimation of the thermal parameters in the hybrid thermal model; while Stage II involves the optimal stator winding temperature estimation based on an adaptive Kalman filtering approach.



[0109] In Stage I, a reliable tracking of the stator temperature requires that three thermal parameters, C1, R1 and R3 be determined. Online parameter estimation can be performed with information from estimated rotor temperature to yield fairly accurate values for C1, R1 and R3.

[0110] Sophisticated signal processing techniques are required to tune the thermal parameters C1, R1 and R3 of the reduced-order HTM from its transfer function:

where s is the Laplace operator in the s-domain, K is the ratio of rotor I2R losses to stator I2R losses, defined by Equation (41). Adaptive recursive filtering techniques based on an infinite impulse response (IIR) filter can be used to estimate the thermal parameters in the reduced-order HTM.

[0111] In Stage II, since the reduced-order HTM reasonably correlates the stator winding temperature with the rotor conductor temperature without explicit knowledge of the machine's physical dimensions and construction materials, an adaptive Kalman filter is constructed to track the stator winding temperature based on the reduced-order HTM. A bias term is incorporated in the Kalman filter equations to allow for the variations in power losses at different motor operating points. By using the rotor conductor temperature estimated from the rotor resistance, the variances in the Kalman filter are identified via a correlation method. Once the variances and the bias are determined, the Kalman filter becomes an optimal online stator winding temperature estimator.

[0112] In the continuous-time domain, the hybrid thermal model is described by the following equations:





[0113] When Equations (54) and (55) are transformed into the discrete-time domain with a sampling interval T and written in the discrete Kalman filter form, they become:

Process equation:

Measurement equation:

where x(n) is θs(n); A is

B is

u(n) is [Ps(n) 0.65Pr(n)]T; Δu(n) is [0 ΔPr(n)]T; y(n) is θr(n); C is 1; D is R3·[0 1].

[0114] In Equation (56a), w(n) corresponds to the modeling error of the HTM. In Equation (56b), v(n) designates the measurement noise. They represent the intrinsic uncertainties associated with the HTM and decide the optimal combination of the output from the thermal model-based temperature estimator and the output from the parameter-based temperature estimator. Let (n|n) denote the best estimate of x(n) at time n given the measurements y(i) for i =1,2, ...,n, and (n|n-1) denote the best estimate of x(n) at time n given the measurements up to n-1. P(n|n) is the error covariance matrix computed from x(n) and (n|n), and similarly P(n|n-1) computed from x(n) and (n|n-1). The recursive estimate of x(n), which is the stator winding temperature rise, is:

Prediction:

Innovation:

Correction:



[0115] By computing the appropriate Kalman gain K(n), (n|n) is obtained as an estimate of the stator winding temperature with minimum mean-square error. Rotor conductor temperature from the parameter-based temperature estimator 14 is used as y(n) in each step to provide correction to the estimate of stator winding temperature from the thermal model. Therefore, built on the hybrid thermal model, the adaptive Kalman filter provides an optimal estimate of the stator winding temperature.

[0116] The HTM and the subsequent formulation of the Kalman tilter present an adaptive structure in estimating the stator winding temperature without any temperature sensors. The adaptive structure takes into account the bias and the variances through Δu(n), w(n) and v(n) in Equations (56a) and (56b). However, as indicated in Equations (57a) through (57c), Qw(n), Qv(n), and Δu(n) must be known before the Kalman filter starts to produce an optimal estimate of the stator winding temperature. This problem is solved in two steps: (1) the hybrid thermal model described in Equations (56a) and (56b) is split into two subsystems: a stochastic subsystem driven purely by noise terms w(n) and v(n), and a deterministic subsystem driven purely by input terms u(n) and Δu(n); and (2) the noise identification technique is applied to the stochastic subsystem to obtain Qw(n) and Qv(n), and the input estimation method to the deterministic subsystem to obtain Δu(n). FIG. 11 shows the overall architecture of the algorithm. It illustrates the system parameters, the signal flow and the location of noises and bias terms for the adaptive Kalman filtering system. In FIG. 12, the system parameters A, B, C and D are defined as in Equations (56a) and (56b); Z-1 represents a unit delay in the discrete-time domain; I is an identity matrix. The signal flow is from the left to the right, with u(n) (the power losses) as the input and the y(n) (the rotor temperature) as the output. The noise terms are w(n+1) and v(n), the bias term is Δu(n).

[0117] There is an intrinsic modeling error associated with the hybrid thermal model. When formulating the Kalman filter, this modeling error is quantified by an load-independent equivalent noise w(n). Similarly, v(n) is used to indicate the presence of measurement noise in the rotor temperature, which is calculated from the parameter-based temperature estimator. v(n) consists of a load-independent part v1(n) corresponding to the uncertainty from the measurement devices, and a load-dependent part v2(n) originating from the slip-dependent rotor resistance estimation algorithm. The noise terms v1(n) and v2(n) are assumed to be uncorrelated due to their load dependencies.

[0118] The autocorrelation matrices Qw(n) and Qv1(n) capture the statistical properties of w(n) and v1(n), respectively. They can be identified at rated load, where Δu(n) = 0, by observing the property of the innovation process, y(n), defined as:



[0119] The autocorrelation function of γ(n) can be used to identify Qw(n) and Qv1(n) when the innovation process is not a white Gaussian noise (WGN). Also, the autocorrelation matrix of the load-dependent measurement noise Qv2(n) is determined from the properties of the rotor resistance estimation algorithm. Because v1(n) and v2(n) are uncorrelated, Qv(n) = Qv1(n) + Qv2(n). After the successful identification of Qw(n) and Qv(n), the Kalman filter is able to give an optimal estimate of the stator winding temperature at rated load.

[0120] When the motor is operating at load levels different from the rated condition, the power losses that traverse the air gap from the rotor to the stator may no longer be fixed at 65% of the total rotor cage losses. This change, denoted by Δu, is detected by regression analysis. In the deterministic subsystem, when the rotor temperature differences at two instants, Δθr(t1) and Δθr(t1 + Δt), are acquired after the load changes from u to u + Δu, then ΔPr is found by solving the following equation:

The rotor temperature difference Δθr(t) is defined to be the difference between the real rotor temperature, derived from the rotor resistance, and the rotor temperature predicted from the reduced-order HTM without considering the presence of Δu.

[0121] Once Qw(n), Qv(n) and Δu have been determined, the adaptive Kalman filter is initiated and produces an optimal estimate of the stator winding temperature at different load levels.

[0122] The additional heating created by an unbalanced power supply is taken into account by adapting the model inputs to reflect the additional heating due to the presence of negative sequence current.

[0123] The HTM adaptation to an unbalanced supply involves the calculation of additional losses in Ps and Pr introduced by the negative sequence current. Voltage unbalance is a common phenomenon in power distribution systems. A small unbalance in voltage may lead to significant unbalance in current. This can be explained by the induction motor negative sequence equivalent circuit shown in FIG. 12b.

[0124] Due to the skin effect, the rotor resistance is a function of supply frequency. In addition, rotor resistance is also dependent on the physical dimensions of rotor bars. It is a common practice to model the relationship between rotor resistance and supply frequency with a linear model, as shown in FIG. 13a according to E.O. Schweitzer and S.E. Zocholl, "Aspects of overcurrent protection for feeders and motors," in Industrial and Commercial Power Systems Technical Conference, May 1994, pp 245 - 251. A typical value of Rr at power frequency fs is three times its dc resistance. Thus during normal operation, the positive sequence rotor resistance in FIG. 12a is RrRdc, and the negative sequence rotor resistance in FIG. 12b is

FIG. 13b interprets the same physical phenomenon as FIG. 13a, but in terms of rotor resistance and slip.

[0125] The current unbalance introduces excessive rotor heating associated with the negative sequence current component. FIG. 14 explains the rotor heating due to the negative sequence current component according to B.N. Gafford, W.C. Duesterhoeft, and C.C. Mosher, "Heating of induction motors on unbalanced voltages," AIEE Transactions Power Apparatus and Systems, vol. 78, pp. 282-288, 1959. The motor can be considered to have two tandem virtual rotors. One is driven only by the positive sequence current I1, which is symmetrical and balanced. The other is driven only by counter-rotating negative sequence current I2, directly related to unbalanced current; and producing torque in the reverse direction. The motor is designed to produce torque only from the positive sequence current component, not from the negative sequence current component, and thus the reverse torque produced by I2 in the second rotor works against the main action of the motor. Because the negative work caused by I2 stays within the rotor, it is completely transformed into heat and therefore has a far more significant effect on the rotor heating than I1.

[0126] Based on the above analysis, the inputs to the HTM in FIG. 7 and FIG. 10, Ps and Pr, should be modified to

and

to accommodate the additional heating produced on the stator and rotor side by negative sequence current as follows:

where Ps and Pr are losses under normal balanced supply; and

and

are additional losses produced by negative sequence current.

and

are determined by:




Claims

1. A method of estimating the stator winding temperature of an induction motor having a rotor and a stator, said method comprising:

estimating (10) motor inductances from the stator resistance (Rs) and samples of the motor terminal voltage and current (Vs, Is);

estimating (12) the rotor resistance (Rr) from samples of the motor terminal voltage and current, the angular speed of the rotor, and said estimated inductances;

estimating (16) the stator winding temperature from the motor terminal voltage and current, the angular speed of the rotor and the estimated rotor resistance using an online hybrid thermal model, the estimated stator winding temperature being an indication of an overload of the induction motor.


 
2. The method of claim 1 further comprising:

estimating a first rotor temperature from said estimated rotor resistance; and

identifying thermal capacity and thermal impedance parameters of said hybrid thermal model online based on said first estimated rotor temperature.


 
3. The method of claim 2 further comprising:

estimating a second rotor temperature using said hybrid thermal model;

comparing said first and second estimated rotor temperatures and producing an error signal representing the difference between said first and second estimated rotor temperatures; and

adapting the parameters of said hybrid thermal model online in response to said error signal when said error signal exceeds a predetermined threshold.


 
4. The method of claim 3 wherein said hybrid thermal model uses the angular speed of said rotor, samples of the motor terminal voltage and current, and said error signal representing the difference between said first and second estimated rotor temperatures.
 
5. The method of any preceding claim wherein said estimated motor inductances include (a) the stator leakage inductance, the rotor leakage inductance and the mutual inductance of said motor, or (b) the stator self inductance and the stator transient inductance.
 
6. The method of any preceding claim wherein the positive sequence, fundamental components of said samples of the motor terminal voltage and current values are used in estimating said rotor resistance.
 
7. The method of any preceding claim wherein said samples of said motor terminal voltage and current used in estimating said motor inductances are obtained by measuring the motor terminal voltage and current at a plurality of different load levels, and computing the positive sequence, fundamental components of the measured voltage and current values.
 
8. The method of any preceding claim wherein initial values of selected parameters of said hybrid thermal model are determined from parameter values available from the motor manufacturer.
 
9. The method of claim 8 wherein said parameter values available from the motor manufacturer include at least one parameter selected from the group consisting of full load current, service factor, trip class, stator resistance, stall time, steady state temperature rise above ambient at full load condition, and NEMA machine design class for said motor.
 
10. The method of any preceding claim wherein said hybrid thermal model approximates thermal characteristics of said rotor and stator.
 
11. The method of any preceding claim wherein said hybrid thermal model is a full-order or reduced-order hybrid thermal model.
 
12. The method of any preceding claim wherein said hybrid thermal model includes thermal capacitance values representing the thermal capacity of the stator core, windings and frame of said motor, and the thermal capacity of the rotor core, conductors and shaft.
 
13. The method of any preceding claim wherein said hybrid thermal model includes thermal resistance values representing the heat dissipation capabilities of said stator and rotor, and the heat transfer from said rotor to said stator across an air gap between said stator and rotor.
 
14. The method of any preceding claim wherein said estimating of rotor resistance includes:

obtaining the slip of the motor,

computing the ratio of rotor resistance to slip, and

multiplying said ratio by said slip to obtain rotor resistance.


 
15. The method of any preceding claim wherein said estimating of motor inductances includes:

forming equations in preselected parameters for each of a plurality of load levels;

combining the equations for each load level into a matrix equation ;

solving said matrix for said preselected parameters; and

computing motor inductances from said preselected parameters.


 
16. An apparatus for protecting an induction motor during running overloads, said motor having a rotor and a stator, said apparatus having means for carrying out the method of any preceding claim for determining the overload condition of the motor and further comprising:

an overload protection relay electrically connected to the motor such that it can be tripped to interrupt power to the motor in the event of an overload, the overload relay being operable to

track the stator winding temperature of the motor during running overloads with said hybrid thermal model and

trip in response to a predetermined thermal condition represented by the stator winding temperature tracked by said hybrid thermal model.


 
17. The apparatus of claim 16 wherein said running overload is a condition in which the stator current is in the range of from about 100% to about 200% of the rated current of said motor.
 
18. The apparatus of claim 16 or 17 wherein said hybrid thermal model includes adjustable thermal parameters, tunable so as to adapt said thermal parameters to the cooling capability of said motor.
 
19. The apparatus of claim 18 operable such that said tuning is effected when said hybrid thermal model does not match the actual thermal operating condition of said motor.
 
20. The apparatus of claim 19 operable such that the match between said hybrid thermal model and the actual thermal operating condition of said motor is measured by a function of the difference between a rotor temperature estimated using said hybrid thermal model and a rotor temperature estimated from the estimated rotor resistance, and said tuning is effected when said function exceeds a predetermined threshold.
 


Ansprüche

1. Ein Verfahren zum Schätzen der Statorwicklungstemperatur eines einen Rotor und einen Stator aufweisenden Induktionsmotors, wobei das Verfahren Folgendes beinhaltet:

Schätzen (10) von Motorinduktivitäten anhand des Statorwiderstands (Rs) und von Abtastwerten der Motorklemmenspannung und des Motorklemmenstroms (Vs, Is);

Schätzen (12) des Rotorwiderstands (Rr) anhand von Abtastwerten der Motorklemmenspannung und des Motorklemmenstroms, der Winkelgeschwindigkeit des Rotors und der geschätzten Induktivitäten;

Schätzen (16) der Statorwicklungstemperatur anhand der Motorklemmenspannung und des Motorklemmenstroms, der Winkelgeschwindigkeit des Rotors und des geschätzten Rotorwiderstands unter Verwendung eines "Online"-Hybrid-Wärmemodells, wobei die geschätzte Statorwicklungstemperatur ein Hinweis auf eine Überlast des Induktionsmotors ist.


 
2. Verfahren gemäß Anspruch 1, das ferner Folgendes beinhaltet:

Schätzen einer ersten Rotortemperatur anhand des geschätzten Rotorwiderstands; und

Online-Identifizieren von Wärmekapazitäts- und Wärmeimpedanzparametern des Hybrid-Wärmemodells basierend auf der ersten geschätzten Rotortemperatur.


 
3. Verfahren gemäß Anspruch 2, das ferner Folgendes beinhaltet:

Schätzen einer zweiten Rotortemperatur unter Verwendung des Hybrid-Wärmemodells;

Vergleichen der ersten und der zweiten geschätzten Rotortemperatur und Erzeugen eines Fehlersignals, welches den Unterschied zwischen der ersten und der zweiten geschätzten Rotortemperatur darstellt; und

Online-Anpassen der Parameter des Hybrid-Wärmemodells als Reaktion auf das Fehlersignal, wenn das Fehlersignal einen vorgegebenen Schwellenwert übersteigt.


 
4. Verfahren gemäß Anspruch 3, wobei das Hybrid-Wärmemodell die Winkelgeschwindigkeit des Rotors, die Abtastwerte der Motorklemmenspannung und des Motorklemmenstroms und das Fehlersignal, welches den Unterschied zwischen der ersten und der zweiten geschätzten Rotortemperatur darstellt, verwendet.
 
5. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die geschätzten Motorinduktivitäten Folgendes umfassen: (a) die Statorstreuinduktivität, die Rotorstreuinduktivität und die Gegeninduktivität des Motors oder (b) die Statoreigeninduktivität und die Statortransienteninduktivität.
 
6. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Mitgrundkomponenten der Abtastwerte der Motorklemmenspannungs- und -stromwerte beim Schätzen des Rotorwiderstands verwendet werden.
 
7. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Abtastwerte der Motorklemmenspannung und des Motorklemmenstroms, welche beim Schätzen der Motorinduktivitäten verwendet werden, durch das Messen der Motorklemmenspannung und des Motorklemmenstroms bei einer Vielzahl von unterschiedlichen Lastniveaus und das Berechnen der Mitgrundkomponenten der gemessenen Spannungs- und Stromwerte erhalten werden.
 
8. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Anfangswerte ausgewählter Parameter des Hybrid-Wärmemodells anhand von Parameterwerten bestimmt werden, die von dem Motorhersteller erhältlich sind.
 
9. Verfahren gemäß Anspruch 8, wobei die von dem Motorhersteller erhältlichen Parameterwerte mindestens einen Parameter umfassen, der aus der Gruppe ausgewählt ist, die aus Folgendem besteht: Volllaststrom, Betriebsfaktor, Auslöseklasse, Statorwiderstand, Blockierzeit, Temperaturanstieg im stationären Zustand über die Umgebungstemperatur bei Volllastzustand und NEMA-Maschinenkonstruktionsklasse für den Motor.
 
10. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Hybrid-Wärmemodell Wärmecharakteristiken des Rotors und des Stators näherungsweise bestimmt.
 
11. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Hybrid-Wärmemodell ein Hybdrid-Wärmemodell vollständiger Ordnung oder reduzierter Ordnung ist.
 
12. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Hybrid-Wärmemodell Folgendes umfasst: Wärmekapazitätswerte, welche die Wärmekapazität des Statorkerns, der Statorwicklungen und des Statorrahmens des Motors und die Wärmekapazität des Rotorkerns, der Rotorleiter und der Rotorwelle darstellen.
 
13. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Hybrid-Wärmemodell Folgendes umfasst: Wärmewiderstandswerte, welche die Wärmeabgabefähigkeiten des Stators und des Rotors und den Wärmetransfer von dem Rotor zu dem Stator über einen Luftspalt zwischen dem Stator und dem Rotor darstellen.
 
14. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Schätzen des Rotorwiderstands Folgendes umfasst:

Erhalten des Schlupfs des Motors,

Berechnen des Verhältnisses des Rotorwiderstands zu dem Schlupf und

Multiplizieren des Verhältnisses mit dem Schlupf, um den Rotorwiderstand zu erhalten.


 
15. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Schätzen der Motorinduktivitäten Folgendes umfasst:

Bilden von Gleichungen in vorgewählten Parametern für jedes von einer Vielzahl von Lastniveaus;

Kombinieren der Gleichungen für jedes Lastniveau zu einer Matrixgleichung;

Lösen der Matrix für die vorgewählten Parameter; und

Berechnen von Motorinduktivitäten anhand der vorgewählten Parameter.


 
16. Eine Vorrichtung zum Schützen eines Induktionsmotors während In-Betriebs-Überlasten, wobei der Motor einen Rotor und einen Stator aufweist, wobei die Vorrichtung Mittel zum Ausführen des Verfahrens gemäß einem der vorhergehenden Ansprüche zum Bestimmen des Überlastzustands des Motors aufweist und ferner Folgendes beinhaltet:

ein Überlastschutzrelais, das mit dem Motor elektrisch verbunden ist, so dass es ausgelöst werden kann, um im Fall einer Überlast einen Strom zu dem Motor zu unterbrechen, wobei das Überlastrelais für Folgendes betriebsfähig ist:

Verfolgen der Statorwicklungstemperatur des Motors während In-Betriebs-Überlasten mit dem Hybrid-Wärmemodell und

Auslösen als Reaktion auf einen vorgegebenen Wärmezustand, der durch die von dem Hybrid-Wärmemodell verfolgte Statorwicklungstemperatur dargestellt wird.


 
17. Vorrichtung gemäß Anspruch 16, wobei die In-Betriebs-Überlast ein Zustand ist, bei dem der Statorstrom im Bereich von etwa 100 % bis etwa 200 % des Nennstroms des Motors liegt.
 
18. Vorrichtung gemäß Anspruch 16 oder 17, wobei das Hybrid-Wärmemodell veränderbare Wärmeparameter umfasst, die eingestellt werden können, um die Wärmeparameter an die Kühlfähigkeit des Motors anzupassen.
 
19. Vorrichtung gemäß Anspruch 18, die so betriebsfähig ist, dass das Einstellen erfolgt, wenn das Hybrid-Wärmemodell nicht mit dem tatsächlichen Wärmebetriebszustand des Motors übereinstimmt.
 
20. Vorrichtung gemäß Anspruch 19, die so betriebsfähig ist, dass die Übereinstimmung zwischen dem Hybrid-Wärmemodell und dem tatsächlichen Wärmebetriebszustand des Motors durch eine Funktion des Unterschieds zwischen einer Rotortemperatur, geschätzt unter Verwendung des Hybrid-Wärmemodells, und einer Rotortemperatur, geschätzt anhand des geschätzten Rotorwiderstands, gemessen wird, und wobei das Einstellen erfolgt, wenn die Funktion einen vorgegebenen Schwellenwert übersteigt.
 


Revendications

1. Une méthode pour estimer la température de l'enroulement du stator d'un moteur à induction possédant un rotor et un stator, ladite méthode comprenant :

l'estimation (10) d'inductances de moteur d'après la résistance de stator (Rs) et des échantillons de la tension et du courant aux bornes du moteur (Vs, Is) ;

l'estimation (12) de la résistance de rotor (Rr) d'après des échantillons de la tension et du courant aux bornes du moteur, la vitesse angulaire du rotor, et lesdites inductances estimées ;

l'estimation (16) de la température de l'enroulement du stator d'après la tension et le courant aux bornes du moteur, la vitesse angulaire du rotor et la résistance de rotor estimée à l'aide d'un modèle thermique hybride en ligne, la température de l'enroulement du stator estimée étant une indication d'une surcharge du moteur à induction.


 
2. La méthode de la revendication 1 comprenant en sus :

l'estimation d'une première température de rotor d'après ladite résistance de rotor estimée ; et

l'identification de paramètres de capacité thermique et d'impédance thermique dudit modèle thermique hybride en ligne sur la base de ladite première température de rotor estimée.


 
3. La méthode de la revendication 2 comprenant en sus :

l'estimation d'une deuxième température de rotor à l'aide dudit modèle thermique hybride ;

la comparaison desdites première et deuxième températures de rotor estimées et la production d'un signal d'erreur représentant la différence entre lesdites première et deuxième températures de rotor estimées ; et

l'adaptation des paramètres dudit modèle thermique hybride en ligne en réponse audit signal d'erreur lorsque ledit signal d'erreur excède un seuil prédéterminé.


 
4. La méthode de la revendication 3 dans laquelle ledit modèle thermique hybride utilise la vitesse angulaire dudit rotor, des échantillons de la tension et du courant aux bornes du moteur, et ledit signal d'erreur représentant la différence entre lesdites première et deuxième températures de rotor estimées.
 
5. La méthode de n'importe quelle revendication précédente dans laquelle lesdites inductances de moteur estimées incluent (a) l'inductance de fuite du stator, l'inductance de fuite du rotor et l'inductance mutuelle dudit moteur, ou (b) l'inductance propre du stator et l'inductance transitoire du stator.
 
6. La méthode de n'importe quelle revendication précédente dans laquelle les composantes fondamentales directes desdits échantillons des valeurs de tension et de courant aux bornes du moteur sont utilisées lors de l'estimation de ladite résistance de rotor.
 
7. La méthode de n'importe quelle revendication précédente dans laquelle lesdits échantillons de ladite tension et dudit courant aux bornes du moteur utilisés lors de l'estimation desdites inductances de moteur sont obtenus en mesurant la tension et le courant aux bornes du moteur à une pluralité de niveaux de charge différents, et en calculant les composantes fondamentales directes des valeurs de tension et de courant mesurées.
 
8. La méthode de n'importe quelle revendication précédente dans laquelle des valeurs initiales de paramètres sélectionnés dudit modèle thermique hybride sont déterminées d'après des valeurs de paramètres disponibles auprès du fabricant de moteurs.
 
9. La méthode de la revendication 8 dans laquelle lesdites valeurs de paramètres disponibles auprès du fabricant de moteurs incluent au moins un paramètre sélectionné dans le groupe constitué du courant de pleine charge, du facteur de service, de la classe de déclenchement, de la résistance de stator, du temps de blocage, de l'élévation de température en régime permanent au-dessus de la température ambiante en condition de pleine charge, et de la classe de conception machine NEMA pour ledit moteur.
 
10. La méthode de n'importe quelle revendication précédente dans laquelle ledit modèle thermique hybride s'approche des caractéristiques thermiques desdits rotor et stator.
 
11. La méthode de n'importe quelle revendication précédente dans laquelle ledit modèle thermique hybride est un modèle thermique hydride d'ordre réduit ou d'ordre plein.
 
12. La méthode de n'importe quelle revendication précédente dans laquelle ledit modèle thermique hybride inclut des valeurs de capacitance thermique représentant la capacité thermique du noyau, des enroulements et de la carcasse de stator dudit moteur, et la capacité thermique du noyau, des conducteurs et de l'arbre de rotor.
 
13. La méthode de n'importe quelle revendication précédente dans laquelle ledit modèle thermique hybride inclut des valeurs de résistance thermique représentant les facultés de dissipation de chaleur desdits stator et rotor, et le transfert de chaleur dudit rotor audit stator au travers d'un entrefer entre lesdits stator et rotor.
 
14. La méthode de n'importe quelle revendication précédente dans laquelle ladite estimation de la résistance de rotor inclut :

l'obtention du glissement du moteur,

le calcul du rapport de la résistance de rotor au glissement, et

la multiplication dudit rapport par ledit glissement afin d'obtenir la résistance de rotor.


 
15. La méthode de n'importe quelle revendication précédente dans laquelle ladite estimation d'inductances de moteur inclut :

la formation d'équations dans des paramètres présélectionnés pour chaque niveau d'une pluralité de niveaux de charge ;

la combinaison des équations pour chaque niveau de charge en une équation matricielle ;

la résolution de ladite matrice pour lesdits paramètres présélectionnés ; et

le calcul d'inductances de moteur d'après lesdits paramètres présélectionnés.


 
16. Un appareil destiné à protéger un moteur à induction au cours de surcharges en fonctionnement, ledit moteur possédant un rotor et un stator, ledit appareil possédant des moyens destinés à exécuter la méthode de n'importe quelle revendication précédente pour déterminer la condition de surcharge du moteur et comprenant en sus :

un relais de protection contre les surcharges connecté électriquement au moteur de telle sorte qu'il puisse être déclenché afin d'interrompre l'alimentation vers le moteur en cas de surcharge, le relais de surcharge étant opérationnel afin

de suivre la température de l'enroulement du stator du moteur au cours de surcharges en fonctionnement avec ledit modèle thermique hybride et

de se déclencher en réponse à une condition thermique prédéterminée représentée par la température de l'enroulement du stator suivie par ledit modèle thermique hybride.


 
17. L'appareil de la revendication 16 dans lequel ladite surcharge en fonctionnement est une condition dans laquelle le courant de stator est compris dans la gamme allant d'environ 100 % à environ 200 % du courant nominal dudit moteur.
 
18. L'appareil de la revendication 16 ou de la revendication 17 dans lequel ledit modèle thermique hybride inclut des paramètres thermiques ajustables, que l'on peut régler de manière à adapter lesdits paramètres thermiques à la faculté de refroidissement dudit moteur.
 
19. L'appareil de la revendication 18 opérationnel de telle sorte que ledit réglage est effectué lorsque ledit modèle thermique hybride ne concorde pas avec la condition d'opération thermique réelle dudit moteur.
 
20. L'appareil de la revendication 19 opérationnel de telle sorte que la concordance entre ledit modèle thermique hybride et la condition d'opération thermique réelle dudit moteur est mesurée par une fonction de la différence entre une température de rotor estimée à l'aide dudit modèle thermique hybride et une température de rotor estimée d'après la résistance de rotor estimée, et ledit réglage est effectué lorsque ladite fonction excède un seuil prédéterminé.
 




Drawing










































REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description