(19)
(11)EP 1 906 076 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 07013924.1

(22)Date of filing:  17.07.2007
(51)International Patent Classification (IPC): 
F17C 13/00(2006.01)
F17C 13/08(2006.01)

(54)

A protective jacket for a pressure vessel

Schutzschicht für ein Druckgefäß

Gaine protectrice pour récipient sous pression


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(30)Priority: 29.09.2006 US 540189

(43)Date of publication of application:
02.04.2008 Bulletin 2008/14

(73)Proprietor: AMTROL Licensing Inc.
West Warwick RI 02893 (US)

(72)Inventors:
  • Oliveira, Tiago
    4150-657 Porto (PT)
  • Antunes Guimaraes, Joao Carlos V.
    4801 Guemaraes (PT)
  • Alves, Eduardo J.
    4801 Guemaraes (PT)

(74)Representative: Hoefer & Partner Patentanwälte mbB 
Pilgersheimer Straße 20
81543 München
81543 München (DE)


(56)References cited: : 
WO-A1-98/34063
WO-A2-2005/106894
JP-A- 2000 213 691
WO-A1-2005/071306
FR-A1- 2 707 369
US-B1- 6 386 384
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The subject invention is directed to a protective jacket for a pressure vessel, and more particularly a pressure vessel having a hybrid tank formed of a tank liner and outer composite layer with a protective jacket disposed thereon.

    [0002] Pressure vessels come in all sizes and shapes, and are made from a variety of materials. The need for lightweight pressure vessels has existed and still exists. There have been many attempts to make light weight pressure vessels that are able to store fluids under high pressures for long periods of time, maintain structural integrity, sustain repeated pressurization and depressurization, and be substantially impermeable, resistant to corrosion, and easy to manufacture.

    [0003] Increased use of alternative fuels, such as compressed natural gas and hydrogen to fuel vehicles, and the need for ever greater fuel range has increased the need for lightweight, safe tanks with greater capacity and strength. Increasing the capacity and strength of a pressure vessel can be achieved by increasing the amount of materials used for structural support. However, this can result in a significant increase in the size and/or weight of the pressure vessel, which can increase the cost of the tank arising from increased material costs and costs associated with transporting the heavier pressure vessels.

    [0004] WO 2005/106894 A2 discloses a pressure vessel with a protective jacket having a circumferentially closed, radially extending rib. FR 2707369 A1 and WO 2005/071306 A1 disclose a pressure vessel having a protective jacket being directly in contact with the vessel. WO 98/34063 A1 discloses a pressure vessel with a protective jacket having a plurality of cut-aways, so that the inside of the protective jacket is visible from the outside.

    [0005] Clearly, there is a need in the art for a lightweight pressure vessel that is impermeable, corrosion resistant and that can handle increased capacity and pressure demands. Furthermore, there is a need for a method of forming such a pressure vessel so it may be sold at a competitive price. This object is solved by a protective jacket according to claim 1 and a pressure vessel according to claim 11. The subclaims contain preferred embodiments of the invention.

    [0006] The subject invention provides a protective jacket for a pressure vessel which satisfies the aforementioned needs in the art. In particular, the present invention provides a pressure vessel that includes a hybrid tank formed by a tank liner and an outer reinforcing layer disposed on the tank liner, with the outer reinforcing layer defining at least a portion of an outer surface of the hybrid tank. A protective jacket configured and dimensioned to engage the hybrid tank is disposed thereon. The protective jacket includes an upper support rim having a first opening therethrough, a lower support rim having a second opening therethrough, and a substantially cylindrical wall connecting the upper support rim and lower support rim. The wall defines an inner surface disposed radially outwardly from the outer surface of the hybrid tank, and the inner surface of the wall and the outer surface of the hybrid tank cooperate to define a flow channel in fluid communication with the first opening and the second opening, wherein the openings and flow channel are adapted to permit a convective flow to pass therethrough to facilitate heat transfer between the hybrid tank and an environment in which the pressure vessel is situated. The protective jacket is preferably separable into at least two sections.

    [0007] In accordance with a further embodiment of the invention, the tank liner may include a material having a higher modulus of elasticity and a lower elastic strain limit than the outer reinforcing layer. If desired, the outer reinforcing layer can be fabricated of a thermoplastic material, preferably polypropylene, commingled with glass fibers. Preferably the hybrid tank includes an outer anti-corrosion coating. If desired, the outer reinforcing layer can include an outer gel coating.

    [0008] In accordance with another embodiment of the invention, the upper support rim includes at least one handle and the lower support rim includes a base configured and adapted to form a non-permanent mating engagement with the at least one handle of another pressure vessel when stacking multiple pressure vessels.

    [0009] The present invention also provides a method of manufacturing a pressure vessel. The method includes forming a tank liner, heating glass filaments, commingling the filaments with a thermoplastic material and winding the thermoplastic material and commingled filaments onto the tank liner under application of heat to form a hybrid tank having an outer surface.

    [0010] In further accordance with the invention, the method further can include the step of attaching a protective jacket to the hybrid tank, where the protective jacket includes an upper support rim having a first opening therethrough, a lower support rim having a second opening therethrough, and a substantially cylindrical wall connecting the upper support rim to the lower support rim. The wall defines an inner surface disposed radially outwardly from the outer surface of the hybrid tank, and the inner surface of the wall and the outer surface of the hybrid tank cooperate to define a flow channel in fluid communication with the first opening and the second opening, wherein the openings and flow channel are adapted to permit a convective flow to pass therethrough to facilitate heat transfer between the hybrid tank and an environment in which the pressure vessel is situated.

    [0011] These and other aspects of the pressure vessel of the subject invention will become more readily apparent to those having ordinary skill in the art from the following detailed description of the invention taken in conjunction with the drawings.

    [0012] So that those having ordinary skill in the art to which the present invention pertains will more readily understand how to make and use the pressure vessel of the present invention, embodiments thereof will be described in detail hereinbelow with reference to the drawings, wherein:

    Fig. 1 is a perspective view of a pressure vessel constructed in accordance with a preferred embodiment of the subject invention as seen from above, showing openings in the upper support rim of the protective jacket, as well as a valve fitting assembly, and handles on the upper support rim;

    Fig. 2 is a perspective view of the pressure vessel shown in Fig. 1, as seen from below, showing the lower support rim of the protective jacket, as well as openings therethrough;

    Fig. 3 is a top view of the pressure vessel shown in Fig. 1, depicting openings in the upper support rim to facilitate airflow through the protective jacket and further depicting handles on the upper support rim adapted and configured to allow access to the valve fitting assembly;

    Fig. 4 is a bottom view of the pressure vessel shown in Fig. 1, showing openings in the lower support rim for airflow into and out of the protective jacket;

    Fig. 5 is an exploded perspective view of the pressure vessel shown in Fig. 1;

    Fig. 6 is a partial cross-section view of the hybrid tank of the pressure vessel shown in Fig. 5, depicting layers of material of the hybrid tank;

    Fig. 7 is a partial cross-section view of the lower support rim of the protective jacket of the pressure vessel shown in Fig. 5;

    Fig. 8 is a partial cross-section view of the padding and lower support rim of the pressure vessel shown in Fig. 5;

    Fig. 9 is a partial cross-section view of an protective jacket and hybrid tank of the assembled pressure vessel shown in Fig. 1, showing the channel for flow of air between the hybrid tank and the protective jacket;

    Fig. 10 is a partial cut away perspective view of the pressure vessel shown in Fig. 1, showing how the flow of air can pass trough the openings in the upper support rim and into the space between the hybrid tank and the protective jacket;

    Fig. 11 is a partial cross-section view of the assembled pressure vessel shown in Fig. 2, showing how the flow of air can pass trough the openings in the lower support rim, past the padding, and into the space between the hybrid tank and the protective jacket;

    Fig. 12 is a side view showing two pressure vessels as depicted in Fig. 1 in a nested configuration;
    Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. The method and corresponding steps of the invention will also be described in conjunction with the detailed description of the system.



    [0013] The pressure vessels presented herein, and the products of the methods presented herein, may be used for storing pressurized fluids. The present invention is particularly suited for storing and dispensing pressurized fluids while facilitating stacking and portability of the pressure vessel. A pressure vessel constructed in accordance with the present invention is suitable for applications including, but not limited to, storing propane, refrigerant gas, and liquids or gases at low or high pressure.

    [0014] In accordance with the invention, a pressure vessel is provided including a hybrid tank having an inner liner and an outer reinforcing layer, and a protective jacket adapted to surround the hybrid tank. The protective jacket includes an upper support rim having an opening therethrough and a lower support rim having a second opening therethrough. The protective jacket also includes a substantially cylindrical wall spaced apart from the hybrid tank to allow a convective flow between the protective jacket and the hybrid tank for convective heat transfer between the pressure vessel and the environment to reduce pressure loss during consumption of the pressurized contents.

    [0015] For purpose of explanation and illustration, and not limitation, a view of an exemplary embodiment of a pressure vessel made in accordance with the present invention is depicted in Fig. 1 and is designated generally by reference number 10. Other aspects of the pressure vessel depicted in Fig. 1 are depicted in Figs. 2-12, as will be described.

    [0016] For purposes of illustration and not limitation, as embodied herein and as depicted in Figs. 1-12, a pressure vessel 10 is provided with a hybrid tank 14. Hybrid tank 14 has a tank liner 38 that may be formed from a generally cylindrical tube 20 and first and second dome-shaped, semi-hemispherical endcaps 22 and 24. Endcaps 22 and 24 may be of any size or shape, such as frustro-conical or flattened, and may be identical or different. First and second endcaps 22 and 24 are secured to first and second end rims 26 and 28 of tube 20, respectively, which may be accomplished by any conventional welding techniques known in the art, such as laser welding. Tube 20 and first and second endcaps 22 and 24 cooperate to define vessel storage cavity 30, as particularly depicted in Figs. 6 and 9.

    [0017] As depicted, first endcap 22 includes a central aperture 32 defined therein for receiving a valve boss 34, which is secured to aperture 32 by any conventional welding or other suitable joining techniques as are known in the art. Valve boss 34 is configured to receive a valve fitting assembly 36 therein, and the combination permits the ingress or egress of fluids to vessel storage cavity 30.

    [0018] If desired, the tank liner 38 may be constructed without the tube 20. In accordance with this alternative embodiment, endcaps 22 and 24 are joined directly to each other rather than to the tube 20. As such, endcaps 22, 24 may take on a variety of shapes, and need not be generally hemispherical, but can be more "cup" shaped, as desired, as will be appreciated by those of skill in the art.

    [0019] Preferably, tank liner 38 including tube 20, first and second endcaps 22 and 24, and valve boss 34 are constructed of an inert, impermeable and non-corrosive material having a high modulus of elasticity, such as 10 million psi or greater, and a low elastic strain generally ranging from about 0.05% to about 1%. As such, the tank liner 38 and valve fitting assembly 36 may be made from steel, but may also be fabricated of metals such as, but not limited to, aluminum, nickel, titanium, platinum, or any other material which would provide suitable structural support in accordance with the present invention. It is also within the scope and spirit of the invention to fabricate the tank liner 38 from polymeric materials.

    [0020] In further accordance with the invention, a hybrid tank is further provided including an outer reinforcing layer.

    [0021] For purposes of illustration and not limitation, as embodied herein and as depicted in Fig. 6, a cross section of a wall section of hybrid tank 14 is depicted. As shown in Fig. 6, an outer reinforcing layer 42 is disposed about the tank liner 38. Reinforcing layer 42 is fabricated of one or more layers of a material having a higher elastic strain limit than that of the material used for the tank liner 38, as described in further detail below. Preferably, an anti-corrosive coating 40 is applied to the outside of the tank liner 38 before disposing the reinforcing layer 42 on the tank liner. This can be particularly advantageous where the tank liner 38 is fabricated from metal. As such, the anti-corrosive coating 40 helps prevent corrosion between the tank liner 38 and the reinforcing layer 42, which could otherwise weaken the hybrid tank 14. The anticorrosive coating can be composed of a variety of materials, including zinc rich primers and other anti-corrosive coatings as are known in the art. The anti-corrosive coating can be applied, for example, by spraying a powder coating on the tank liner 38, followed by heating to set the power coat. Other methods of applying the anti-corrosive coating are also possible and within the scope of the invention. Preferably, the anti-corrosive coating 40 is applied to the entire outward surface of the tank liner 38.

    [0022] Reinforcing layer 42 may include a composite material having a skeleton that imparts desirable mechanical properties to the composite, such as a high tensile strength, and a matrix of material having high ductility that can bind the composite to render it stiff and rigid, among other things. Reinforcing layer 42 reinforces and provides impact resistance to hybrid tank 14. The outer surface of reinforcing layer 42 preferably includes a protective layer 44 comprised of a gel coating, for example or other finishing coatings to protect the reinforcing layer 42. Suitable materials for forming protective layer 44 include, for example, thermoplastic modified polyolefin powder, applied, for example, by spraying techniques and consequent heating to set, and the like.

    [0023] Preferably, the composite material in reinforcing layer 42 consists of fibers or filaments that are commingled or impregnated with a thermoplastic resin. The impregnated filaments may include, but are not limited to, combinations of glass, metal, aramid, carbon, graphite, boron, synthetics, resins, epoxies, polyamides, polyoelfins, silicones, and polyurethanes, among other things. Preferably, the filaments are a composite of thermoplastic resin, such as vinyl epoxy or polypropylene, and glass fiber. The filaments can be formed from a commingled thermoplastic and glass fiber fabric sold as TWINTEX, commercially available from Saint-Gobain Vetrotex America Inc. Preferably, the composite material used in reinforcing layer 42 is a recyclable material.

    [0024] In further accordance with the invention, the pressure vessel includes a protective jacket. For purposes of illustration, and not limitation, as depicted in Figs. 1-5, protective jacket 12 surrounds the hybrid tank 14. Protective jacket 12 has a substantially flat circular upper support rim 46, and a substantially flat circular lower support rim 50, and a substantially cylindrical wall 54 between the upper support rim 46 and lower support rim 50. Upper support rim 46 is disposed substantially about the periphery of an upper portion 48 of the hybrid tank 14 and a lower support rim 50 is disposed substantially about the periphery of a lower portion 52 of the hybrid tank 14. Figs. 1 and 3 depict upper airflow openings 16 in the upper support rim 46. Figs. 2 and 4 depict lower airflow openings 18 in the lower support rim 50. Upper airflow openings 16 and lower airflow openings 18 allow air to flow to and from outside to facilitate heat transfer between the environment and the pressurized contents of the hybrid tank 14, discussed in detail below. Upper and lower support rims 46 and 50 are preferably configured to engage the hybrid tank 14 to restrict movement of the hybrid tank 14 within the confines of protective jacket 12. Movement is further restricted by the shock absorbing padding 56 in the lower support rim 50 disposed between protective jacket 12 and hybrid tank 14. Padding 56 can be made from a variety of materials, including expanded polypropylene, among others.

    [0025] Protective jacket 12 is preferably constructed of a rigid, lightweight material, such as a hard plastic, such as polypropylene or high density polyethylene, or other suitable materials. In this configuration, the protective jacket 12 can protect the hybrid tank 14 from impacts, abrasions, and exposure to corrosive materials, among other things.

    [0026] It is known in the art that the consumption of gas from a pressurized vessel causes cooling of the pressurized vessel. This cooling can reach an extent to which the liquefied gas can no longer evaporate at an adequate rate. In this situation, there will be a pressure loss that hinders evacuation from the pressurized vessel. The transfer of heat from the ambient environment in which the pressure vessel is situated to the contents of the pressure vessel therefore should be facilitated to maintain the pressure of the contents of the pressure vessel during gas consumption. However, adding protective jackets to pressure vessels generally results in adding material between the pressurized contents and the environment. As such, protective jackets tend to insulate pressurized contents, hinder heat exchange, and ultimately promote the undesirable pressure loss during gas consumption. It is therefore desirable to minimize the insulative effects of protective jackets.

    [0027] It is known it the art to provide a jacket for an all-metal pressure tank in which wave-like undulations formed in the wall of a jacket provide channels for convective air flows, such as in U.S. Patent No. 6,386,384. These wave-like channels function well in providing for heat transfer in the case of all-metal tanks as found in the art, but a fiber-composite/metal embodiment of hybrid tank 14 creates a need for further advances to enhance the convective flow, since the composite reinforcing layer 42 provides more thermal insulation than is present in the all-metal tanks of the prior art.

    [0028] Therefore, the configuration of protective jacket 12 permits for enhanced flow that may substantially surround the circumference of the hybrid tank 14. This is an advance over the art because heat exchange takes place along a greater surface area than allowed for in the wave-like channels known in the art. This enhancement to the flow and surface area of the convective heat exchange helps compensate for the increased thermal insulation of the hybrid tank 14 as contrasted with the all-metal tanks of the prior art.

    [0029] To this end, the present invention facilitates downward natural convective flows between the protective jacket 12 and the hybrid tank 14 to gain the advantages of the protective jacket while minimizing the loss of pressure due to inadequate heat exchange. The substantially cylindrical wall 54 of protective jacket 12 is disposed around a middle portion 51 of hybrid tank 14. As shown in Fig. 9, the inner surface of the substantially cylindrical wall 54 is spaced apart from the outer surface of the hybrid tank 14 to allow a generally downward vertical flow of air to develop between the hybrid tank 14 and the protective jacket 12. There is thus a generally annular flow channel 58 defined between the hybrid tank 14 and the protective jacket 12 in fluid communication with the environment in which the pressure vessel 10 is located.

    [0030] Fig. 10 shows how air can communicate from outside the pressure vessel 10, through the upper openings 16, down into the annular flow channel 58 and out through lower openings 18 . In particular, Figs. 7, 8, and 11 show how air can communicate from the substantially annular flow channel 58 inside the pressure vessel 10, past openings 18(a) in the padding 56 (Fig. 5), through the lower openings 18, and into the environment. The ability of air to flow from upper openings 16, through the annular flow channel 58, and out the lower openings 18 permits natural convection flows to develop along the whole circumference of the annular flow channel 58, and thus gives the pressure vessel an enhanced ability to exchange heat between the hybrid tank 14 and the environment, while also having the added durability afforded by the protective jacket 12.

    [0031] In another aspect of a preferred embodiment of the invention, the upper support rim 46 includes a pair of opposed, arcuate handles 60 configured to permit access to valve fitting assembly 36, as shown in Figs. 1-3. Preferably, handle 60 is ergonomically designed to assist transport of pressure vessel 10.

    [0032] By way of further example, for purposes of illustration only, as shown in Fig. 12, handle 60 and lower support rim 50 are preferably configured to engage one another to facilitate transporting and stacking a plurality of pressure vessels 10. In this embodiment, handles 60 are curved and configured to form a non-permanent mating engagement with lower support rim 50, which is configured to receive the handles 60, when stacking multiple pressure vessels 10.

    [0033] In accordance with another embodiment of the invention, a pressure vessel can be provided further including a means for uniquely identifying each tank. For purposes of illustration only, and not limitation, an identification means, such as a radio frequency identification tag, microchip and/or barcode 200 (Fig. 1) can be provided to uniquely identify each pressure vessel. During manufacture, a database can be maintained for uniquely identifying and tracking each cylinder after the cylinder leaves the manufacturing facility. A variety of variables can be tracked for each cylinder by the manufacturer, such as the tare weight, retest date, manufacturing date, batch or lot numbers, and the like.

    [0034] In accordance with another aspect of the invention, a method for manufacturing a pressure vessel is provided. For purposes of illustration only, and not limitation, the method preferably includes forming a tank liner (such as tank liner 38), heating glass filaments, commingling the filaments with a thermoplastic material, winding the thermoplastic material and commingled filaments onto the tank liner 38 under application of heat to form a hybrid tank 14, and attaching a protective jacket 12 to the hybrid tank 14 to create the substantially annular flow channel 58 as described herein.

    [0035] By way of further example, the method can further include a step of applying an anti-corrosion coating to the outside of the tank liner 38 before winding the thermoplastic material and commingled filaments onto the tank liner 38. This anti-corrosion coating 40 can reduce corrosion between the tank liner 38 and outer reinforcing layer 42 in the case of a metal tank liner 38.

    [0036] The winding step can include rotating the tank liner on a mandrel while the filaments are wound onto the tank liner, as is known in the art. The winding may be done continuously with a single filament comprising the outer reinforcing layer 42 of hybrid tank 14. In further accordance with the method of the invention, it is also possible to commingle the filaments with polypropylene as the thermoplastic material. The method may further include applying a final outer gel coating 44 over the outer reinforcing layer 42, as is known in the art.

    [0037] Further, it is possible for the protective jacket 12 to be attached to the hybrid tank 14 by having the protective jacket be separable into at least two sections that attach together with clipping systems as is known in the art. The sections can be separable along a circumference of the generally cylindrical wall 54 of protective jacket 54, as shown in Fig. 5. Or the sections could be separable longitudinally or obliquely without departing from the scope of the invention. The sections of the jacket may be attached to one another by permanent or non-permanent engagement, as desired. For example, the sections of jacket 12 may be permanently attached to each other by welding, adhesive or fasteners. If desired, the connection between sections of jacket 12 may be non-permanent, such as by a snap fit connection.

    [0038] Furthermore, as described above and shown in the drawings, the pressure vessel has superior properties including ease of manufacture, light weight, ergonomics, stackability, resistance to corrosion and impact, and enhanced heat transfer.


    Claims

    1. A protective jacket (12) for a pressure vessel (10), the protective jacket comprising:

    a) a substantially flat, circular upper support rim (46) for engaging an upper portion of a pressure vessel;

    b) a substantially flat, circular lower support rim (50) for engaging a lower portion of the pressure vessel;

    c) a substantially cylindrical wall (54) connecting the upper support rim and the lower support rim; and

    d) a pair of opposed, arcuate handles (60) formed integral with the substantially cylindrical wall and extending above the upper support rim,
    the handles being configured at their upper most extent for nesting engagement with a handle receiving base feature defined in the lower support rim so that when multiple protective jackets are stacked one on top of the other, the handles can be engaged with the handle receiving base of another protective jacket;
    characterized in that the substantially cylindrical wall tapers inward along a curve beginning substantially in a medial region of the wall and extending beyond the upper support rim and into the handles; and in that there is

    e) a shock-absorbing padding (56) in the lower support rim (50) and disposed between the protective jacket 12 and a hybrid tank (14) received within the protective jacket, the padding including a plurality of noncontinuously annular radially extending ribs disposed on a surface of the padding (56) facing the hybrid trank, so that, when the hybrid tank (14) is seated against the noncontinuously, annular, radially extending ribs, an annular flow channel (58) is disposed between an outer surface of the hybrid tank (14) and the wall (54).


     
    2. A protective jacket as recited in claim 1, wherein each handle (60) has an uppermost surface that defines an arc along a circle parallel to the substantially flat, circular upper support rim (46).
     
    3. A protective jacket as recited in claim 2, further comprising a pair of opposed indentations defined in the substantially cylindrical wall (54), the indentations being bounded at the bottom by a middle portion of the cylindrical wall, being bounded at the top by the upper support rim, and being bounded on either side by opposite handles, wherein the indentations are configured to provide side access to a region adjacent the upper support rim (46).
     
    4. A protective jacket as recited in claim 3, wherein each handle defines a hand grip passage extending therethrough, wherein each hand grip passage is opposite the other hand grip passage, and wherein the hand grip passages oppose one another along a first axis that is perpendicular to a second axis along which the opposed indentations oppose one another.
     
    5. A protective jacket as recited in claim 4, further comprising a plurality of first openings in the upper support rim (46) disposed adjacent the hand grip passages of the handles.
     
    6. A protective jacket as recited in claim 5, further comprising an aperture through the upper support rim (46) for receiving a valve boss communicating into a pressure vessel when a pressure vessel is engaged within the protective jacket (12), wherein the upper support rim (46) and handles (60) are configured and adapted so that when a second jacket is stacked on top of the handles of the protective jacket, a valve boss disposed in the aperture is accessible through a gap defined between opposing handles, the gap being continuous with one of the opposed indentations in the substantially cylindrical wall (54).
     
    7. A protective jacket as recited in claim 1, further comprising a plurality of second openings (18) in the lower support rim (50) disposed in an axially symmetrical array about a center point defined by the lower support rim.
     
    8. A protective jacket as recited in claim 7, further comprising a circular ridge disposed around the lower support rim (50), the circular ridge including a radially inward facing surface configured to engage the handles of a second protective jacket when the protective jacket is stacked on top of the handles of a second protective jacket.
     
    9. A protective jacket as recited in claim 8, wherein the circular ridge around the lower support rim (50) includes a plurality of evenly spaced, undulated feet configured to contact a flat surface under the protective jacket while preserving an opening between each pair of feet to provide fluid communication between the second openings (18) defined in the lower support rim (50), and an environment external to the protective jacket when the protective jacket is standing on a flat surface.
     
    10. A protective jacket as recited in claim 9, wherein one of the second openings (18) in the lower support rim (50) is disposed radially adjacent each opening between a pair of feet in the circular ridge when the protective jacket is standing on a flat surface.
     
    11. A pressure vessel comprising a hybrid tank (14) formed of a tank liner and outer composite layer and a protective jacket (12) according to any of the preceding claims.
     


    Ansprüche

    1. Schutzmantel (12) für einen Druckbehälter (10), wobei der Schutzmantel umfasst:

    a) einen im Wesentlichen ebenen, kreisförmigen oberen Stützrand (46) zum Eingriff in einen oberen Abschnitt eines Druckbehälters;

    b) einen im Wesentlichen ebenen, kreisförmigen unteren Stützrand (50) zum Eingriff in einen unteren Abschnitt des Druckbehälters;

    c) eine im Wesentlichen zylindrische Wand (54), die den oberen Stützrand und den unteren Stützrand verbindet; und

    d) ein Paar gegenüberliegender, bogenförmiger Griffe (60), die mit der im Wesentlichen zylindrischen Wand einstückig ausgebildet sind und sich über den oberen Stützrand erstrecken,
    wobei die Griffe in deren obersten Ausdehnung zum Verschachtelungseingriff mit einem Griffaufnahme-Basiselement konfiguriert sind, das im unteren Stützrand definiert ist, sodass, wenn mehrere Schutzmäntel übereinander gestapelt werden, die Griffe mit dem Griffaufnahme-Basiselement eines anderen Schutzmantels in Eingriff gebracht werden können;
    dadurch gekennzeichnet, dass sich die im Wesentlichen zylindrische Wand entlang einer Kurve nach innen verjüngt, die im Wesentlichen in einem mittleren Bereich der Wand beginnt und sich über den oberen Stützrand hinaus und in die Griffe erstreckt; und dass darin

    e) eine stoßdämpfende Polsterung (56) im unteren Stützrand (50) vorhanden ist, und zwischen dem Schutzmantel (12) und einem Hybridtank (14) angeordnet ist, der im Schutzmantel untergebracht ist, wobei die Polsterung eine Vielzahl von nicht durchgehend ringförmigen, radial verlaufenden Rippen umfasst, die auf einer dem Hybridtank zugewandten Oberfläche der Polsterung (56) so angeordnet sind, dass, wenn der Hybridtank (14) an den nicht durchgehend ringförmigen, radial verlaufenden Rippen anliegt, ein ringförmiger Strömungskanal (58) zwischen einer Außenfläche des Hybridtanks (14) und der Wand (54) angeordnet ist.


     
    2. Schutzmantel nach Anspruch 1, wobei jeder Griff (60) eine oberste Fläche aufweist, die einen Bogen entlang eines Kreises parallel zu dem im Wesentlichen ebenen, kreisförmigen oberen Stützrand (46) definiert.
     
    3. Schutzmantel nach Anspruch 2, der ferner ein Paar gegenüberliegender Vertiefungen umfasst, die in der im Wesentlichen zylindrischen Wand (54) definiert sind, wobei die Vertiefungen unten durch einen mittleren Abschnitt der zylindrischen Wand begrenzt sind, oben durch den oberen Stützrand gegrenzt sind, und auf beiden Seiten durch gegenüberliegende Griffe begrenzt sind, wobei die Vertiefungen so konfiguriert sind, dass diese einen seitlichen Zugang zu einem an den oberen Stützrand (46) angrenzenden Bereich ermöglichen.
     
    4. Schutzmantel nach Anspruch 3, wobei jeder Griff einen sich hindurch erstreckenden Handgriffdurchlass definiert, wobei jeder Handgriffdurchlass dem anderen Handgriffdurchlass gegenüberliegt, und wobei sich die Handgriffdurchlässe entlang einer ersten Achse gegenüberliegen, die senkrecht zu einer zweiten Achse verläuft, entlang der die gegenüberliegenden Vertiefungen einander gegenüberliegen.
     
    5. Schutzmantel nach Anspruch 4, der ferner eine Vielzahl von ersten Öffnungen im oberen Stützrand (46) umfasst, die angrenzend an die Handgriffdurchlässe der Griffe angeordnet sind.
     
    6. Schutzmantel nach Anspruch 5, der ferner eine Öffnung durch den oberen Stützrand (46) zum Aufnehmen eines Ventilstutzens umfasst, der mit einem Druckbehälter verbunden ist, wenn ein Druckbehälter mit dem Schutzmantel (12) in Eingriff steht;
    wobei der obere Stützrand (46) und die Griffe (60) so konfiguriert und angepasst sind, dass, wenn ein zweiter Schutzmantel auf die Griffe des Schutzmantels gestapelt wird, ein in der Öffnung angeordneter Ventilstutzen durch einen zwischen den gegenüberliegenden Griffen definierten Zwischenraum zugänglich ist, wobei der Zwischenraum mit einer der gegenüberliegenden Vertiefungen in der im Wesentlichen zylindrischen Wand (54) durchgehend verläuft.
     
    7. Schutzmantel nach Anspruch 1, der ferner eine Vielzahl von zweiten Öffnungen (18) im unteren Stützrand (50) umfasst, die in axialsymmetrischer Anordnung um einen durch den unteren Stützrand definierten Mittelpunkt angeordnet sind.
     
    8. Schutzmantel nach Anspruch 7, der ferner einen kreisförmigen Wulst umfasst, der um den unteren Stützrand (50) angeordnet ist, wobei der kreisförmige Wulst eine radial nach innen gerichtete Oberfläche aufweist, die zum Eingriff in die Griffe eines zweiten Schutzmantels konfiguriert ist, wenn der Schutzmantel oben auf die Griffe eines zweiten Schutzmantels gestapelt wird.
     
    9. Schutzmantel nach Anspruch 8, wobei der kreisförmige Wulst um den unteren Stützrand (50) eine Vielzahl gleichmäßig beabstandeter, gewellter Füße umfasst, die zum Berühren einer ebenen Fläche unter dem Schutzmantel konfiguriert sind, wobei eine Öffnung zwischen jedem Paar von Füßen erhalten bleibt, um eine Fluidverbindung zwischen den zweiten Öffnungen (18), die im unteren Stützrand (50) definiert sind, und einer Umgebung außerhalb des Schutzmantels bereitzustellen, wenn der Schutzmantel auf einer ebenen Fläche steht.
     
    10. Schutzmantel nach Anspruch 9, wobei eine der zweiten Öffnungen (18) im unteren Stützrand (50) radial angrenzend an jede Öffnung zwischen einem Paar Füße im kreisförmigen Wulst angeordnet ist, wenn der Schutzmantel auf einer ebenen Fläche steht.
     
    11. Druckbehälter, umfassend einen Hybridtank (14), der aus einer Tankauskleidung und einer äußeren Verbundschicht und einem Schutzmantel (12) gemäß einem der vorhergehenden Ansprüche gebildet ist.
     


    Revendications

    1. Enveloppe de protection (12) pour un récipient sous pression (10), l'enveloppe de protection comprenant :

    a) un bord de support supérieur circulaire essentiellement plat (46) pour s'engager avec une partie supérieure d'un récipient sous pression ;

    b) un bord de support inférieur circulaire essentiellement plat (50) pour s'engager avec une partie inférieure du récipient sous pression ;

    c) une paroi essentiellement cylindrique (54) reliant le bord de support supérieur et le bord de support inférieur ; et

    d) une paire de poignées arquées opposées (60) formées d'un seul tenant avec la paroi essentiellement cylindrique et s'étendant au-dessus du bord de support supérieur,
    les poignées étant configurées, dans leur extension la plus élevée, de manière à s'emboîter pour s'engager avec un élément de base de réception de poignée défini dans le bord de support inférieur de sorte que, lorsque plusieurs enveloppes de protection sont empilées les unes sur les autres, les poignées puissent être engagées avec la base de réception de poignée d'une autre enveloppe de protection ;
    caractérisée en ce que la paroi essentiellement cylindrique s'effile vers l'intérieur le long d'une courbe commençant essentiellement dans une région médiane de la paroi et s'étendant au-delà du bord de support supérieur et dans les poignées ; et en ce qu'il y a

    e) un rembourrage amortisseur (56) dans le bord de support inférieur (50) et disposé entre l'enveloppe de protection (12) et un réservoir hybride (14) reçu à l'intérieur de l'enveloppe de protection, le rembourrage comportant une pluralité de nervures annulaires s'étendant radialement de manière non continue disposées sur une surface du rembourrage (56) faisant face au réservoir hybride, de sorte que, lorsque le réservoir hybride (14) est placé contre les nervures annulaires, s'étendant radialement de manière non continue, un canal d'écoulement annulaire (58) soit disposé entre une surface extérieure du réservoir hybride (14) et la paroi (54).


     
    2. Enveloppe de protection selon la revendication 1, dans laquelle chaque poignée (60) a une surface supérieure qui définit un arc le long d'un cercle parallèle au bord de support supérieur circulaire essentiellement plat (46).
     
    3. Enveloppe de protection selon la revendication 2, comprenant en outre une paire d'indentations opposées définies dans la paroi essentiellement cylindrique (54), les indentations étant délimitées en bas par une partie intermédiaire de la paroi cylindrique, étant délimitées en haut par le bord de support supérieur, et étant délimitées de chaque côté par des poignées opposées, où les indentations sont configurées pour fournir un accès latéral à une région adjacente au bord de support supérieur (46).
     
    4. Enveloppe de protection selon la revendication 3, dans laquelle chaque poignée définit un passage de saisie manuelle s'étendant à travers celle-ci, où chaque passage de saisie manuelle est opposé à l'autre passage de saisie manuelle, et où les passages de saisie manuelle s'opposent le long d'un premier axe qui est perpendiculaire à un deuxième axe le long duquel les indentations opposées s'opposent.
     
    5. Enveloppe de protection selon la revendication 4, comprenant en outre une pluralité de premières ouvertures dans le bord de support supérieur (46) disposées adjacentes aux passages de saisie manuelle des poignées.
     
    6. Enveloppe de protection selon la revendication 5, comprenant en outre un orifice à travers le bord de support supérieur (46) pour recevoir une collerette de soupape communiquant dans un récipient sous pression lorsqu'un récipient sous pression est engagé à l'intérieur de l'enveloppe de protection (12), où le bord de support supérieur (46) et les poignées (60) sont configurés et adaptés de sorte que, lorsqu'une deuxième enveloppe est empilée sur les poignées de l'enveloppe de protection, une collerette de soupape disposée dans l'orifice soit accessible à travers un espace défini entre des poignées opposées, l'espace étant continu avec l'une des indentations opposées dans la paroi essentiellement cylindrique (54).
     
    7. Enveloppe de protection selon la revendication 1, comprenant en outre une pluralité de deuxièmes ouvertures (18) dans le bord de support inférieur (50) disposées en réseau axialement symétrique autour d'un point central défini par le bord de support inférieur.
     
    8. Enveloppe de protection selon la revendication 7, comprenant en outre une crête circulaire disposée autour du bord de support inférieur (50), la crête circulaire comportant une surface faisant face radialement vers l'intérieur configurée pour s'engager avec les poignées d'une deuxième enveloppe de protection lorsque l'enveloppe de protection est empilée sur les poignées d'une deuxième enveloppe de protection.
     
    9. Enveloppe de protection selon la revendication 8, dans laquelle la crête circulaire autour du bord de support inférieur (50) comporte une pluralité de pieds ondulés régulièrement espacés configurés pour entrer en contact avec une surface plate sous l'enveloppe de protection tout en préservant une ouverture entre chaque paire de pieds pour assurer une communication fluidique entre les deuxièmes ouvertures (18) définies dans le bord de support inférieur (50), et un environnement extérieur à l'enveloppe de protection lorsque l'enveloppe de protection se trouve sur une surface plate.
     
    10. Enveloppe de protection selon la revendication 9, dans laquelle l'une des deuxièmes ouvertures (18) dans le bord de support inférieur (50) est disposée radialement adjacente à chaque ouverture entre une paire de pieds dans la crête circulaire lorsque l'enveloppe de protection se trouve sur une surface plate.
     
    11. Récipient sous pression comprenant un réservoir hybride (14) formé d'une chemise de réservoir et d'une couche composite extérieure et une enveloppe de protection (12) selon l'une des revendications précédentes.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description