(19)
(11)EP 1 918 984 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
14.11.2018 Bulletin 2018/46

(21)Application number: 07119589.5

(22)Date of filing:  30.10.2007
(51)International Patent Classification (IPC): 
H01L 21/28(2006.01)
H01L 29/792(2006.01)
H01L 29/423(2006.01)
H01L 21/8246(2006.01)
H01L 29/66(2006.01)
H01L 29/06(2006.01)
H01L 21/336(2006.01)
G11C 16/04(2006.01)
H01L 29/786(2006.01)
H01L 27/115(2017.01)
H01L 29/78(2006.01)

(54)

Charge-trapping device with cylindrical channel and method of manufacturing thereof

Ladungsspeichernde Vorrichtung mit zylindrischem Kanal und Herstellungsverfahren derselben

Dispositif de piégeage de charge à canal cylindrique et procédé de fabrication correspondant


(84)Designated Contracting States:
DE FR GB IT

(30)Priority: 01.11.2006 US 863861 P
31.05.2007 US 756557

(43)Date of publication of application:
07.05.2008 Bulletin 2008/19

(73)Proprietor: MACRONIX INTERNATIONAL CO., LTD.
Hsinchu (TW)

(72)Inventors:
  • Lue, Hang-Ting
    Hsinchu (TW)
  • Hsu, Tzu-Hsuan
    Jhongpu Township 606 Chiayi County (TW)

(74)Representative: Gunzelmann, Rainer et al
Wuesthoff & Wuesthoff Patentanwälte PartG mbB Schweigerstraße 2
81541 München
81541 München (DE)


(56)References cited: : 
FR-A- 2 826 510
US-A1- 2005 260 814
US-A1- 2006 097 310
US-A1- 2006 284 245
US-A- 5 889 304
US-A1- 2006 046 388
US-A1- 2006 202 261
US-A1- 2007 200 168
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    RELATED APPLICATIONS



    [0001] This application claims the benefit of U.S. Provisional Application No. 60/863,861 filed 1 November 2006.

    BACKGROUND OF THE INVENTION


    Field of the Invention



    [0002] The invention relates generally to non-volatile memory devices, and in particular to flash memory cells and manufacturing of flash memory devices.

    Description of Related Art



    [0003] Flash memory technology includes memory cells that store charge between the channel and gate of a field effect transistor. The charge stored affects the threshold of the transistor, and the changes in threshold due to the stored charge can be sensed to indicate data.

    [0004] One type of charge storage memory cell in widespread application is known as a floating gate memory cell. In a floating gate memory cell, a tunnel dielectric is formed over a semiconductor channel, a floating gate of conductive material such as polysilicon is formed over the tunnel dielectric, and an inter-poly dielectric is formed over the floating gate to isolate it from the word line or control gate of the memory cell. A floating gate memory cell is modeled as a first capacitor between the control gate and the floating gate, and a second capacitor between the floating gate and the channel. The coupling ratio is based on the capacitor divider formula that determines the voltage coupled to the floating gate by a voltage applied across the control gate and the channel. Devices are typically made to have a higher capacitance between the control gate and the floating gate than between the floating gate and the channel by engineering the materials and the area of the floating gate relative to the control gate and the channel. For example, floating gates are implemented using a T-shape or a U-shape, which results in a greater surface area between the control gate and the floating gate than between the floating gate and the channel, and thereby a greater capacitance between the floating gate and the control gate. This results in more voltage coupled to the floating gate, enhancement of the electric field across the tunnel oxide, and increased program/erase efficiency. Although this technology has been widely successful, as the sizes of the memory cells and the distances between them shrink, the floating gate technology starts to degrade because of interference between neighboring floating gates.

    [0005] Another type of memory cell based on storing charge between the channel and gate of a field effect transistor uses a dielectric charge trapping structure. In this type of memory cell, a dielectric charge trapping structure is formed over a tunnel dielectric which isolates the dielectric charge trapping structure from the channel, and a top dielectric layer is formed over the charge trapping structure to isolate it from the word line or gate. A representative device is known as a silicon-oxide-nitride-oxide-silicon SONOS cell. SONOS-type devices, and other charge trapping memory cell technologies that use a non-conductive charge trapping structure, are recently proposed to solve the floating gate interference issue, and they are predicted to perform well below a 45 nm critical dimension, or manufacturing node. However, because the charge trapping layer is not conductive, the series capacitor model of floating gate devices does not apply. Therefore, increasing the area of the control gate and charge trapping structure does not increase a coupling ratio as occurs in a floating gate device. Rather, the electric field when no charge is trapped in the charge trapping structure is equal in the tunneling dielectric and the top dielectric. The program/erase efficiency of a charge trapping memory cell with a dielectric charge trapping structure, like a SONOS-type device, cannot be improved by the coupling ratio engineering known from the floating gate technology.

    [0006] A cylindrical channel memory cell is known from FR 2 826 510.

    [0007] US 2006/0046388 A1 discloses a non-volatile semiconductor device, in which a cross section of a channel surface along the channel width dimension is circular with an arc of less than 360°.

    [0008] US 2006/0202261 A1 discloses a non-volatile memory cell, in which the tunnel dielectric structure comprises a multi-layer thin film tunnel dielectric structure.

    [0009] US 2006/0097310 A1 discloses a method for manufacturing a non-volatile memory cell.

    [0010] US 5,889,304 discloses a non-volatile semiconductor memory cell and methods of optimizing dielectric fields at different layer interfaces.

    [0011] US 2005/0260814 A1 discloses a technique to round off the corners of thins through an oxidation step when fabricating non-volatile memory cells including such thins.

    [0012] Therefore, it is desirable to have a dielectric charge trapping memory cell with the electric field strength in the tunneling dielectric greater than the electric field strength in the top dielectric when no charge is trapped in the charge trapping structure for a bias voltage between the channel and the gate, resulting in increased program/erase efficiency.

    SUMMARY OF THE INVENTION



    [0013] Some or all of the above problems are solved by a memory cell comprising the features of claim 1, and a method of forming a memory cell according to claim 22. Further aspects of the invention are defined in the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0014] 

    Figure 1 illustrates the basic structure of a prior art SONOS-type memory cell.

    Figure 2 illustrates a cross-sectional view taken along the channel width dimension of a dielectric charge trapping memory cell.

    Figure 3 illustrates a cross-sectional view taken along the channel width dimension of a dielectric charge trapping memory cell in accordance with one embodiment.

    Figure 4 illustrates a cross-sectional view taken along the channel width dimension of a dielectric charge trapping memory cell in accordance with one embodiment.

    Figure 5 illustrates a cross-sectional view taken along the channel width dimension of a dielectric charge trapping memory cell in accordance with one embodiment.

    Figure 6 illustrates a cross-sectional view taken along the channel width dimension of a dielectric charge trapping memory cell in accordance with one embodiment.

    Figure 7 illustrates a simulation of electric field strength at the channel surface and the conductor surface of a memory cell in accordance with one embodiment.

    Figure 8 illustrates a simulation of +FN programming time for various values of the radius of curvature of the cylindrical region of the channel surface of a memory cell in accordance with one embodiment.

    Figure 9 illustrates a simulation of -FN erase time for various values of the radius of curvature of the cylindrical region of the channel surface of a memory cell having a bandgap engineered tunneling barrier structure in accordance with one embodiment.

    Figure 10 illustrates a stage in the method for manufacturing a memory array comprising forming hard mask layer strips on a semiconductor substrate and etching to form relatively thick fins of semiconductor substrate in accordance with one embodiment.

    Figure 11 illustrates a stage in the method for manufacturing a memory array comprising exposing the structure illustrated in Figure 10 to an oxidation step which consumes a portion of the fins and results in fins with a sub-lithographic width in accordance with one embodiment.

    Figure 12 illustrates a stage in the method for manufacturing a memory array comprising filling the structure illustrated in Figure 11 with dielectric material in accordance with one embodiment.

    Figure 13 illustrates a stage in the method for manufacturing a memory array comprising removing the hard mask layer strips from the structure illustrated in Figure 12 in accordance with one embodiment.

    Figure 14 illustrates a stage in the method for manufacturing a memory array comprising etching the structure illustrated in Figure 13 to expose the cylindrical regions at the tips of the fins in accordance with one embodiment.

    Figure 15 illustrates a stage in the method for manufacturing a memory array comprising forming a first dielectric structure over the structure illustrated in Figure 14, forming a dielectric charge trapping structure over the first dielectric structure, and forming a second dielectric structure over the dielectric charge trapping structure in accordance with one embodiment.

    Figure 16 is a simplified diagram in accordance with one embodiment of an integrated circuit with an array of charge trapping memory cells and control circuitry.


    DETAILED DESCRIPTION



    [0015] A detailed description of various embodiments is provided with reference to Figures 1-15.

    [0016] Figure 1 illustrates the basic structure of a prior art SONOS-type memory cell. The memory cell is formed on a semiconductor substrate 100 in which a first doped region 101 acts as a source region and a second doped region 102 acts as a drain region. The channel of the memory cell is the region of the substrate 100 between the source region 101 and the drain region 102. A conductive layer 103 is formed over a multi-layer dielectric structure which includes a first dielectric 104, a dielectric charge trapping structure 105, and a second dielectric 106. The dimension L shown in Figure 1 is typically referred to as the channel length L because current flows between the source region 101 and the drain region 102. In a planar device as shown in Figure 1, the charge trapping structure is stacked over a flat surface over the channel. The cross-section shown in Figure 1 is taken in the gate length direction so that the surface of the channel between the source region 101 and the drain region 102 is flat. Also, a cross-section taken of the planar device in the gate width direction of the planar device is also essentially flat. In this structure the electric field 107 in the first dielectric 104 will be the same strength as the electric field 108 in the second dielectric 106 assuming there is no charge trapped in the dielectric charge trapping structure 105.

    [0017] A memory device and method to make the device based on dielectric charge trapping technology are described herein, designed so that the electric field strength at the interface between the channel surface and the first dielectric structure is greater than the electric field at the interface between the conductor surface and the second dielectric structure when no charge is trapped in the charge trapping structure for a given bias voltage between the one or more of channel region, source region and drain region and the conductive layer. Therefore, the device can be said to have a high "effective" gate coupling ratio GCR, resulting in efficient programming and erasing of the device by utilizing a tunneling mechanism to increase or decrease the amount of charge trapped in the charge trapping structure. Devices as described herein are based on memory cells having a dielectric charge trapping structure, such as SONOS-type or bandgap-engineered SONOS (BE-SONOS) type devices, that include a channel region from a source region to a drain region, the channel region having a channel surface including a cylindrical region, with the channel surface in contact with the first dielectric structure. Devices described herein include a dielectric charge trapping structure on the first dielectric structure and a second dielectric structure on the dielectric charge trapping structure. Devices according to an example not forming part of the present invention also include a conductive layer having a conductor surface also including a cylindrical region on the second dielectric structure, the conductor surface overlying the dielectric charge trapping structure and the channel surface, such that the ratio of the area A2 of the conductor surface to the area A1 of the channel surface is greater than or equal to 1.2, including as much as about 2 or more. The ratio of the area A2 to the area A1 acts to establish the electric field strength at the interface between the channel surface and the first dielectric structure greater than the electric field strength at the interface between the conductor surface and the second dielectric structure when no charge is trapped in the charge trapping structure for a given bias voltage between the channel region and the conductive layer.

    [0018] A channel surface as contemplated herein is defined essentially by the length and width of the channel surface which interacts with the charge trapping structure. The channel width can be defined with reference to a channel surface cross-section taken along the channel width dimension of the device, such that the channel surface cross-section extends along the channel length dimension of the device to define the area of the channel surface. The channel surface cross-section is defined by the structure of the device and comprises at least some of the interface between the channel region and the first dielectric structure.

    [0019] A conductor surface as contemplated herein is defined essentially by the length and width of the conductor surface which interacts with the charge trapping structure. The width of the conductor surface can be defined with reference to a conductor surface cross-section taken along the channel width dimension of the device, such that the conductor surface cross-section extends along the channel length dimension of the device to define the area of the conductor surface. The conductor surface cross-section is defined by the structure of the device and comprises at least some of the interface between the conductive layer and the second dielectric structure.

    [0020] A cylindrical region as contemplated herein has a curvature that can be expressed as the curvature of a surface traced by a line moving parallel to a fixed line (e.g. an axis of a circular surface) extending in the length direction of the device, and intersecting a fixed curve (e.g. a circle-like curve for a circular surface). In a practical device, the fixed curve can be approximately circular, or have another shape yielding the "effective coupling ratio" improvements as described herein. Of course, the "fixed curve" need not be a circle and the "line" moved parallel to the fixed line need not be a straight line in actual devices.

    [0021] Figure 2 illustrates a cross-sectional view taken along the channel width dimension W of a dielectric charge trapping memory cell. In the example illustrated in Figure 2, the channel region 200 has a channel surface 201, a first dielectric structure 202 is on the channel surface 201, a dielectric charge trapping structure 203 is on the first dielectric structure 202, a second dielectric structure 204 is on the dielectric charge trapping structure 203, and a conductive layer 205 having a conductor surface 206 on the second dielectric structure 204, the conductor surface 206 overlying the dielectric charge trapping structure 203 and the channel surface 201. In the example illustrated in Figure 2, the source region and drain region are below the plane of the cross-section illustrated in Figure 2 and above the plane of the cross-section illustrated in Figure 2 respectively, such that the length of the channel surface 201 and the length of the conductor surface 206 are the distance along the channel region 200 from the source region to the drain region. In some examples, the channel region 200 may be a pillar with an N+ doped base forming a source region, a P or P- doped channel region in the middle portion of the pillar surrounded by the dielectric charge trapping structure 203, and an N+ doped top forming a drain region.

    [0022] In the example illustrated in Figure 2, the interface between the dielectric charge trapping structure 203 and the first dielectric structure 202 does not turn away from the channel region 200, thus the channel surface cross-section is the interface between the channel region 200 and the first dielectric structure 202 and is circular with an average radius 207. In the example illustrated in Figure 2, the interface between the conductive layer 205 and the second dielectric structure 204 does not turn away from the channel region 200, thus the conductor surface cross-section is that interface and is circular with an average radius 208.

    [0023] In the example illustrated in Figure 2, the ratio of the area of the conductor surface 206 to the area of the channel surface 201 is equal to the ratio of the average radius 208 to the average radius 207, the ratio being a number greater than or equal to 1.2, including as much as about 2 or more.

    [0024] In the example illustrated in Figure 2, a bias voltage between the channel region 200 and the conductive layer 205 results in an electric field which has a lower electric field strength at the conductor surface 206 than the electric field strength at the channel surface 201. In the example illustrated in Figure 2 and based on Gauss's law, E1 = R2/R1*E2, and

    where R1 is the average radius 207 of the channel surface 201, R2 is the average radius 208 of the conductor surface 206, E1 is the electric field strength at the channel surface 201, E2 is the electric field strength at the conductor surface 206, Vg is the bias voltage between the channel region 200 and the conductive layer 205, In is the natural logarithmic mathematical function, and R2 = R1 + EOT, where EOT is the effective oxide thickness of the structures between the channel surface 201 and the conductor surface 206, where the effective oxide thickness is the actual thickness scaled by the dielectric constants of the structures, relative to the dielectric constant of silicon dioxide.

    [0025] If the radius R1 is made small compared to the effective oxide thickness EOT, then E1 is significantly higher than E2. This can result in very high program/erase efficiency through the first dielectric structure 202, while suppressing unwanted charge leakage through the second dielectric structure 204.

    [0026] For example, if R1 is about 20 nm, and R1 is equal to the EOT of the structures between the channel surface 201 and the conductor surface 206, then R2 = R1 + EOT = 2*R1, and R2/R1 = 2 (the ratio of the areas is also about 2 for circular cylindrical surfaces), E1 = 2*E2, and E1 = 1.44*Vg/EOT, while E2 = 0.77*Vg/EOT. Therefore, the electric field E1 at the channel surface 201 is 1.44 times of the electric field of a comparable planar device, while the electric field E2 at the conductor surface 206 is only 0.77 times of the electric field of a comparable planar device. Examples in which R2/R1 is about 2 can have a ratio of the area A2 of the conductor surface to the area A1 of the channel surface in a range of about 1.8 to 2.2 for example.

    [0027] Figure 3 illustrates a cross-sectional view taken along the channel width dimension W of a dielectric charge trapping memory cell in accordance with an embodiment having a semiconductor channel body on an insulating substrate, having a semi-circular cross-section. In the embodiment illustrated in Figure 3, the channel region 300 comprises a channel surface 301, a first dielectric structure 302 is on the channel surface 301, a dielectric charge trapping structure 303 is on the first dielectric structure 302, a second dielectric structure 304 is on the dielectric charge trapping structure 303, and a conductive layer 305 having a conductor surface 306 is on the second dielectric structure 304, the conductor surface 306 overlying the dielectric charge trapping structure 303 and the channel surface 301. In the embodiment illustrated in Figure 3, the source region and drain region are below the plane of the cross-section illustrated in Figure 3 and above the plane of the cross-section illustrated in Figure 3 respectively, such that the length of the channel surface 301 and the length of the conductor surface 306 are the distance along the channel region 300 from the source region to the drain region. In the embodiment illustrated in Figure 3, the charge trapping structure has a bottom surface 309 which has corners 309a and 309b at which the interface between the charge trapping structure 303 and first dielectric structure 302 turns away from the channel region 300. In the embodiment illustrated in Figure 3, the channel region includes a bottom surface 307 that is below an imaginary line that would connect charge trapping bottom surface corners 309a and 309b. This results in the regions 315, 317 at the edges of the channel region 300 being spaced further away from the dielectric charge trapping structure 303 than the major portion of the channel region 300. In the embodiment illustrated in Figure 3, the interface between the conductor layer 305 and the second dielectric structure 304 includes corners 310 and 311 at which that interface turns away from the channel region 300.

    [0028] In the embodiment illustrated in Figure 3, the interface between the dielectric charge trapping structure 303 and the first dielectric structure 302 turns away from the channel region 300 at corners 309a and 309b, thus the channel surface cross-section is the arc having an average radius 312 that lies above an imaginary line which would connect corners 309a and 309b. In the embodiment illustrated in Figure 3, the interface between the conductor layer 305 and the second dielectric structure 304 turns away at corners 310 and 311, thus the conductor surface is the arc having an average radius 313 extending from corner 310 to corner 311, such that the ratio of the area of conductor surface 306 to the area of the channel surface 301 is a number greater than or equal to 1.2, including as much as about 2 or more, as discussed above.

    [0029] In the embodiment illustrated in Figure 3, a bias voltage between the channel region 300 and the conductive layer 305 results in a lower electric field strength at the conductor surface 306 than the electric field strength at the channel surface 301. Similar electric field distribution occurs for a bias voltage between the conductive layer and one or both of the source and drain regions

    [0030] Figure 4 illustrates a cross-sectional view taken along the channel width dimension W of a dielectric charge trapping memory cell in accordance with yet another embodiment. In the embodiment illustrated in Figure 4, the channel region 400 comprises a channel surface 401, a first dielectric structure 402 is on the channel surface 401, a dielectric charge trapping structure 403 is on the first dielectric structure 402, a second dielectric structure 404 is on the dielectric charge trapping structure 403, and a conductive layer 405 having a conductor surface 406 is on the second dielectric structure 404, the conductor surface 406 overlying the dielectric charge trapping structure 403 and the channel surface 401. In the embodiment illustrated in Figure 4, the source region and drain region are below the plane of the cross-section illustrated in Figure 4 and above the plane of the cross-section illustrated in Figure 4 respectively, such that the length of the channel surface 401 and the length of the conductor surface 406 are the distance along the channel region 400 from the source region to the drain region. In the embodiment illustrated in Figure 4, the charge trapping structure 403 has a bottom surface 409 which has corners 409a and 409b at which the interface between the charge trapping structure 403 and the first dielectric structure 402 turns away from the channel region 400. In the embodiment illustrated in Figure 4, the channel region includes a bottom surface 407 that is above an imaginary line that would connect corners 409a and 409b. The channel regions 415, 417 remain close to the dielectric charge trapping structure 403, which results in better control of the channel threshold voltage. In the embodiment illustrated in Figure 4, the interface between the conductor layer 405 and the second dielectric structure 404 includes corners 410 and 411 at which that interface turns away from the channel region 400.

    [0031] In the embodiment illustrated in Figure 4, the cross-section of the channel surface 401 taken along the channel width dimension is the arc having an average radius 412. In the embodiment illustrated in Figure 4, the cross-section of the conductor surface 406 is the arc having an average radius 413 extending from corner 410 to corner 411, such that the ratio of the area of conductor surface 406 to the area of the channel surface 401 is a number greater than or equal to 1.2, including as much as about 2 or more, as discussed above.

    [0032] In the embodiment illustrated in Figure 4, a bias voltage between the channel region 400 and the conductive layer 405 results in a lower electric field strength at the conductor surface 406 than the electric field strength at the channel surface 401.

    [0033] Figure 5 illustrates a cross-sectional view taken along the channel width dimension W of a dielectric charge trapping memory cell in accordance with another embodiment. In the embodiment illustrated in Figure 5, the channel region 500 comprises a channel surface 501, a first dielectric structure 502 is on the channel surface 501, a dielectric charge trapping structure 503 is on the first dielectric structure 502, a second dielectric structure 504 is on the dielectric charge trapping structure 503, and a conductive layer 505 having a conductor surface 506 on the second dielectric structure 504, the conductor surface 506 overlying the dielectric charge trapping structure 503 and the channel surface 501. In the embodiment illustrated in Figure 5, the channel region 500 is on a fin-shaped semiconductor region having sides 507, 508. In some embodiments the fin-shaped region is formed continuous with (and therefore "body-tied") the semiconductor substrate on which the memory cell is formed. In the embodiment illustrated in Figure 5, the source region and drain region are below the plane of the cross-section illustrated in Figure 5 and above the plane of the cross-section illustrated in Figure 5 respectively, such that the length channel surface 501 and the length of the conductor surface 506 are the distance along the channel region 500 from the source region to the drain region. In the embodiment illustrated in Figure 5, the charge trapping structure 503 has a bottom surface 509 which has corners 509a and 509b at which the interface between the charge trapping structure 503 and the first dielectric structure 502 turns away from the channel region 500. In the embodiment illustrated in Figure 5, the interface between the conductor layer 505 and the second dielectric structure 504 includes corners 510 and 511 at which that interface turns away from the channel region 500.

    [0034] In the embodiment illustrated in Figure 5, the sides 507, 508 of the fin are below an imaginary line that would connect corners 509a and 509b, thus the cross-section of the channel surface 501 is the arc having an average radius 512 above the imaginary line. In the embodiment illustrated in Figure 5, the cross-section of the conductor surface 506 is the arc having an average radius 513 extending from corner 510 to corner 511, such that the ratio of the area of the conductor surface 506 to the area of the channel surface 501 is a number greater than or equal to 1.2, including as much as about 2 or more, as discussed above.

    [0035] In the embodiment illustrated in Figure 5, a bias voltage between the channel region 500 and the conductive layer 505 results in a lower electric field strength at the conductor surface 506 than the electric field strength at the channel surface 501.

    [0036] Figure 6 illustrates a cross-sectional view taken along the channel width dimension W of a dielectric charge trapping memory cell in accordance with another embodiment. In the embodiment illustrated in Figure 6, the channel region 600 comprises a channel surface 601, a first dielectric structure 602 is on the channel surface 601, a dielectric charge trapping structure 603 is on the first dielectric structure 602, a second dielectric structure 604 is on the dielectric charge trapping structure 603, and a conductive layer 605 having a conductor surface 606 on the second dielectric structure 604, the conductor surface 606 overlying the dielectric charge trapping structure 603 and the channel surface 601. In the embodiment illustrated in Figure 6, the channel region 600 is on a fin-shaped semiconductor region having sides 607, 608. In the embodiment illustrated in Figure 6, the source region and drain region are below the plane of the cross-section illustrated in Figure 6 and above the plane of the cross-section illustrated in Figure 6 respectively, such that the length of the channel surface 601 and the length of the conductor surface 606 are the distance along the channel region 600 from the source region to the drain region. In the embodiment illustrated in Figure 6, the charge trapping structure 603 has a bottom surface 609 which has corners 609a and 609b at which the interface between the charge trapping structure 603 and the first dielectric structure 602 turns away from the channel region 600. In the embodiment illustrated in Figure 5, the interface between the conductor layer 605 and the second dielectric structure 604 includes corners 610 and 611 at which that interface turns away form the channel region 600.

    [0037] In the embodiment illustrated in Figure 6, a portion of the sides 607, 608 are above an imaginary line that would connect corners 609a and 609b, thus the cross-section of the channel surface 601 is the combination of the arc having an average radius 612 and the portions of the sides 607, 608 that are above the imaginary line that would connect corners 609a and 609b. In the embodiment illustrated in Figure 6, the cross-section of the conductor surface 606 is the interface between the conductor layer 605 and the second dielectric structure 604 extending from corner 610 to corner 611 and includes the arc having an average radius 613, such that the ratio of the area of the conductor surface 606 to the area of the channel surface 601 is a number greater than or equal to 1.2, including as much as about 2 or more, as discussed above.

    [0038] In embodiments described herein the first dielectric structure can comprise, for example, silicon dioxide or a bandgap engineered tunneling barrier structure. A bandgap engineered tunneling barrier structure as contemplated herein provides a "modulated tunneling barrier" in that it suppresses direct tunneling at low electric field during charge retention in the charge trapping layer, while it allows efficient hole tunneling erase at high electric field due to the band offset in the hole tunneling barrier heights of the materials of the tunneling barrier structure. An example of a bandgap engineered tunneling barrier structure includes a bottom dielectric layer having a hole tunneling barrier height, a middle dielectric layer having a hole tunneling barrier height less than that of the bottom dielectric, and a top dielectric layer having a hole tunneling barrier height greater than that of the middle dielectric layer. Preferably, the hole tunneling current through a bandgap engineered tunneling barrier structure approaches that of a single layer when high electric fields are present.

    [0039] In some embodiments the bandgap engineered tunneling barrier structure comprises multiple layers, an example of which comprises a first silicon dioxide layer, a silicon nitride layer on the first silicon dioxide layer, and a second silicon dioxide layer on the silicon nitride layer. In some preferred embodiments of a tri-layer bandgap engineered tunneling barrier structure, the first layer comprising silicon dioxide or similar material has a thickness less than or equal to about 20 Angstroms, in some embodiments the thickness being less than or equal to about 15 Angstroms, in some embodiments the thickness being between about 5 and 20 Angstroms, more preferably the thickness being between about 10 and 20 Angstroms, most preferably the thickness being between about 10 and 15 Angstroms. In some preferred embodiments of a tri-layer bandgap engineered tunneling barrier structure, the second layer comprising silicon nitride or similar material has a thickness less than or equal to about 20 Angstroms, more preferably the thickness being between about 10 and 20 Angstroms. It is found that embodiments in which the thickness of the second dielectric layer is greater than the thickness of the first dielectric layer, improved performance is achieve by reducing the electric field strength required to overcome the barrier height of the third dielectric layer. In some preferred embodiments of a tri-layer bandgap engineered tunneling barrier structure, the third layer comprising silicon dioxide or similar material has a thickness less than or equal to about 20 Angstroms, more preferably the thickness being between about 10 and about 20 Angstroms, most preferably the thickness being between about 15 and 20 Angstroms.

    [0040] Bandgap engineered tunneling barrier structures in accordance with embodiments of the present invention can be prepared in a variety of ways. Any method, known or to be developed, for forming layers of suitable materials described herein can be used to deposit or form the layers. Suitable methods include, for example, thermal growth methods and chemical vapor deposition. For example, a first silicon dioxide or silicon oxynitride layer can be formed using any number of conventional oxidation approaches including, but not limited to thermal oxidation, radical (ISSG) oxidation, and plasma oxidation/nitridation, as well as chemical vapor deposition processes. A middle layer of silicon nitride can then be formed, for example, via chemical vapor deposition processes, or alternatively, by plasma nitridation of excess oxide or nitride formed on top of the first layer. A third layer comprising oxide in some embodiments, can be formed, for example, by oxidation or chemical vapor deposition.

    [0041] Additional details on materials, processes, and characteristics of bandgap engineered tunneling barrier structures are disclosed in: provisional U.S. Patent Application No. 60/640,229 titled Non-Volatile Memory Devices and Methods of Manufacturing and Operating the Same, filed January 3, 2005; provisional U.S. Patent Application No. 60/647,012 Non-Volatile Memory Devices and Arrays and Methods of Manufacturing and Operating the Same, filed on January 27, 2005; provisional U.S. Patent Application No. 60/689,231 titled Non-Volatile Memory Having Gates Comprising Electron Injection Suppressing Materials, filed on June 10, 2005; provisional U.S. patent application No. 60/689,314 titled Non-Volatile Memory Devices and Arrays and Methods of Manufacturing and Operating the Same, filed on June 10, 2005; and non-provisional U.S. patent application No. 11/324,540 titled Non-Volatile Memory Cells, Memory Arrays Including the Same and Methods of Operating Cells and Arrays, filed on January 3, 2006.

    [0042] The second dielectric structure comprising silicon oxide can be formed, for example, by converting a portion of the dielectric charge trapping structure comprising silicon nitride to form the silicon oxide. In one example, a thermal conversion process may provide a high density or concentration of interfacial traps that can enhance the trapping efficiency of a memory device. For example, thermal conversion of nitride can be carried out at 1000 degrees C, while the gate flow ratio is H2:02=1000:4000 sccm.

    [0043] In embodiments described herein the dielectric charge trapping structure can comprise, for example, silicon nitride, SiON, HfO2, Al2O3, dielectric embedded nano-particle trapping materials or other non-conductive charge trapping material. In embodiments in which the dielectric charge trapping structure comprises a layer of silicon nitride, the thickness of the layer is preferably greater than about 50 Angstroms, more preferably the thickness being between about 50 Angstroms and about 100 Angstroms for good charge trapping performance. For other materials the thickness is preferably sufficient to provide equivalent charge trapping performance.

    [0044] In embodiments described herein the second dielectric structure can comprise, for example, silicon dioxide, Al2O3, or other insulating dielectric. In some preferred embodiments the second dielectric structure comprises a layer of silicon dioxide having a thickness greater than about 50 Angstroms, more preferably the thickness being between about 50 Angstroms and about 120 Angstroms for good performance in blocking tunneling between the charge trapping structure and the conductive layer. For other materials, the thickness is preferably sufficient to provide equivalent performance.

    [0045] In embodiments described herein the conductive layer can comprise, for example, n-type or p-type doped polysilicon, high work function metal such as Pt, TaN, silicides, or other conductive material.

    [0046] Figure 7 illustrates a simulation of the electric field strength at the channel surface (labeled as "bottom oxide field" in Figure 7) and the conductor surface (labeled as "top oxide field" in Figure 7) of a memory cell with an EOT of 18 nm and a conductive layer to channel bias voltage of 15 V in accordance with one embodiment. The vertical axis in Figure 7 is the electric field intensity in MV/cm and the horizontal axis is a logarithmic scale of the radius of curvature R1 of the cylindrical region of the channel surface in Angstroms. Figure 7 clearly shows that when R1 decreases the electric field strength at the channel surface is increased, while the electric field strength at the conductor surface is reduced.

    [0047] Figure 8 illustrates a simulation of +FN (Fowler-Nordheim tunneling with positive conductive layer to channel region bias voltage) programming time for various values of the radius of curvature R1 of the cylindrical region of the channel surface of a memory cell in accordance with one embodiment. The vertical axis in Figure 8 is the change in threshold voltage of the memory cell and the horizontal axis is a logarithmic scale of programming time in seconds. Figure 8 clearly shows that when R1 decreases the programming speed is greatly enhanced.

    [0048] Figure 9 illustrates a simulation of -FN (Fowler-Nordheim tunneling with negative conductive layer to channel region bias voltage) erase time for various values of the radius of curvature R1 of the cylindrical region of the channel surface of a memory cell having a bandgap engineered tunneling barrier structure in accordance with one embodiment. The vertical axis in Figure 9 is the change in threshold voltage of the memory cell and the horizontal axis is a logarithmic scale of programming time in seconds. Figure 9 shows that when R1 decreases the erase speed is increased and the erase saturation is reduced. Moreover, the erase convergent Vt, particularly with n-type polysilicon gate devices, can be smaller because the gate electron injection during -FN is also reduced.

    [0049] Figures 10-15 illustrate an embodiment of a process flow for manufacturing a memory array, utilizing a dielectric charge trapping memory cell as described herein. Figure 10 illustrates forming hard mask layer strips 1000, 1001 on a semiconductor substrate 1002 and etching to form relatively thick fins 1003, 1004 of semiconductor substrate 1002. In this example embodiment the hard mask layer strips 1000, 1001 comprise silicon nitride and the semiconductor substrate 1002 comprises silicon. The etching can be done, for example, using shallow trench isolation techniques or similar technologies.

    [0050] Figure 11 illustrates exposing the structure illustrated in Figure 10 to an oxidation step which consumes a portion of the fins and results in fins 1005, 1006 with a sub-lithographic width. The oxide encroachment due to the oxidation step occurs more quickly at the interface between the fins 1005, 1006 and the hard mask layer strips 1000, 1001, resulting in rounding of the tips of the fins 1005, 1006 and the formation of cylindrical regions 1007, 1008 at the tip of the fins 1005, 1006.

    [0051] Next, as illustrated in Figure 12, the structure illustrated in Figure 11 is filled with dielectric material, which in this example embodiment the dielectric material comprises silicon dioxide. The structure can be filled using, for example, a high density plasma HDP silicon dioxide deposition followed by chemical mechanical polishing CMP. Next, as shown in Figure 13, the hard mask layer strips are removed.

    [0052] Next, etching is performed to expose at least the cylindrical regions 1007, 1008 at the tips of the fins 1005, 1006 as illustrated in Figure 14. This etching can be done, for example, by a wet etch to remove the silicon dioxide fill at a slow rate. Then, as illustrated in Figure 15, forming a first dielectric structure 1009 over the structure illustrated in Figure 14, forming a dielectric charge trapping structure 1010 over the first dielectric structure 1009, and forming a second dielectric structure 1011 over the dielectric charge trapping structure 1010. Next a conductive layer is formed and patterned to form word lines. Contacts are then made to the fins between the word lines at appropriate locations, and the device is completed using interlayer dielectric film and metallization processes as is known in the art.

    [0053] Figure 16 is a simplified diagram of an integrated circuit with an array of charge trapping memory cells as described herein. The integrated circuit 1650 includes a memory array 1600 implemented using nonvolatile memory cells as described herein on a semiconductor substrate. The memory cells of array 1600 may be interconnected in parallel, in series, or in a virtual ground array. A row decoder 1601 is coupled to a plurality of word lines 1602 arranged along rows in the memory array 1600. Memory cells as described herein can be configured in NAND arrays, and NOR arrays, or other types of array structures. A column decoder 1603 is coupled to a plurality of bit lines 1604 arranged along columns in the memory array 1600. Addresses are supplied on bus 1605 to column decoder 1603 and row decoder 1601. Sense amplifiers and data-in structures in block 1606 are coupled to the column decoder 1603 via data bus 1607. Data is supplied via the data-in line 1611 from input/output ports on the integrated circuit 1650, or from other data sources internal or external to the integrated circuit 1650, to the data-in structures in block 1606. Data is supplied via the data-out line 1615 from the sense amplifiers in block 1606 to input/output ports on the integrated circuit 1650, or to other data destinations internal or external to the integrated circuit 1650. A bias arrangement state machine 1609 controls the application of bias arrangement supply voltages 1608, such as for the erase verify and program verify voltages, and the arrangements for programming, erasing, and reading the memory cells, such as with the band-to-band currents. The bias arrangement state machine is adapted to apply bias arrangements for programming by +FN tunneling including a positive voltage between the gate and channel or between the gate and one or both of the source and drain terminals sufficient to induce electron tunneling through the tunnel dielectric structure into the charge trapping structure. Using the cylindrical channel or similar cell structure, the voltages required for +FN tunneling can be reduced compared to planar channel devices. Also, the bias arrangement state machine is adapted to apply bias arrangements for erasing by -FN tunneling including a negative voltage between the gate and channel or between the gate and one or both of the source and drain terminals sufficient to induce hole tunneling through the tunnel dielectric structure into the charge trapping structure. Alternatively, the bias arrangement state machine is adapted to apply bias arrangements sufficient to induce electron ejection from the charge trapping structure through the tunnel dielectric structure to at least one of the source, drain and channel.

    [0054] The array may be combined on the integrated circuit with other modules, such as processors, other memory arrays, programmable logic, dedicated logic etc.


    Claims

    1. A memory cell comprising:

    a source region and a drain region separated by a semiconductor channel region (300, 400, 500, 600), the channel region (300, 400, 500, 600) having a channel surface (301, 401, 501, 601) including a first cylindrical region (1007, 1008);

    a first dielectric structure (302, 402, 502, 602, 1009) on the channel surface (301, 401, 501, 600);

    a dielectric charge trapping structure (303, 403, 503, 603, 1010) on the first dielectric structure (202, 302, 402, 502, 602);

    a second dielectric structure (304, 404, 504, 604, 1011) on the dielectric charge trapping structure (303, 403, 503, 603, 1010);

    a conductive layer (305, 405, 505, 605) having a conductor surface (306, 406, 506, 606) including a second cylindrical region on the second dielectric structure (304, 404, 504, 604, 1011), the conductor surface (306, 406, 506, 606) overlying the dielectric charge trapping structure (203, 303, 403, 503, 603, 1010) and the channel surface (301, 401, 501, 601);

    wherein a cross-section of the first cylindrical region (1007, 1008) of the channel surface (201, 301, 401, 501, 601) along the channel width dimension is circular with an arc of less than 360 degrees;

    wherein a cross-section of the second cylindrical region of the conductor surface (206, 306, 406, 506, 606) along the channel width dimension is circular with an arc of less than 360 degrees;

    wherein the charge trapping structure (303, 403, 503, 603) has a first bottom surface (309, 409, 509, 609);

    wherein the channel region (300, 400, 500, 600) has a second bottom surface (307, 407, 507, 607);

    wherein a cross-section of the first bottom surface (309, 409, 509, 609) along the channel width dimension comprises a first corner (309a, 409a, 509a, 609a) and a second corner (309b, 409b, 509b, 609b) at which the first bottom surface (309, 409, 509, 609) turns away from the channel region (300, 400, 500, 600); and

    wherein a cross-section of the second bottom surface (307, 407, 507, 607) along the channel width dimension comprises a first line;

    characterized in that
    the structures between the channel surface (301, 401, 501, 601) and the conductor surface (306, 406, 506, 606) have an effective oxide thickness and the first cylindrical region of the channel surface (301, 401, 501, 601) has an average radius that is less than the effective oxide thickness.


     
    2. The memory cell of claim 1, wherein an imaginary second line connecting the first corner (309a) and the second corner (309b) is arranged such that the first line is at a level below the imaginary second line.
     
    3. The memory cell of claim 1, wherein
    an imaginary second line connecting the first corner (409a) and the second corner (409b) is arranged such that the first line is at a level above the imaginary second line.
     
    4. The memory cell of claim 1, further comprising a semiconductor fin structure (1005, 1006), wherein the semiconductor channel region (500, 600) is on the semiconductor fin structure (1005, 1006).
     
    5. The memory cell of claim 1, wherein the first dielectric structure (302, 402, 502, 602) comprises silicon dioxide.
     
    6. The memory cell of claim 1, wherein the first dielectric structure (302, 402, 502, 602, 1009) comprises a bandgap engineered tunneling barrier structure.
     
    7. The memory cell of claim 6, wherein the bandgap engineered tunneling barrier structure comprises:

    a first dielectric layer having a hole tunneling barrier height;
    a second dielectric layer on the first dielectric layer, the second dielectric layer having a hole tunneling barrier height less than that of the first dielectric layer; and

    a third dielectric layer on the second dielectric layer, the third dielectric layer having a hole tunneling barrier height greater than that of the second dielectric layer.


     
    8. The memory cell of claim 7, wherein the first dielectric layer comprises silicon dioxide, the second dielectric layer comprises silicon nitride, and the third dielectric layer comprises silicon dioxide.
     
    9. The memory cell of claim 7, wherein the first dielectric layer has a thickness less than or equal to about 20 Angstroms.
     
    10. The memory cell of claim 7, wherein the first dielectric layer has a thickness between about 10 and about 20 Angstroms.
     
    11. The memory cell of claim 7, wherein the first dielectric layer has a thickness between about 10 and about 15 Angstroms.
     
    12. The memory cell of claim 7, wherein the first dielectric layer has a thickness between about 5 and about 20 Angstroms.
     
    13. The memory cell of claim 7, wherein the first dielectric layer has a thickness less than or equal to about 15 Angstroms.
     
    14. The memory cell of claim 7, wherein the second dielectric layer has a thickness less than or equal to about 20 Angstroms.
     
    15. The memory cell of claim 7, wherein the second dielectric layer has a thickness between about 10 and about 20 Angstroms.
     
    16. The memory cell of claim 7, wherein the third dielectric layer has a thickness less than or equal to about 20 Angstroms.
     
    17. The memory cell of claim 7, wherein the third dielectric layer has a thickness between about 15 and about 20 Angstroms.
     
    18. The memory cell of claim 7, wherein the third dielectric layer has a thickness between about 10 and about 20 Angstroms.
     
    19. The memory cell of claim 1, wherein the dielectric charge trapping structure (303, 403, 503, 603, 1010) comprises silicon nitride.
     
    20. The memory cell of claim 1, wherein the second dielectric structure (304, 404, 504, 604, 1011) comprises silicon dioxide.
     
    21. The memory cell of claim 1, wherein the top conductive layer (305, 405, 505, 605) comprises polysilicon.
     
    22. A method of forming a memory cell of claim 1.
     
    23. A memory device comprising:

    an array of memory cells according to any of the claims 1-21 on a semiconductor substrate; and

    a bias arrangement state machine (1609) adapted to apply bias arrangements to the memory cells for programming and to apply bias arrangements to the memory cells for erasing, wherein the bias arrangement for programming includes a positive voltage between the conductive layer (305, 405, 505, 605) and at least one of the channel region (300, 400, 500, 600), the source region and the drain region sufficient to induce electron tunneling through the first dielectric structure (302, 402, 502, 602, 1009) into the dielectric charge trapping structure (303, 403, 503, 603, 1010), wherein the bias arrangement for erasing includes a negative voltage between the conductive layer (305, 405, 505, 605) and at least one of the channel region (300, 400, 500, 600), the source region and the drain region sufficient to induce hole tunneling through the first dielectric structure (302, 402, 502, 602, 1009) into the charge trapping structure (303, 403, 503, 603, 1010).


     


    Ansprüche

    1. Speicherzelle, die umfasst:

    einen Source-Bereich und einen Drain-Bereich, die durch einen Halbleiterkanalbereich (300, 400, 500, 600) getrennt sind, wobei der Kanalbereich (300, 400, 500, 600) eine Kanaloberfläche (301, 401, 501, 601) hat, die einen ersten zylinderförmigen Bereich (1007, 1008) umfasst;

    eine erste dielektrische Struktur (302, 402, 502, 602, 1009) auf der Kanaloberfläche (301, 401, 501, 600);

    eine Struktur zum Speichern von dielektrischer Ladung (303, 403, 503, 603, 1010) auf der ersten dielektrischen Struktur (202, 302, 402, 502, 602);

    eine zweite dielektrische Struktur (304, 404, 504, 604, 1011) auf der Struktur zum Speichern von dielektrischer Ladung (303, 403, 503, 603, 1010);

    eine Leiterschicht (305, 405, 505, 605) mit einer Leiteroberfläche (306, 406, 506, 606), die einen zweiten zylinderförmigen Bereich auf der zweiten dielektrischen Struktur (304, 404, 504, 604, 1011) umfasst, wobei die Leiteroberfläche (306, 406, 506, 606) der Struktur zum Speichern von dielektrischer Ladung (203, 303, 403, 503, 606, 1010) und der Kanaloberfläche (301, 401, 501, 601) überlagernd angeordnet ist;

    wobei ein Querschnitt des ersten zylinderförmigen Bereichs (1007, 1008) der Kanaloberfläche (201, 301, 401, 501, 601) entlang der Kanalbreitendimension kreisförmig mit einem Bogen von weniger als 360° ist;

    wobei ein Querschnitt des zweiten zylinderförmigen Bereichs der Leiteroberfläche (206, 306, 406, 506, 606) entlang der Kanalbreitendimension kreisförmig mit einem Bogen von weniger als 360° ist;

    wobei die Ladungsspeicherstruktur (303, 403, 503, 603) eine erste untere Fläche (309, 409, 509, 609) hat;

    wobei der Kanalbereich (300, 400, 500, 600) eine zweite untere Fläche (307, 407, 507, 607) hat;

    wobei ein Querschnitt der ersten unteren Fläche (309, 409, 509, 609) entlang der Kanalbreitendimension eine erste Ecke (309a, 409a, 509a, 609a) und eine zweite Ecke (309b, 409b, 509b, 609b) umfasst, an denen die erste untere Fläche (309, 409, 509, 609) von dem Kanalbereich (300, 400, 500, 600) abgewandt ist; und

    wobei ein Querschnitt der zweiten unteren Fläche (307, 407, 507, 607) entlang der Kanalbreitendimension eine erste Linie umfasst;

    dadurch gekennzeichnet, dass

    die Strukturen zwischen der Kanaloberfläche (301, 401, 501, 601) und der Leiteroberfläche (306, 406, 506, 606) eine effektive Oxiddicke haben und der erste zylinderförmige Bereich der Kanaloberfläche (301, 401, 501, 601) einen durchschnittlichen Radius hat, der kleiner als die effektive Oxiddicke ist.


     
    2. Speicherzelle nach Anspruch 1, wobei eine imaginäre zweite Linie, die die erste Ecke (309a) und die zweite Ecke (309b) verbindet, so angeordnet ist, dass sich die erste Linie auf einer Ebene unter der imaginären zweiten Linie befindet.
     
    3. Speicherzelle nach Anspruch 1, wobei eine imaginäre zweite Linie, die die erste Ecke (409a) und die zweite Ecke (409b) verbindet, so angeordnet ist, dass sich die erste Linie auf einer Ebene über der imaginären zweiten Linie befindet.
     
    4. Speicherzelle nach Anspruch1, die ferner eine Halbleiterfinnenstruktur (1005, 1006) umfasst, wobei sich der Halbleiterkanalbereich (500, 600) auf der Halbleiterfinnenstruktur (1005,1006) befindet.
     
    5. Speicherzelle nach Anspruch 1, wobei die erste dielektrische Struktur (302, 402, 502, 602) Siliziumdioxid umfasst.
     
    6. Speicherzelle nach Anspruch 1, wobei die erste dielektrische Struktur (302, 402, 502, 602, 1009) eine Bandlücken-modulierte Tunnelbarrierestruktur umfasst.
     
    7. Speicherzelle nach Anspruch 6, wobei die Bandlücken-modulierte Tunnelbarrierestruktur umfasst:

    eine erste dielektrische Schicht mit einer Lochtunnelbarrierenhöhe;

    eine zweite dielektrische Schicht auf der ersten dielektrischen Schicht, wobei die zweite dielektrische Schicht eine geringere Lochtunnelbarrierenhöhe als die erste dielektrische Schicht hat; und

    eine dritte dielektrische Schicht auf der zweiten dielektrischen Schicht, wobei die dritte dielektrische Schicht eine größere Lochtunnelbarrierenhöhe als die zweite dielektrische Schicht hat.


     
    8. Speicherzelle nach Anspruch 7, wobei die erste dielektrische Schicht Siliziumdioxid, die zweite dielektrische Schicht Siliziumnitrid und die dritte dielektrische Schicht Siliziumdioxid umfasst.
     
    9. Speicherzelle nach Anspruch 7, wobei die erste dielektrische Schicht eine Dicke von weniger oder gleich circa 20 Angström hat.
     
    10. Speicherzelle nach Anspruch 7, wobei die erste dielektrische Schicht eine Dicke zwischen circa 10 und circa 20 Angström hat.
     
    11. Speicherzelle nach Anspruch 7, wobei die erste dielektrische Schicht eine Dicke zwischen circa 10 und circa 15 Angström hat.
     
    12. Speicherzelle nach Anspruch 7, wobei die erste dielektrische Schicht eine Dicke zwischen circa 5 und circa 20 Angström hat.
     
    13. Speicherzelle nach Anspruch 7, wobei die erste dielektrische Schicht eine Dicke von weniger oder gleich circa 15 Angström hat.
     
    14. Speicherzelle nach Anspruch 7, wobei die zweite dielektrische Schicht eine Dicke von weniger oder gleich circa 20 Angström hat.
     
    15. Speicherzelle nach Anspruch 7, wobei die zweite dielektrische Schicht eine Dicke zwischen circa 10 und circa 20 Angström hat.
     
    16. Speicherzelle nach Anspruch 7, wobei die dritte dielektrische Schicht eine Dicke von weniger oder gleich circa 20 Angström hat.
     
    17. Speicherzelle nach Anspruch 7, wobei die dritte dielektrische Schicht eine Dicke zwischen circa 15 und circa 20 Angström hat.
     
    18. Speicherzelle nach Anspruch 7, wobei die dritte dielektrische Schicht eine Dicke zwischen circa 10 und circa 20 Angström hat.
     
    19. Speicherzelle nach Anspruch 1, wobei die Struktur zum Speichern von dielektrischer Ladung (303, 403, 503, 603, 1010) Siliziumnitrid umfasst.
     
    20. Speicherzelle nach Anspruch 1, wobei die zweite dielektrische Struktur (304, 404, 504, 604, 1011) Siliziumdioxid umfasst.
     
    21. Speicherzelle nach Anspruch 1, wobei die obere Leiterschicht (305, 405, 505, 605) Polysilizium umfasst.
     
    22. Verfahren zum Bilden einer Speicherzelle nach Anspruch 1.
     
    23. Speichervorrichtung, die umfasst:

    eine Anordnung von Speicherzellen gemäß einem der Ansprüche 1-21 auf einem Halbleitersubstrat; und

    eine Vorspannungsanordnungszustandsmaschine (1609), die dazu ausgebildet ist, Vorspannungsanordnungen auf die Speicherzellen zum Programmieren und Vorspannungsanordnungen auf die Speicherzellen zum Löschen anzuwenden, wobei die Vorspannungsanordnung zum Programmieren eine positive Spannung zwischen der Leiterschicht (305, 405, 505, 605) und mindestens einem des Kanalbereichs (300, 400, 500, 600), des Source-Bereichs und des Drain-Bereichs umfasst, die ausreicht, um Elektronentunnel durch die erste dielektrische Struktur (302, 402, 502, 602, 1009) in die Struktur zum Speichern von dielektrischer Ladung (303, 403, 503, 603, 1010) zu induzieren, wobei die Vorspannungsanordnung zum Löschen eine negative Spannung zwischen der Leiterschicht (305, 405, 505, 605) und mindestens einem des Kanalbereichs (300, 400, 500, 600), des Source-Bereichs und des Drain-Bereichs umfasst, die ausreicht, um Lochtunnel durch die erste dielektrische Struktur (302, 402, 502, 602, 1009) in die Ladungsspeicherstruktur (303, 403, 503, 603, 1010) zu induzieren.


     


    Revendications

    1. Cellule de mémoire comprenant :

    une région de source et une région de drain séparées par une région de canal semi-conductrice (300, 400, 500, 600), la région de canal (300, 400, 500, 600) ayant une surface de canal (301, 401, 501, 601) comprenant une première région cylindrique (1007, 1008) ;

    une première structure diélectrique (302, 402, 502, 602, 1009) sur la surface de canal (301, 401, 501, 600) ;

    une structure de piégeage de charge diélectrique (303, 403, 503, 603, 1010) sur la première structure diélectrique (202, 302, 402, 502, 602) ;

    une seconde structure diélectrique (304, 404, 504, 604, 1011) sur la structure de piégeage de charge diélectrique (303, 403, 503, 603, 1010) ;

    une couche conductrice (305, 405, 505, 605) ayant une surface de conducteur (306, 406, 506, 606) comprenant une seconde région cylindrique sur la seconde structure diélectrique (304, 404, 504, 604, 1011), la surface de conducteur (306, 406, 506, 606) recouvrant la structure de piégeage de charge diélectrique (203, 303, 403, 503, 603, 1010) et la surface de canal (301, 401, 501, 601) ;

    une section transversale de la première région cylindrique (1007, 1008) de la surface de canal (201, 301, 401, 501, 601) le long de la dimension de largeur de canal étant circulaire avec un arc inférieur à 360 degrés ;

    une section transversale de la seconde région cylindrique de la surface de conducteur (206, 306, 406, 506, 606) le long de la dimension de largeur de canal étant circulaire avec un arc inférieur à 360 degrés ;

    la structure de piégeage de charge (303, 403, 503, 603) ayant une première surface inférieure (309, 409, 509, 609) ;

    la région de canal (300, 400, 500, 600) ayant une seconde surface inférieure (307, 407, 507, 607) ;

    une section transversale de la première surface inférieure (309, 409, 509, 609) le long de la dimension de largeur de canal comprenant un premier coin (309a, 409a, 509a, 609a) et un second coin (309b, 409b, 509b, 609b) auxquels la première surface inférieure (309, 409, 509, 609) s'écarte de la région de canal (300, 400, 500, 600) ; et

    une section transversale de la seconde surface inférieure (307, 407, 507, 607) le long de la dimension de largeur de canal comprenant une première ligne ; caractérisée par le fait que :
    les structures entre la surface de canal (301, 401, 501, 601) et la surface de conducteur (306, 406, 506, 606) ont une épaisseur d'oxyde effective et la première région cylindrique de la surface de canal (301, 401, 501, 601) a un rayon moyen qui est inférieur à l'épaisseur d'oxyde effective.


     
    2. Cellule de mémoire selon la revendication 1, dans laquelle une seconde ligne imaginaire reliant le premier coin (309a) et le second coin (309b) est disposée de telle sorte que la première ligne se trouve à un niveau au-dessous de la seconde ligne imaginaire.
     
    3. Cellule de mémoire selon la revendication 1, dans laquelle une seconde ligne imaginaire reliant le premier coin (409a) et le second coin (409b) est disposée de telle sorte que la première ligne se trouve à un niveau au-dessus de la seconde ligne imaginaire.
     
    4. Cellule de mémoire selon la revendication 1, comprenant en outre une structure d'ailette semi-conductrice (1005, 1006), la région de canal semi-conductrice (500, 600) étant sur la structure d'ailette semi-conductrice (1005, 1006).
     
    5. Cellule de mémoire selon la revendication 1, dans laquelle la première structure diélectrique (302, 402, 502, 602) comprend du dioxyde de silicium.
     
    6. Cellule de mémoire selon la revendication 1, dans laquelle la première structure diélectrique (302, 402, 502, 602, 1009) comprend une structure de barrière de tunnellisation d'ingénierie de structure de bande.
     
    7. Cellule de mémoire selon la revendication 6, dans laquelle la structure de barrière de tunnellisation d'ingénierie de structure de bande comprend :

    une première couche diélectrique ayant une hauteur de barrière de tunnellisation de trous ;

    une deuxième couche diélectrique sur la première couche diélectrique, la deuxième couche diélectrique ayant une hauteur de barrière de tunnellisation de trou inférieure à celle de la première couche diélectrique ; et

    une troisième couche diélectrique sur la deuxième couche diélectrique, la troisième couche diélectrique ayant une hauteur de barrière de tunnellisation de trou supérieure à celle de la deuxième couche diélectrique.


     
    8. Cellule de mémoire selon la revendication 7, dans laquelle la première couche diélectrique comprend du dioxyde de silicium, la deuxième couche diélectrique comprend du nitrure de silicium, et la troisième couche diélectrique comprend du dioxyde de silicium.
     
    9. Cellule de mémoire selon la revendication 7, dans laquelle la première couche diélectrique a une épaisseur inférieure ou égale à environ 20 angströms.
     
    10. Cellule de mémoire selon la revendication 7, dans laquelle la première couche diélectrique a une épaisseur comprise entre environ 10 et environ 20 angströms.
     
    11. Cellule de mémoire selon la revendication 7, dans laquelle la première couche diélectrique a une épaisseur comprise entre environ 10 et environ 15 angströms.
     
    12. Cellule de mémoire selon la revendication 7, dans laquelle la première couche diélectrique a une épaisseur comprise entre environ 5 et environ 20 angströms.
     
    13. Cellule de mémoire selon la revendication 7, dans laquelle la première couche diélectrique a une épaisseur inférieure ou égale à environ 15 angströms.
     
    14. Cellule de mémoire selon la revendication 7, dans laquelle la deuxième couche diélectrique a une épaisseur inférieure ou égale à environ 20 angströms.
     
    15. Cellule de mémoire selon la revendication 7, dans laquelle la deuxième couche diélectrique a une épaisseur comprise entre environ 10 et environ 20 angströms.
     
    16. Cellule de mémoire selon la revendication 7, dans laquelle la troisième couche diélectrique a une épaisseur inférieure ou égale à environ 20 angströms.
     
    17. Cellule de mémoire selon la revendication 7, dans laquelle la troisième couche diélectrique a une épaisseur comprise entre environ 15 et environ 20 angströms.
     
    18. Cellule de mémoire selon la revendication 7, dans laquelle la troisième couche diélectrique a une épaisseur comprise entre environ 10 et environ 20 angströms.
     
    19. Cellule de mémoire selon la revendication 1, dans laquelle la structure de piégeage de charge diélectrique (303, 403, 503, 603, 1010) comprend du nitrure de silicium.
     
    20. Cellule de mémoire selon la revendication 1, dans laquelle la seconde structure diélectrique (304, 404, 504, 604, 1011) comprend du dioxyde de silicium.
     
    21. Cellule de mémoire selon la revendication 1, dans laquelle la couche conductrice supérieure (305, 405, 505, 605) comprend du polysilicium.
     
    22. Procédé de formation d'une cellule de mémoire selon la revendication 1.
     
    23. Dispositif de mémoire comprenant :

    un réseau de cellules de mémoire selon l'une quelconque des revendications 1 à 21 sur un substrat semi-conducteur ; et

    une machine d'état d'agencement de polarisation (1609) adaptée pour appliquer des agencements de polarisation aux cellules de mémoire pour une programmation et pour appliquer des agencements de polarisation aux cellules de mémoire pour un écrasement, l'agencement de polarisation pour une programmation comprenant une tension positive entre la couche conductrice (305, 405, 505, 605) et au moins une parmi la région de canal (300, 400, 500, 600), la région de source et la région de drain, suffisante pour induire une tunnellisation d'électrons à travers la première structure diélectrique (302, 402, 502, 602, 1009) dans la structure de piégeage de charge diélectrique (303, 403, 503, 603, 1010), l'agencement de polarisation pour un écrasement comprenant une tension négative entre la couche conductrice (305, 405, 505, 605) et au moins une parmi la région de canal (300, 400, 500, 600), la région de source et la région de drain, suffisante pour induire une tunnellisation de trous à travers la première structure diélectrique (302, 402, 502, 602, 1009) dans la structure de piégeage de charge (303, 403, 503, 603, 1010).


     




    Drawing






































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description