(19)
(11)EP 1 920 719 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
02.12.2015 Bulletin 2015/49

(21)Application number: 06782242.9

(22)Date of filing:  03.08.2006
(51)International Patent Classification (IPC): 
A61B 17/56(2006.01)
A61F 2/44(2006.01)
(86)International application number:
PCT/JP2006/315382
(87)International publication number:
WO 2007/018114 (15.02.2007 Gazette  2007/07)

(54)

MINIMALLY-INVASIVE IMPLANT FOR OPENING AND ENLARGEMENT OF PROCESSUS SPINOSUS INTERSPACE

MINIMAL INVASIVES IMPLANTAT ZUR ÖFFNUNG UND VERGRÖSSERUNG DES RAUMS ZWISCHEN DORNFORTSÄTZEN

IMPLANT TRÈS PEU INVASIF PERMETTANT D'OUVRIR ET D'AGRANDIR UN ESPACE ENTRE APOPHYSES ÉPINEUSES


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30)Priority: 11.08.2005 JP 2005232807

(43)Date of publication of application:
14.05.2008 Bulletin 2008/20

(73)Proprietor: National University Corporation Kobe University
Kobe-shi, Hyogo 657-8501 (JP)

(72)Inventor:
  • NISHIDA, Kotaro
    Kobe-shi, Hyogo 6578501 (JP)

(74)Representative: Dossmann, Gérard 
Casalonga & Partners Bayerstrasse 71-73
80335 München
80335 München (DE)


(56)References cited: : 
WO-A1-2004/105656
US-A1- 2003 088 251
WO-A2-2007/111999
US-A1- 2005 165 398
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    [Technical Field]



    [0001] The present invention relates to a minimally-invasive implant for the purpose of opening and enlargement of a processus spinosus interspace, and particularly an interspinous process spacer for enlarging the spinal canal.

    [Background Art]



    [0002] The spinal canal is a cylindrical space in a vertical direction located in the center of a backbone (corpus vertebrae), and a spinal cord and cauda equina (nerve) are housed therein and protected firmly. Spinal canal stenosis where this spinal canal is stenosed due to various causes such as deformation of a bone, a cartilage or a ligament to press the nerve therein has become a major social problem as the number of patients has increased in conjunction with an aging society.

    [0003] In particular, lumbar spinal canal stenosis refers to a state where the deformation and thickening of lumbar vertebra and intervertebral joints as well as deformation and bulging of the intervertebral disc which is cartilage tissue, or hypertrophy of a ligament occurs and these make the spinal canal narrow to apply pressure or squeeze the nerves and blood vessels. This symptom is typified by a gait disorder such as neurogenic intermittent claudication, and this symptom is characterized in that a lower limb does not advance forward after walking for a few minutes and when taking a rest by crouching, subsequently the patient can walk again. In addition, sciatic neuralgia, lower limb symptoms such as palsy, a cold sensation and a feeling of lassitude, lumbar pain and urinary bladder and rectal disorders (disorders of urination and defecation) and the like are lumbar and lower limb symptoms of lumbar spinal canal stenosis.

    [0004] It has been known that lumbar and lower limb symptoms due to lumbar spinal canal stenosis are anatomically reduced and improved by anteflexion of the lumbar vertebra, e.g., crouching or riding a bicycle.

    [0005] As conservative therapeutic methods which improve symptoms in daily life, physical therapies such as drug therapy of administering a drug which is a vasodilator drug or increases blood flow to a nerve root or a periphery of the cauda equina, an epidural block method, a radicular block method, an orthosis therapy of wearing a lumbar vertebra bending position corset to keep the lumbar portion at rest at the bending position, and an ultrasonic therapy and a hot pack therapy for improving pain relief, muscular spasticity and blood circulation are available.

    [0006] When conservative therapy is ineffective and severe neurological disorder and intermittent claudication sustain, a surgical therapy countering this conservative therapy is available, and neurological decompression procedures such as a laminectomy and expanded fenestration have been conventionally performed. In the laminectomy and expanded fenestration, surgical invasion is applied to the patient to restore the lumbar vertebra stenosis site, and thus it is necessary to give general anesthesia to the patient. In this procedure, the patient is likely to be exposed to the risk of hemorrhaging and serious complications, and hospitalization for several days to several weeks is required for a patient after the operation. Therefore, this procedure heavily burdens the patient, and particularly when the patient is elderly, the symptom is sometimes further worsened.

    [0007] However, in recent years, it has been reported that by stationing an interspinous process spacer in a minor surgical method, the effect of local lumbar anteflexion is obtained and satisfactory results are obtained (Patent Document 1, Non-patent Literature 1).

    [0008] Also, as the interspinous process spacer, the spacer inserted in the processus spinosus interspace using a guide pin and an obturator is publicly known (Patent Document 2).

    [0009] Such a minimally invasive procedure can be performed under a local anesthesia. Thus, a shorter period is needed for recovery, there is almost no hemorrhaging, the risk of serious complications is reduced and therapeutic cost required for the patient is less. Therefore, it has been desired that spinal canal stenosis can be treated using the minimally invasive procedure.

    [Patent document 1] Japanese Translation of International Application No.2005-517467

    [Patent document 2] WO 2005/072301

    [Non-patent Literature 1] Sekitsui Sekizui Shinkei Shujutsu Shugi 6(1):120-123, 2004, "Therapeutic experiences of lumbar spinal canal stenosis by interspinous process spacer (Sten-X™) performed under local anesthesia."


    [Disclosure of the Invention]


    [Problems to be Solved by the Invention]



    [0010] As described above, it has been reported that by stationing the interspinous process spacer, the effect of local lumbar anteflexion is obtained and satisfactory results are obtained. A prior and existing spacer device used for this is described with reference to FIG. 1. FIG. 1 shows an entire schematic view and a use example of the prior and existing spacer device. In the figure, (A-1) shows a completed view of an assembly of the spacer device, (A-2) shows an appearance where one wing region has been removed in the spacer device, (B-1) and (B-2) show the appearances before and after attaching the spacer device. In the prior and existing spacer device 30, as shown in (A-1) in FIG, 1, the wing regions 32 are constituted by pinching the spacer region 31, and as shown in (A-2) in FIG. 1, one wing region is detachable.

    [0011] Such a spacer device is disposed in the stenosed processus spinosus interspace as shown in (B-2) in FIG. 1 to enable to enlarging and fixing the processus spinosus interspace.

    [0012] In such a spacer device 30, as shown in FIG. 2, a part of a back of a patient is cut open by means of surgical operation, the paraspinal muscle is detached, the processus spinosus and interspinous ligament are exposed (FIG. 2 (a)), first a specialized device is inserted in the processus spinosus interspace to provide a hole in the processus spinosus interspace (FIG. 2 (b)), subsequently the spacer device is inserted in the processus spinosus and screwed into the processus spinosus interspace (FIG. 2 (c)), and finally the wing region is placed from above and fixed with a screw (FIG. 2 (d)). Thus, in the operation using this device, a minimal skin incision of about 3 cm or more is required, and it is necessary to detach the paraspinal muscle from the spine.

    [0013] Such a procedure may be possible under local anesthesia but is difficult. Further surgical invasiveness is never minor.

    [0014] In the interspinous process spacer disclosed in Patent Document 2, in order to insert the spacer in the processus spinosus interspace, it is required to first insert the guide pin from the skin incision site, subsequently the obturator is inserted which covers it to enlarge the processus spinosus interspace and finally insert the spacer. This obturator has a large diameter, thereby functioning to construct a path from the skin incision site to the processus spinosus interspace for inserting the spacer. However, in insertion of such an obturator, if the processus spinosus interspace is enlarged smoothly, it is required to insert the obturator by sequentially changing the diameter from small to large. Thus, the patient is heavily burdened and simultaneously the operator is burdened because of multiple procedures. The spacer disclosed in Patent Document 2 comprises a substantially conoid region to be inserted into a processus spinosus interspace, a head region which interlocks with a tool, a recessed spacer region between the other two regions, and a through-hole in an axial center of all three regions.

    [0015] Based on the above problems, the present invention aims at realizing a more minimally invasive therapeutic method for spinal canal stenosis, and aims at providing a therapeutic device capable of simply stationing the interspinous process spacer without the need for a large skin incision and also without the need for detaching the paraspinal muscle from the spine.

    [Means to Solve the Objects]



    [0016] The present inventors are doctors specializing in organ treatment, have invented the interspinous process spacer according to the present invention through a wide range of clinical experience against spinal canal stenosis, and completed the present invention by producing and improving various prototype products. In order to achieve the above obj ect, the interspinous process spacer according to the present invention including a conoid screw region to be screwed into the processus spinosus interspace; a spacer region formed in a longitudinal direction of the screw region; and a head region capable of freely interlocking with a tool arbitrarily or freely attaching a coupling member arbitrarily; and has a through-hole in an axial center of the screw region, the spacer region and the head region.

    [0017] According to the above constitution, the processus spinosus interspace is enlarged smoothly by utilizing an opening and enlarging force generated when the screw region is screwed and inserted in the processus spinosus interspace, and the spacer region is pinched by passing the screw region through the processus spinosus interspace. Thus, finally the adjacent processus spinosus interspaces can be enlarged and fixed (the predetermined distance can be maintained in neutral or extension position). In addition, the head region capable of freely interlocking with the tool arbitrarily or freely attaching the coupling member arbitrarily means including , for example, a hole for a hexagon driver tool. Using the driver tool, it is possible to push the interspinous process spacer of the present invention by rotating from the small incision site toward the internal processus spinosus interspace. By forming the through-hole in the axial center of the screw region and the spacer region, it becomes possible to couple with the guide member such as a guide wire through the through-hole. By the guide member, the interspinous process spacer of the present invention is guided to the processus spinosus interspace from the small incision site toward the internal processus spinosus interspace.

    [0018] Here, it is preferable that the screw region of the interspinous process spacer according to the present invention has a substantially radial outer contour or a cone shape having a round tip end part. More preferably, the screw region of the interspinous process spacer according to the present invention is formed into not a simple screw shape but an interference screw shape. The interspinous process spacer of the present invention proceeds in the dorsal skin and muscle of the patient by screw-rotating like a drill. By an obtuse angle and round cone-shape rather than an acute angle tip end part the screw region can reduce risk such as wrong insertion into the spinal canal.

    [0019] In addition, the cross section of the spacer region of the interspinous process spacer according to the present invention can be circular, elliptical, substantially trianglar, substantially rectangular or polygonal. As described above, by passing the screw region through the processus spinosus interspace, the spacer region is pinched to enlarge and fix the adjacent processus spinosus interspaces.

    [0020] If the cross section of this spacer region is circular or elliptical, even when the screw region is passed through the processus spinosus interspace in any condition, it is possible to easily pinch the spacer region in the processus spinosus interspace. In addition, if the cross section of the spacer region is substantially triangular or substantially rectangular, the range joined to the adj acent processus spinosus is increased compared with the circular and elliptical cases. Thus, it is possible to stably pinch the spacer region in the processus spinosus interspace.

    [0021] It is preferable that an outer contain of the entire shape of the interspinous process spacer according to the present invention is elliptical. From anatomical morphology, a wholly elliptical shape of the interspinous process spacer is easily housed between vertebral arches.

    [0022] It is preferable that the diameter of through-hole in the spacer region is larger than its diameters in the screw region and in the head region and the cross section of this through-hole in the longitudinal direction is substantially a spindle.

    [0023] By making the hole for the guide wire of the interspinous process spacer spindle, i.e., making a middle thick, there is an advantage that the interspinous process spacer canbe smoothly inserted even under the condition where the guide wire is not straight but bent.

    [0024] It is also preferable that the screw region and the spacer region of the interspinous process spacer according to the present invention are composed of a ceramic material selected from alumina, zirconium, hydroxyapatite and calcium phosphate, a calcium phosphate based glass material having bioactivity, a resin material, a plastic material or a metal material selected from stainless steel, titanium and titanium alloy.

    [0025] Inaddition, in the interspinous process spacer according to the present invention, the through-hole formed in the axial center of the screw region and the spacer region is used as an insertion hole of the guide member. By coupling with the guide member introduced in the processus spinosus interspace via the dorsal skin in the patient, the interspinous process spacer can be easily guided to the processus spinosus interspace.

    [0026] The method of percutaneously enlarging the processus spinosus interspace using the interspinous process spacer of the present invention is achieved by the following procedures. The processus spinosus interspace is enlarged by first identifying the location of spinal canal stenosis by radioscopic techniques such as an X-ray, and including (1) a stage of introducing the guide member from a posterolateral side via the dorsal skin in the patient to the above location; (2) a stage of inserting the guide member in the through-hole in the interspinous process spacer; (3) a stage of inserting the screw region of the interspinous process spacer by rotating using a tool such as a driver; (4) a stage of enlarging the processus spinosus interspace by insertion of the screw region by rotating, subsequently passing the screw region through and pinching the spacer region in the processus spinosus interspace to fix the processus spinosus interspace; and (5) a stage of removing the guide member and the tool.

    [0027] In particular, it is preferable that the interspinous process spacer of the present invention is embedded in the processus spinosus interspace of the adj acent thoracic vertebra and/or lumbar vertebra by the method of percutaneously enlarging the processus spinosus interspace described above.

    [Effects of the Invention]



    [0028] In the interspinous process spacer of the present invention, by compositing the screw region and the spacer region, enlargement of the processus spinosus interspace and the insertion of the spacer can be achieved in one step. Further it becomes possible to insert and station the interspinous process spacer percutaneously even under local anesthesia. Thus, there is the effect that a minimally invasive operation simple in procedure can be performed. In particular, the spacer of the present invention far exceeds the prior and existing spacer device in that the interspinous process spacer can be stationed without the need for large skin incision or ligamentous tissue incision and also without the need for detaching the paraspinal muscle from the spine.

    [0029] In addition, an early effect after operation can be anticipated, an outpatient operation is thought to be possible, and it is possible to further reduce temporal, physical and financial burdens on the patient.

    [Best Mode for Carrying Out the Invention]



    [0030] Embodiments of the present invention will be described in detail below with reference to the drawings.

    [0031] FIG. 3 represents an outline drawing of the interspinous process spacer according to the present invention. As is shown in (b) a plane view of FIG. 3, the interspinous process spacer of the present invention is constituted by including the conoid screw region 2; the spacer region 3 formed in the longitudinal direction of the screw region; the head region 4 including the hole 6 for the hexagon driver which can interlock with the hexagon driver and the insertion hole 5 for the guide wire penetrating in the axial center of the screw region 2, the spacer region 3 and the head portion 4. As shown in the outer drawing of FIG. 3, it is preferable that the outer contour of the shape in the plane cross sectional view of the interspinous process spacer is substantially elliptical. From clinical experience, it was found to be easily housed in vertebral arches.

    [0032] Here, the screw region 2 of the interspinous process spacer has a substantially radial outer contour. This is because when the screw region 2 passes through the processus spinosus interspace, the processus spinosus interspace can be enlarged by the radial outer contour and the spacer region 3 is easily fitted in the processus spinosus interspace. Further, the cross section of the spacer region 3 in the interspinous process spacer is formed into circular shape, and the spacer region is wholly cylindrical. This is because the spacer region 3 can be stably fitted in the processus spinosus interspace even when the screw region 2 passes through the processus spinosus interspace at any angle.

    [0033] By including the hole 6 for the hexagon driver, the interspinous process spacer of the present invention can be pushed from the small incision site toward the internal processus spinosus interspace by rotating the interspinous process spacer of the present invention using a driver tool. By including the insertion hole 5 for the guide wire, the interspinous process spacer of the present invention can be coupled with the guide wire, and by inserting the guide wire from the small incision site toward the internal processus spinosus interspace, the spacer can be guided to the processus spinosus interspace along the guide wire.

    [0034] In FIG. 4 (a), a cross sectional view of the spinal canal is shown. In the figure, 10 represents processus spinosus, 11 represents vertebral body and 12 represents vertebral foramen. As shown in FIG. 4 (b), finally the spacer region of the interspinous process spacer is pinched between adjacent processus spinosus 11.

    [0035] In FIG. 5, the procedure in the operation using the interspinous process spacer according to the present invention is shown. First, as shown in FIG. 5 (a), the guide wire 7 is inserted from the dorsal small incision site in the patient to insert the guide wire 7 between the processus spinosus 10. Subsequently as shown in FIG. 5 (b), one end of the inserted guide wire 7 is passed through the insertion hole for the guide wire penetrating in the axial center of the interspinous process spacer according to the present invention. And, as shown in FIG. 5 (c), the hexagon driver 8 is inserted in the hole for the hexagon driver provided in the head region of the interspinous process spacer 1, and the interspinous process spacer 1 is screwed in the processus spinosus interspace using a hexagon driver 8. At that time, the processus spinosus interspace can be smoothly enlarged by the radial outer contour of the screw region of the interspinous process spacer 1. And, as shown in FIG. 5 (d), when the screw region of the interspinous process spacer 1 is passed through the processus spinosus 10, the spacer region of the interspinous process spacer 1 is pinched, and the processus spinosus interspace can be stably enlarged and fixed.

    [0036] FIG. 6 (a) shows a side cross sectional view of the spinal canal, and FIG. 6 (b) and (c) show the appearances where the interspinous process spacer according to the present invention has been loaded in the spinal canal. In the figure, 20 represents a hypertrophic yellow ligament and 21 represents the bulging of intervertebral disc.

    [0037] It can be seen that the spinal canal is stenosed in FIG. 6 (a) and as shown in FIG. 6 (b), the spinal canal has been enlarged by the interspinous process spacer according to the present invention.

    [0038] The present invention can be executed by a specific method other than the method described herein. The interspinous process spacer according to the present invention and the method of percutaneously enlarging the processus spinosus interspace can be used for enlarging and fixing the adjacent processus spinosus interspaces. However, the present invention may be applied to making a space in other tissue in the body (enlarging and fixing the distance between the bones).

    [Example 1]



    [0039] An outline drawing of the interspinous process spacer in Example 1 is shown in FIG. 7. In the interspinous process spacer in Example 1, the spacer region 3 has been made by scraping away the center of an elliptical sphere made from titanium and the screw region 2 has been made by providing a screw wing on the side in one end.

    [0040] The dimensions (length and diameter) of the spacer region 3 have some variation depending on the condition of the processus spinosus interspace in a diseased part, and FIG. 7 consistently shows one example of the dimensions.

    [0041] The tip end part of the screw region 2 has been formed into a hemisphere in FIG. 7, but this may be formed into a cone shape having a round tip. In addition, a joint of the screw region 2 and the spacer region 3 has produced a step in FIG.7, but as shown by an arrow in FIG. 8, an end-to-side of the spacer region 3 may be extended to a coronal side of the screw region 2 to be made adjacent without the step. In addition, a screw pitch in the screw region 2 is about 1 to 2 mm, and the screw wing is protruded from the radial outer contour of the screw region 2. FIG. 9-1 to FIG. 9-4 show a perspective view, a plane view, a right side view and a left side view of the interspinous process spacer in Example 1, respectively.

    [0042] Next, an insertion procedure protocol of the interspinous process spacer of the present invention will be described. The targeted patient is a patient diagnosed with lumbar spinal canal stenosis who exhibits a so-called intermittent claudication, and whose symptoms are reduced by anteflexion of lumbar vertebra and whose arteriosclerotic obliteration has been denied. However, extreme lumbar kyphos, epiphysis and lateral curvature are to be excluded, and severe osteoporosis is also to be excluded.

    [0043] As a measurement and plan before the operation, the size (diameter) of the spacer region of the interspinous process spacer is determined on an an X-ray side image of a sitting position and a lumbar maximum anteflexion position (actual measurement). Subsequently, the full length of the interspinous process spacer is determined by measuring the distance between superior articular processes on a standing position X-ray image or CT image. Also, an entry point and an angle of the guide pin are measured on the CT image.

    [0044] The protocol of the actual operation is shown by the following procedures (a) to (i).
    1. (a) Radioscopy (image) is performed in a knee/chest position.
    2. (b) The entry point of the guide pin is determined according to the measurement. A horizontal incision of about 1 cm is made on the skin at the determined position.
    3. (c) The guide pin is inserted. It is confirmed by an radioscopy (image) that the guide pin has passed the portion as close as possible to the base of the targeted processus spinosus interspace and the tip end of the pin has passed over an opposed intervertebral facet joint .
    4. (d) A small incision is given to fascias according to the skin incision, and the interspinous process spacer of the present invention is inserted along the guide pin.
    5. (e) The interspinous process spacer is allowed to proceed using the driver.
    6. (f) When the tip end part of the interspinous process spacer reaches the processus spinosus interspace, the spacer is inserted by adding a rotational force to the driver. The screw region proceeds by enlarging the processus spinosus interspace and the spacer region is pinched, thereby the interspinous process spacer is fixed.
    7. (g) The driver is changed to a multi-axial type (the tip has a paper-covered lamp shape), the guide pin is removed and subsequently the position (slope) of the interspinous process spacer is adjusted.
    8. (h) The position of the interspinous process spacer is confirmed again by radioscopy (image), and subsequently the driver is removed.
    9. (i) The fascias and skin are sewn to finish the operation.

    [Industrial Applicability]



    [0045] The interspinous process spacer according to the present invention is anticipated to be utilized as a medical device useful for surgical therapy of spinal canal stenosis.

    [Brief Description of the Drawings]



    [0046] 

    FIG. 1 shows an entire schematic view and a use example of the prior and existing spacer device.

    FIG. 2 shows appearances of the operation using the prior and existing spacer device.

    FIG. 3 shows shapes of Examples of the interspinous process spacer according to the present invention: (a) a front view, (b) a plane view and (c) a back view.

    FIG. 4 (a) is a cross sectional view of spinal canal, and (b) shows the appearance where the interspinous process spacer according to the present invention has been mounted in the spinal canal.

    FIG. 5 shows the procedures of the operation using the interspinous process spacer according to the present invention.

    FIG. 6 (a) is a side cross sectional view of spinal canal, and (b) and (c) show the appearance where the interspinous process spacer according to the present invention has been mounted in the spinal canal.

    FIG. 7 shows an outline drawing of the interspinous process spacer in Example 1.

    FIG. 8 shows the appearance that an end-to side of the spacer region is extended to a coronal side of the screw region to be made adjacent without a step.

    FIG. 9-1 shows a perspective view of the interspinous process spacer in Example 1.

    FIG. 9-2 shows a plane view of the interspinous process spacer in Example 1.

    FIG. 9-3 shows a right side view of the interspinous process spacer in Example 1.

    FIG. 9-4 shows a left side view of the interspinous process spacer in Example 1.


    [Description of Symbols]



    [0047] 
    1.
    Interspinous process spacer according to the present invention
    2.
    screw region
    3.
    spacer region
    4.
    head region
    5.
    insertion hole for guide wire
    6.
    hole for hexagon driver
    7.
    guide wire
    8.
    hexagon driver
    10.
    processus spinosus
    11.
    vertebral body (lumbar vertebra)
    12.
    vertebral foramen
    13.
    nerve root
    20.
    hypertrophic yellow ligament
    21.
    bulging of intervertebral disc
    22.
    small incision site
    30.
    prior and existing spacer device (spacer device shown in Non-patent Literature 1)
    31.
    spacer region
    32.
    wing region



    Claims

    1. An interspinous process spacer for maintaining a predetermined distance between adjacent processus spinosus, comprising

    - a substantially conoid screw region (2) to be screwed into the processus spinosus interspace;

    - a substantially conoid head region (4) having a round tip end part, capable of freely interlocking with a tool arbitrarily or freely attaching a coupling member arbitrarily; and

    - a spacer region (3) formed in a longitudinal direction of the screw region and radially smaller than the adjacent portions of the head region and screw region, as measured radially from the longitudinal center axis

    and having a through-hole (5) in an axial center of the screw region, the spacer region and the head region.
     
    2. The interspinous process spacer according to claim 1 characterized in that the screw region has a substantially radial outer contour or a cone shape having a round tip end part.
     
    3. The interspinous process spacer according to claim 1 or 2 characterized in that a cross section of the spacer region is circular, elliptical, substantially triangular, substantially rectangular or polygonal.
     
    4. The interspinous process spacer according to any one of claims 1 to 3 characterized in that the diameter of the through-hole is larger in the spacer region than its in the screw region and in the head region, and the cross section in the longitudinal direction of the through-hole is substantially a spindle shape.
     
    5. The interspinous process spacer according to any one of claims 1 to 4 characterized in that the screw region and spacer region are composed of a ceramic material selected from alumina, zirconium, hydroxyapatite and calcium phosphate, a calcium phosphate based glass material having bioactivity, a resin material, a plastic material or a metal material selected from stainless steel, titanium and titanium alloy.
     


    Ansprüche

    1. Interspinöser Spreizer zum Aufrechterhalten eines vorbestimmten Abstands zwischen benachbarten Dornfortsätzen, umfassend

    - einen im Wesentlichen konoiden Schraubenbereich (2), der in den Dornfortsatzzwischenraum einzuschrauben ist;

    - einen im Wesentlichen konoiden Kopfbereich (4) mit einem Endteil mit runder Spitze, der ungehindert mit einem Werkzeug zusammengreifen kann, das ein Kopplungselement beliebig oder frei befestigen kann; und

    - einen Spreizerbereich (3), der in Längsrichtung des Schraubenbereichs ausgebildet ist und radial kleiner ist als die benachbarten Abschnitte des Kopfbereichs und des Schraubenbereichs, gemessen radial von der Längsmittelachse;

    und mit einem Durchgangsloch (5) in einem axialen Mittelpunkt des Schraubenbereichs, des Spreizerbereichs und des Kopfbereichs.
     
    2. Interspinöser Spreizer nach Anspruch 1, dadurch gekennzeichnet, dass der Schraubenbereich einen im Wesentlichen radialen Außenumriss oder eine Konusform mit einem Endteil mit runder Spitze besitzt.
     
    3. Interspinöser Spreizer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Querschnitt des Spreizerbereichs kreisrund, elliptisch, im Wesentlichen dreieckig, im Wesentlichen rechteckig oder polygonal ist.
     
    4. Interspinöser Spreizer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Durchmesser des Durchgangslochs in dem Spreizerbereich größer ist als in dem Schraubenbereich und in dem Kopfbereich und der Querschnitt in Längsrichtung des Durchgangslochs im Wesentlichen spindelförmig ist.
     
    5. Interspinöser Spreizer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet dass der Schraubenbereich und der Spreizerbereich aus einem keramischen Material bestehen, das aus Aluminiumoxid, Zirconium, Hydroxyapatit und Calciumphosphat, einem Glasmaterial auf Calciumphosphatbasis mit Bioaktivität, einem Harzmaterial, einem Kunststoff oder einem Metall ausgewählt ist, das aus Edelstahl, Titan und einer Titanlegierung ausgewählt ist.
     


    Revendications

    1. Dispositif d'espacement d'apophyses épineuses destiné à maintenir une distance prédéterminée entre des apophyses épineuses adjacentes, comprenant
    une région filetée sensiblement conique (2) destinée à être vissée dans l'espacement entre des apophyses épineuses ;
    une région supérieure sensiblement conique (4) ayant une partie d'extrémité arrondie, pouvant librement venir en prise avec un outil fixant de manière libre ou arbitraire un élément d'accouplement ; et
    une région d'espacement (3) formée dans une direction longitudinale de la région filetée et radialement inférieure aux parties adjacentes de la région supérieure et de la région filetée, lorsqu'elle est mesurée radialement à partir de l'axe central longitudinal
    et comportant un trou traversant (5) dans un centre axial de la région filetée, de la région d'espacement de la région supérieure.
     
    2. Dispositif d'espacement d'apophyses épineuses selon la revendication 1, caractérisé en ce que la région filetée a un profil extérieur sensiblement radial ou une forme de cône comportant une partie d'extrémité arrondie.
     
    3. Dispositif d'espacement d'apophyses épineuses selon la revendication 1 ou 2, caractérisé en ce que la section transversale de la région d'espacement est circulaire, elliptique, sensiblement triangulaire, sensiblement rectangulaire ou polygonale.
     
    4. Dispositif d'espacement d'apophyses épineuses selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le diamètre du trou traversant est supérieur dans la région d'espacement que dans la région filetée et dans la région supérieure, et la section transversale dans la direction longitudinale du trou traversant a une forme sensiblement fuselée.
     
    5. Dispositif d'espacement d'apophyses épineuses selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la région filetée et la région d'espacement sont composées d'une matière céramique sélectionnée parmi l'alumine, le zirconium, l'hydroxyapatite et le phosphate de calcium, d'un verre à base de phosphate de calcium étant bioactif, d'une matière pastique ou d'un matériau métallique sélectionné parmi l'acier inoxydable, le titane et un alliage de titane.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description