(19)
(11)EP 1 946 125 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
23.09.2020 Bulletin 2020/39

(21)Application number: 06804803.2

(22)Date of filing:  12.10.2006
(51)Int. Cl.: 
G01R 11/00  (2006.01)
H02J 3/24  (2006.01)
(86)International application number:
PCT/CH2006/000567
(87)International publication number:
WO 2007/053965 (18.05.2007 Gazette  2007/20)

(54)

METHOD AND APPARATUS FOR VERIFYING THE ACCURACY OF STATE ESTIMATION CALCULATIONS

VERFAHREN UND VORRICHTUNG ZUR ÜBERPRÜFUNG DER GENAUIGKEIT VON BERECHNUNGEN ZUR ZUSTANDSSCHÄTZUNG

PROCEDE ET DISPOSITIF DE VÉRIFICATION DE LA PRÉCISION DES CALCULS D'ESTIMATION DE L'ETAT


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30)Priority: 08.11.2005 EP 05405624

(43)Date of publication of application:
23.07.2008 Bulletin 2008/30

(73)Proprietor: ABB Power Grids Switzerland AG
5400 Baden (CH)

(72)Inventors:
  • REHTANZ, Christian
    5405 Baden-Dättwil (CH)
  • SURANYI, Andreas
    CH-5436 Würenlos (CH)
  • BERTSCH, Joachim
    CH-8802 Kilchberg (CH)
  • ZIMA, Marek
    CH-8006 Zürich (CH)

(74)Representative: Vossius & Partner Patentanwälte Rechtsanwälte mbB 
Siebertstrasse 3
81675 München
81675 München (DE)


(56)References cited: : 
EP-A- 1 489 714
US-A1- 2005 160 128
US-A- 5 627 760
US-B1- 6 313 752
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The invention relates to the field of electric power systems and their optimal operation. It departs from a procedure for estimating a number of states of such a power system as described in the preamble of claim 1.

    BACKGROUND OF THE INVENTION



    [0002] Electric power systems comprise power transmission networks interconnecting geographically separated regions, and substations for transforming voltages and for switching connections between individual lines of the network. Power generation and load flow in a system with several substations is managed by a central Energy Management System (EMS) and supervised by a Supervisory Control And Data Acquisition (SCADA) system. In the past years, continued load growth without a corresponding increase in transmission resources has resulted in an increased pressure to reduce operational security margins for many power systems world wide and to operate the power systems ever closer to their stability limits. These issues together with the on-going worldwide trend towards deregulation of the electric power markets in general have created a need for accurate and better network monitoring, protection and control.

    [0003] In the past, only root mean square (RMS) values of voltages, currents, active power and reactive power flowing in the network have been determined in an unsynchronized way by means of conventional instrument transformers. Recently however, devices and systems for measuring voltage and current phasors at different locations of a network at exactly the same time have become available. Phasors are time-stamped, complex values such as amplitude and phase angle, of local electric quantities such as currents, voltages and load flows, and can be provided by means of Phasor Measurement Units (PMU) as presented e.g. in the article "PMUs - A new approach to power network monitoring", ABB Review 1/2001, p. 58. These units comprise a very accurate time reference, achievable e.g. by using Global Positioning Satellite (GPS) system and allowing synchronization of the time-stamped values from different locations. In an exemplary application for so-called wide-area monitoring, a number of PMUs forward their measured phasor values to a centrally located system monitoring centre. Data exchange can further be established between the system monitoring centre and other control and protection systems such as the SCADA system mentioned above, to allow for optimal data sharing and control actions.

    [0004] An integral part of the aforementioned SCADA/EMS systems is the so-called State Estimation (SE) as described e.g. in chapters 1 and 2 (pages 1 to 33) of the textbook entitled "Power System State Estimation: Theory and Implementation" by A. Abur and A. G. Exposito (Marcel Dekker, New York 2004). SE involves a regular update of the most important quantities characterizing the power system, such as line flows, loads, generator outputs or bus voltages. Some of these quantities, e.g. transmission line flows, may not be observed directly, but can be derived from information about a topology and a number of states x of the power system. Preferably, these states x are the magnitude and phase angle of bus voltages of all the buses of the power system. In short, the operating conditions or the static state of a power system at a given point in time can be determined if the network model and complex phasor voltages at every system bus are known.

    [0005] As before the advent of phasor measurements, phase angles could not be measured due to lack of synchronization of measurement devices, SE was devised as a mathematical procedure for extracting the states x of the power system from a set of measurements z, such as voltage magnitudes V; line active P and reactive Q power flows. However, various types of additive errors and uncertainties v tend to influence these measurements.



    [0006] Accordingly, the main feature of SE is a minimization of the impact of the errors v with help of redundant measurements. Typically, at a particular point in time, more measurements z are taken than the number of state variables to be determined. In this case, the above equation represents an over-determined set of nonlinear equations, for which a least-squares solution yields the vector x which minimizes the sum of the squares of the components of a residual vector. Generally, the situation is even more complicated since relationships between states and measurements are nonlinear, and the least squares solution of such a nonlinear estimation problem can only be obtained iteratively. Provided that there is enough redundancy in the measurement configuration, the existence of gross errors in the measurement set or structural errors in the network configuration can even be detected this way.

    [0007] State estimation is based on the assumption that measurement errors are statistically distributed with zero mean. The major sources of such errors are a) the instrument transformers, b) the cables connecting the instrument transformers to the sensors and c) the sensors themselves. Furthermore, sub-optimal synchronization between different sensors introduces an additional uncertainty in the measurements.

    [0008] The key ingredients to SE, apart from the measurements z mentioned above, are the network parameters and the actual network topology, comprising in particular updated information about every single component such as switches, breakers and transformers that are susceptible of changing a status. To this end, SE includes a topology processor that gathers status data about the circuit breakers and switches, and configures the one-line diagram of the system. Nevertheless, errors in the network topology and parameters do exist occasionally, due to unreported outages or transmission line sags on hot days.

    [0009] Accordingly, the topology of the network needs to be updated automatically or manually depending on the switching status of the devices (line in or out e.g. for service or after a fault), and new network elements need to be added to the SE system after their installation in the power system. Likewise, potential problems with SE arise from those network parameters that are changing over time with ambient conditions (e.g. temperature, radiation) or from aging devices. Obviously, if the topology is not maintained carefully in the system, the SE results are inaccurate.

    [0010] Generally, the SE assumes that the power system is in a steady-state situation. In transient situations, e.g. after a series of faults, the topology and the measurement values may appear to be incoherent, and the iterative procedure may be found to converge in an unsatisfactory way or not at all. Furthermore, in fringe areas of a power system, e.g. along remote transmission corridors, the redundancy of measurements is usually not given or weak, with such critical measurements resulting in an unobservable system if eliminated from the measurement set. Insufficient redundancy results in the SE procedure not being able to compensate either bad measurement values or inaccuracies in network parameters.

    [0011] Among the abovementioned sources of errors or uncertainty, changes in parameters and topology may remain unnoticed by the state estimator. Nevertheless, no indicator or check has been proposed so far to determine if the state estimation procedure for a particular power system is basically correct or suffering from a serious bias due to an undiscovered change in parameter or topology.

    [0012] Recently, Phasor Measurement Units (PMU) were proposed to serve as data sources for state estimation, e.g. for increasing the accuracy by adding additional redundant measurements. Obviously, if all the conventional sensors were replaced by PMUs, the angles of the voltages and currents of interest could be directly measured, and the update interval between subsequent sets of measurements reduced from several minutes to a fraction of a second. In this case, the subsequent SE procedure for deriving the most likely states x would be linear and thus decisively simplified:

    However, equipping all network nodes with PMUs for the sole purpose of SE is not realistic.

    [0013] US 6 313 752 B1 discloses a system for displaying dynamic on-line operating conditions of an interconnected power transmission network including components to monitor the interconnected power transmission network by measuring and correlating voltage magnitude and phase existing at selected station busses of the interconnected power transmission network.

    [0014] US 5 627 760 A discloses a method and apparatus for recursive parameter estimation which estimates impedance parameters of network branches in both on-line and off-line modes, providing accurate estimation of branch parameters in the presence of noise in measurements and rejecting gross measurement errors, by use of a Kalman type Markov filter scheme using maximum likelihood estimation.

    [0015] US 2005/0160128 A1 discloses methods, systems and software products are provided for power system analysis. The methodology may be used for the solution of a number of power system analysis problems to include: AC power flow, AC state estimation, optimal power flow, stability analysis economic dispatch, and unit commitment.

    DESCRIPTION OF THE INVENTION



    [0016] It is an objective of the invention to reduce operational security margins of a power system and to increase the power transmittable through a transmission corridor of the power system without jeopardizing the safety of the power system or incurring heavy investments. These objectives are achieved by a method of and an arrangement for verifying an accuracy of a state estimation procedure according to the claims 1 and 4. Further preferred embodiments are evident from the dependent patent claims.

    [0017] According to the invention, a check for basic accuracy or correctness of a conventional State Estimation (SE) procedure allows to increase a level of confidence in the results of the procedure. To this end, an accuracy of the estimated states is verified by comparing the latter with the results of independent phasor measurements performed at selected locations of the power system. Unless a discrepancy is reported by this comparison, the results of the SE can be assumed to be sufficiently accurate, and any conservative or additional security margin intended to compensate for SE uncertainty can be relaxed. Hence, established trustworthiness in the estimated states allows increasing the transmitted power where the estimated states do indicate such a possibility, i.e. in particular in fringe areas and/or transmission corridors between countries, and especially under stressed network conditions.

    [0018] According to the invention, phasor measurements from two or more PMUs located at distinct substations of the power system are evaluated to indicate the correctness of the SE procedure. Dependent system quantities such as a voltage phase angle difference are determined and compared to a phase angle difference obtained from two estimated states. Hence a single comparison of one system quantity derived from phasor and SE values originating from electrically distant locations yields a refined indication about the accuracy of the state estimation procedure.

    [0019] A discrepancy threshold or measure is defined and evaluated for verification. If this threshold is not exceeded, security margins for transmission sections e.g. between substations, may be reduced. Otherwise, a warning or other indication is issued.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0020] The subject matter of the invention will be explained in more detail in the following text with reference to preferred exemplary embodiments which are illustrated in the attached drawing, in which:
    Fig.1 is a one-line diagram of a power system.

    [0021] The reference symbols used in the drawing, and their meanings, are listed in summary form in the list of reference symbols. In principle, identical parts are provided with the same reference symbols in the figures.

    DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS



    [0022] Fig. 1 shows a one-line diagram of a 5-bus power system 1 including two generators 10, 10' and several substations represented by five busses 11, 11',... and interconnected by a number of transmission lines. A set of conventional sensors (not shown) are provided, four of which are assumed to be located at four of the busses 11, 11',... and do provide measurements z1, z2, z3, z4 that are transmitted to and exploited in a control, network management or system monitoring centre 12 (broken lines). The totality of measurements z received at the control centre 12 include line power flows, bus voltage and line current magnitudes, generator outputs, loads, circuit breaker and switch status information, transformer tap positions, and switchable capacitor bank values. From this totality of measurements z, an optimal estimate for the system state, comprising complex bus voltages at various locations A, B, C, D in the entire power system, is determined by means of a known State Estimation (SE) procedure. SE also provides estimates for all the line flows, loads, transformer taps, generator outputs and other dependent system quantities.

    [0023] Two phasor measurement units (PMU) 2, 2' associated to two distinct substations 11, 11" are shown and do provide system quantity values y, y' such as voltage or current phasors. These phasors are likewise transmitted to the control centre 12 (dotted arrows), where they are compared with the system states estimated by the SE for the respective locations A, D corresponding to the substations 11, 11". According to the invention, values of dependent system quantities like a phase angle difference Δϕ derived from the two phasor values y, y' are compared to the values of the dependent system quantity calculated from the estimated states. If the outcome of this consistency check is positive, the operator may trust all the results of the SE, and hence reduce security margins for transmission sections e.g. between substations A and C.

    [0024] The locations A, D where the PMUs are positioned are to be well-selected and comprise e.g. critical busses or line feeders in substations. The PMU data y, y' itself may or may not, either partly or completely, be incorporated in the state estimation procedure. It is further to be understood that neither the conventional sensors nor the PMUs 2, 2' need to be implemented in one single or dedicated device, as the respective measuring functions are being executable likewise by an intelligent electronic device provided for protection and control tasks in the system 1. Furthermore, the location of the control centre 12 could be identical with one of the sensors, PMUs or IEDs mentioned.

    [0025] A threshold or other discrepancy measure ε is advantageously defined for the comparison of the measured phasors y, y' and the values provided by the SE procedure. Possible embodiments range from a simple comparison of the difference between the values mentioned with the threshold, to various methods of statistical mathematics including variance computations. For example, a difference between the respective voltage and current magnitudes and angles as complex state variables from PMU yi,PMU and SExi,SE is calculated.

    [0026] If |xi,SE - yi,PMU| ≥ ε then indicator = 1.

    [0027] If the difference is above the threshold ε, an indicator flag is set and an optical or acoustical warning signal or error message will be issued to the operator in the control centre. Said signal or message can be beneficially integrated into the SCADA system and screen. In the case a faulty SE is identified an analysis process may be started identifying the cause for the error according to the sources described above (topology, transient, network data, faulty measurement, SE software problem).

    LIST OF DESIGNATIONS



    [0028] 
    1
    power system
    10
    generator
    11
    bus
    12
    control centre
    2.
    phasor measurement unit



    Claims

    1. A method of verifying an accuracy of a State Estimation (SE) procedure estimating a number of states (x) of an electric power system (1) based on a redundant set of measurements (z) and corresponding errors (v), wherein the states (x) correspond to system quantities at a number of locations (A, B, C, ...) of the system (1), the system (1) being a power transmission network interconnecting geographically separated regions, the method comprising:

    - measuring phasor values (y, y') of a system quantity by phasor measurement units at at least two locations (B, D, ...) of the system (1) that correspond to distinct substations,

    - comparing the measured phasor values (y, y') with the estimated states (x) corresponding to the respective system quantity at the location (B, D, ...) of the phasor measurements,

    - calculating a value of a dependent system quantity from the measured phasor values (y, y'),

    - effectuating a consistency check by comparing said value of the dependent system quantity with a respective value of the dependent system quantity calculated from the estimated states corresponding to the respective system quantities at the at least two locations (B, D, ...),

    - generating an output based on a result of the consistency check representative of the accuracy of the state estimation.


     
    2. The method according to claim 1, characterized in that it comprises

    - defining a discrepancy threshold between a measured phasor value or a measured phasor value difference and the estimated state or an estimated state difference, and

    - generating an alarm or other indication if the discrepancy threshold is exceeded.


     
    3. The method according to claim 2, characterized in that it comprises

    - reducing a security margin for operating a transmission line of the power system (1) if the discrepancy threshold is not exceeded.


     
    4. An arrangement for verifying an accuracy of a State Estimation (SE) procedure estimating a number of states (x) of an electric power system (1) based on a redundant set of measurements (z) and corresponding errors (v), wherein the states (x) correspond to system quantities at a number of locations (A, B, C, ...) of the system (1), the system (1) being a power transmission network interconnecting geographically separated regions, the arrangement comprising:

    - Phasor Measurement Units (PMU) (2, 2') for measuring phasor values (y, y') of a system quantity at at least two locations (B, D, ...) of the system corresponding to distinct substations, and

    - a control centre (12) for comparing the measured phasor values (y, y') with the estimated states (x) corresponding to the respective system quantity at the locations (B, D, ...) of the Phasor Measurement Units (PMU) (2, 2'),

    wherein the control centre (12) is adapted to

    - calculate a value of a dependent system quantity from the measured phasor values (y, y'),

    - compare said value of the dependent system quantity with a respective value of the dependent system quantity calculated from the estimated states corresponding to the respective system quantities at the at least two locations (B, D, ...) to effectuate a consistency check,

    - generate an output based on a result of the consistency check representative of the accuracy of the state estimation.


     


    Ansprüche

    1. Verfahren zum Prüfen einer Genauigkeit einer Zustandsschätz (SE)-Prozedur, die mehrere Zustände (x) eines elektrischen Energiesystems (1) auf der Grundlage eines redundanten Satzes Messungen (z) und entsprechender Fehler (v) schätzt, wobei die Zustände (x) Systemgrößen an einer Anzahl von Stellen (A, B, C, ...) des Systems (1) entsprechen, das System (1) ein Energieübertragungsnetz ist, das geographisch getrennte Bereiche verbindet, und das Verfahren Folgendes aufweist:

    - Messen von Phasorwerten (y,y') einer Systemgröße durch Phasor-Messeinheiten an mindestens zwei Stellen (B, D, ...) des Systems (1), die verschiedenen Unterstationen entsprechen,

    - Vergleichen der gemessenen Phasorwerte (y,y') mit den geschätzten Zuständen (x), die der entsprechenden Systemgröße an den Stellen (B, D, ...) der Phasormessungen entsprechen,

    - Berechnen eines Werts einer abhängigen Systemgröße aus den gemessenen Phasorwerten (y,y'),

    - Durchführen einer Konsistenzprüfung durch Vergleichen des Werts der abhängigen Systemgröße mit einem entsprechenden Wert der abhängigen Systemgröße, der aus den geschätzten Zuständen, die den entsprechenden Systemgrößen an den mindestens zwei Stellen (B, D, ...) entsprechen, berechnet wurde, und

    - Erzeugen einer Ausgabe in Abhängigkeit von einem Ergebnis der Konsistenzprüfung, die die Genauigkeit der Zustandsschätzung repräsentiert.


     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es Folgendes aufweist:

    - Definieren eines Abweichungsschwellenwerts zwischen einem gemessenen Phasorwert oder einer gemessenen Phasorwertdifferenz und dem geschätzten Zustand oder einer geschätzten Zustandsdifferenz und

    - Erzeugen eines Alarms oder einer anderen Meldung, wenn der Abweichungsschwellenwert überschritten wird.


     
    3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass es Folgendes aufweist:

    - Verringern eines Sicherheitszuschlags zum Betreiben einer Übertragungsleitung des Energiesystems (1), wenn der Abweichungsschwellenwert nicht überschritten wird.


     
    4. Anordnung zum Prüfen einer Genauigkeit einer Zustandsschätz (SE)-Prozedur, die mehrere Zustände (x) eines elektrischen Energiesystems (1) auf der Grundlage eines redundanten Satzes Messungen (z) und entsprechender Fehler (v) schätzt, wobei die Zustände (x) Systemgrößen an einer Anzahl von Stellen (A, B, C, ...) des Systems (1) entsprechen, das System (1) ein Energieübertragungsnetz ist, das geographisch getrennte Bereiche verbindet, und die Anordnung Folgendes aufweist:

    - Phasor-Messeinheiten (PMU) (2, 2') zum Messen von Phasorwerten (y,y') einer Systemgröße an mindestens zwei Stellen (B, D, ...) des Systems, die verschiedenen Unterstationen entsprechen, und

    - ein Steuerzentrum (12) zum Vergleichen der gemessenen Phasorwerte (y,y') mit den geschätzten Zuständen (x), die der entsprechenden Systemgröße an den Stellen (B, D, ...) der Phasor-Messeinheiten (PMU) (2, 2') entsprechen, wobei

    das Steuerzentrum (12) ausgelegt ist zum

    - Berechnen eines Werts einer abhängigen Systemgröße aus den gemessenen Phasorwerten (y,y'),

    - Vergleichen des Werts der abhängigen Systemgröße mit einem entsprechenden Wert der abhängigen Systemgröße, der aus den geschätzten Zuständen, die den entsprechenden Systemgrößen an den mindestens zwei Stellen (B, D, ...) entsprechen, berechnet wurde, um eine Konsistenzprüfung durchzuführen, und

    - Erzeugen einer Ausgabe in Abhängigkeit von einem Ergebnis der Konsistenzprüfung, die die Genauigkeit der Zustandsschätzung repräsentiert.


     


    Revendications

    1. Un procédé de vérification d'une précision d'une procédure d'estimation d'états (SE) estimant un certain nombre d'états (x) d'un système d'énergie électrique (1) sur la base d'un ensemble redondant de mesures (z) et d'erreurs correspondantes (v), les états (x) correspondant à des quantités de système à un certain nombre d'emplacements (A, B, C, ...) du système (1), le système (1) consistant en un système de transmission d'énergie reliant entre elles des régions séparées géographiquement, le procédé comprenant :

    - la mesure de valeurs de phaseur (y, y') d'une quantité de système par des unités de mesure de phaseur à au moins deux emplacements (B, D, ...) du système (1) qui correspondent à des postes distincts,

    - la comparaison des valeurs de phaseur mesurées (y, y') aux états estimés (x) correspondant à la quantité de système respective à l'emplacement (B, D, ...) des mesures de phaseur,

    - le calcul d'une valeur d'une quantité de système dépendante à partir des valeurs de phaseur mesurées (y, y'),

    - la réalisation d'un contrôle de cohérence par comparaison de ladite valeur de la quantité de système dépendante à une valeur respective de la quantité de système dépendante calculée à partir des états estimés correspondant aux quantités de système respectives aux au moins deux emplacements (B, D, ...),

    - la génération d'une sortie sur la base d'un résultat du contrôle de cohérence représentant la précision de l'estimation d'états.


     
    2. Le procédé selon la revendication 1, caractérisé en ce qu'il comprend

    - la définition d'un seuil de divergence entre une valeur de phaseur mesurée ou une différence de valeurs de phaseur mesurées et l'état estimé ou une différence d'états estimés, et

    - la génération d'une alarme ou d'une autre indication en cas de dépassement du seuil de divergence.


     
    3. Le procédé selon la revendication 2, caractérisé en ce qu'il comprend

    - la réduction d'une marge de sécurité pour l'exploitation d'une ligne de transmission du système d'énergie (1) en cas de non-dépassement du seuil de divergence.


     
    4. Un agencement destiné à vérifier une précision d'une procédure d'estimation d'états (SE) estimant un certain nombre d'états (x) d'un système d'énergie électrique (1) sur la base d'un ensemble redondant de mesures (z) et d'erreurs correspondantes (v), les états (x) correspondant à des quantités de système à un certain nombre d'emplacements (A, B, C, ...) du système (1), le système (1) consistant en un système de transmission d'énergie reliant entre elles des régions séparées géographiquement, l'agencement comprenant :

    - des unités de mesure de phaseur (PMU) (2, 2') destinées à mesurer des valeurs de phaseur (y, y') d'une quantité de système à au moins deux emplacements (B, D, ...) du système correspondant à des postes distincts, et

    - un centre de commande (12) destiné à comparer les valeurs de phaseur mesurées (y, y') aux états estimés (x) correspondant à la quantité de système respective aux emplacements (B, D, ...) des unités de mesure de phaseur (PMU) (2, 2'),

    le centre de commande (12) étant adapté à

    - calculer une valeur d'une quantité de système dépendante à partir des valeurs de phaseur mesurées (y, y'),

    - comparer ladite valeur de la quantité de système dépendante à une valeur respective de la quantité de système dépendante calculée à partir des états estimés correspondant aux quantités de système respectives aux au moins deux emplacements (B, D, ...) dans le but de réaliser un contrôle de cohérence,

    - générer une sortie sur la base d'un résultat du contrôle de cohérence représentant la précision de l'estimation d'états.


     




    Drawing






    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description